dehaeze20_optim_robus_compl.../matlab/index.org
2020-10-01 13:28:49 +02:00

64 KiB

Robust and Optimal Sensor Fusion - Matlab Computation

Introduction   ignore

In this document, the optimal and robust design of complementary filters is studied.

Two sensors are considered with both different noise characteristics and dynamical uncertainties represented by multiplicative input uncertainty.

  • Section sec:optimal_comp_filters: the $\mathcal{H}_2$ synthesis is used to design complementary filters such that the RMS value of the super sensor's noise is minimized
  • Section sec:comp_filter_robustness: the $\mathcal{H}_\infty$ synthesis is used to design complementary filters such that the super sensor's uncertainty is bonded to acceptable values
  • Section sec:mixed_synthesis_sensor_fusion: the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis is used to both limit the super sensor's uncertainty and to lower the RMS value of the super sensor's noise

Sensor Description

<<sec:sensor_description>>

Introduction   ignore

In Figure fig:sensor_model_noise_uncertainty is shown a schematic of a sensor model that is used in the following study.

Notation Meaning
$x$ Physical measured quantity
$\tilde{n}_i$ White noise with unitary PSD
$n_i$ Shaped noise
$v_i$ Sensor output measurement
$\hat{x}_i$ Estimate of $x$ from the sensor
Description of signals in Figure fig:sensor_model_noise_uncertainty
Notation Meaning
$\hat{G}_i$ Nominal Sensor Dynamics
$W_i$ Weight representing the size of the uncertainty at each frequency
$\Delta_i$ Any complex perturbation such that $\vert\vert\Delta_i\vert\vert_\infty < 1$
$N_i$ Weight representing the sensor noise
Description of Systems in Figure fig:sensor_model_noise_uncertainty

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/sensor_model_noise_uncertainty.png

Sensor Model

In this example, the measured quantity $x$ is the velocity of an object. The units of signals are listed in Table tab:signal_units. The units of systems are listed in Table tab:dynamical_block_units.

Notation Unit
$x$ $[m/s]$
$\tilde{n}_i$
$n_i$ $[m/s]$
$v_i$ $[V]$
$\hat{x}_i$ $[m/s]$
Units of signals in Figure fig:sensor_model_noise_uncertainty
Notation Unit
$\hat{G}_i$ $[\frac{V}{m/s}]$
$\hat{G}_i^{-1}$ $[\frac{m/s}{V}]$
$W_i$
$\Delta_i$
$N_i$ $[m/s]$
Units of Systems in Figure fig:sensor_model_noise_uncertainty

Sensor Dynamics

<<sec:sensor_dynamics>> Let's consider two sensors measuring the velocity of an object.

The first sensor is an accelerometer. Its nominal dynamics $\hat{G}_1(s)$ is defined below.

  m_acc = 0.01; % Inertial Mass [kg]
  c_acc = 5;    % Damping [N/(m/s)]
  k_acc = 1e5;  % Stiffness [N/m]
  g_acc = 1e5;  % Gain [V/m]

  G1 = g_acc*m_acc*s/(m_acc*s^2 + c_acc*s + k_acc); % Accelerometer Plant [V/(m/s)]

The second sensor is a displacement sensor, its nominal dynamics $\hat{G}_2(s)$ is defined below.

  w_pos = 2*pi*2e3; % Measurement Banwdith [rad/s]
  g_pos = 1e4; % Gain [V/m]

  G2 = g_pos/s/(1 + s/w_pos); % Position Sensor Plant [V/(m/s)]

These nominal dynamics are also taken as the model of the sensor dynamics. The true sensor dynamics has some uncertainty associated to it and described in section sec:sensor_uncertainty.

Both sensor dynamics in $[\frac{V}{m/s}]$ are shown in Figure fig:sensors_nominal_dynamics.

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/sensors_nominal_dynamics.png

Sensor nominal dynamics from the velocity of the object to the output voltage

Sensor Model Uncertainty

<<sec:sensor_uncertainty>> The uncertainty on the sensor dynamics is described by multiplicative uncertainty (Figure fig:sensor_model_noise_uncertainty).

The true sensor dynamics $G_i(s)$ is then described by eqref:eq:sensor_dynamics_uncertainty.

\begin{equation} G_i(s) = \hat{G}_i(s) \left( 1 + W_i(s) \Delta_i(s) \right); \quad |\Delta_i(j\omega)| < 1 \forall \omega \label{eq:sensor_dynamics_uncertainty} \end{equation}

The weights $W_i(s)$ representing the dynamical uncertainty are defined below and their magnitude is shown in Figure fig:sensors_uncertainty_weights.

  W1 = createWeight('n', 2, 'w0', 2*pi*3,   'G0', 2, 'G1', 0.1,     'Gc', 1) * ...
       createWeight('n', 2, 'w0', 2*pi*1e3, 'G0', 1, 'G1', 4/0.1, 'Gc', 1/0.1);

  W2 = createWeight('n', 2, 'w0', 2*pi*1e2, 'G0', 0.05, 'G1', 4, 'Gc', 1);

The bode plot of the sensors nominal dynamics as well as their defined dynamical spread are shown in Figure fig:sensors_nominal_dynamics_and_uncertainty.

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/sensors_uncertainty_weights.png

Magnitude of the multiplicative uncertainty weights $|W_i(j\omega)|$

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/sensors_nominal_dynamics_and_uncertainty.png

Nominal Sensor Dynamics $\hat{G}_i$ (solid lines) as well as the spread of the dynamical uncertainty (background color)

Sensor Noise

<<sec:sensor_noise>> The noise of the sensors $n_i$ are modelled by shaping a white noise with unitary PSD $\tilde{n}_i$ eqref:eq:unitary_noise_psd with a LTI transfer function $N_i(s)$ (Figure fig:sensor_model_noise_uncertainty).

\begin{equation} \Phi_{\tilde{n}_i}(\omega) = 1 \label{eq:unitary_noise_psd} \end{equation}

The Power Spectral Density of the sensor noise $\Phi_{n_i}(\omega)$ is then computed using eqref:eq:sensor_noise_shaping and expressed in $[\frac{(m/s)^2}{Hz}]$.

\begin{equation} \Phi_{n_i}(\omega) = \left| N_i(j\omega) \right|^2 \Phi_{\tilde{n}_i}(\omega) \label{eq:sensor_noise_shaping} \end{equation}

The weights $N_1$ and $N_2$ representing the amplitude spectral density of the sensor noises are defined below and shown in Figure fig:sensors_noise.

  omegac = 0.05*2*pi; G0 = 1e-1; Ginf = 1e-6;
  N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4);

  omegac = 1000*2*pi; G0 = 1e-6; Ginf = 1e-3;
  N2 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4);

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/sensors_noise.png

Amplitude spectral density of the sensors $\sqrt{\Phi_{n_i}(\omega)} = |N_i(j\omega)|$

Save Model

All the dynamical systems representing the sensors are saved for further use.

  save('./mat/model.mat', 'freqs', 'G1', 'G2', 'N2', 'N1', 'W2', 'W1');

Introduction to Sensor Fusion

<<sec:introduction_sensor_fusion>>

Sensor Fusion Architecture

<<sec:sensor_fusion_architecture>>

The two sensors presented in Section sec:sensor_description are now merged together using complementary filters $H_1(s)$ and $H_2(s)$ to form a super sensor (Figure fig:sensor_fusion_noise_arch).

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/sensor_fusion_noise_arch.png
Sensor Fusion Architecture

The complementary property of $H_1(s)$ and $H_2(s)$ means that the sum of their transfer function is equal to $1$ eqref:eq:complementary_property.

\begin{equation} H_1(s) + H_2(s) = 1 \label{eq:complementary_property} \end{equation}

The super sensor estimate $\hat{x}$ is given by eqref:eq:super_sensor_estimate.

\begin{equation} \hat{x} = \left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x + \left( H_1 \hat{G}_1^{-1} G_1 N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} G_2 N_2 \right) \tilde{n}_2 \label{eq:super_sensor_estimate} \end{equation}

Super Sensor Noise

<<sec:super_sensor_noise>>

If we first suppose that the models of the sensors $\hat{G}_i$ are very close to the true sensor dynamics $G_i$ eqref:eq:good_dynamical_model, we have that the super sensor estimate $\hat{x}$ is equals to the measured quantity $x$ plus the noise of the two sensors filtered out by the complementary filters eqref:eq:estimate_perfect_models.

\begin{equation} \hat{G}_i^{-1}(s) G_i(s) \approx 1 \label{eq:good_dynamical_model} \end{equation} \begin{equation} \hat{x} = x + \underbrace{\left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2}_{n} \label{eq:estimate_perfect_models} \end{equation}

As the noise of both sensors are considered to be uncorrelated, the PSD of the super sensor noise is computed as follow:

\begin{equation} \Phi_n(\omega) = \left| H_1 N_1 \right|^2 + \left| H_2 N_2 \right|^2 \label{eq:super_sensor_psd_noise} \end{equation}

And the Root Mean Square (RMS) value of the super sensor noise $\sigma_n$ is given by eqref:eq:super_sensor_rms_noise.

\begin{equation} \sigma_n = \sqrt{\int_0^\infty \Phi_n(\omega) d\omega} \label{eq:super_sensor_rms_noise} \end{equation}

Super Sensor Dynamical Uncertainty

<<sec:super_sensor_dynamical_uncertainty>>

If we consider some dynamical uncertainty (the true system dynamics $G_i$ not being perfectly equal to our model $\hat{G}_i$) that we model by the use of multiplicative uncertainty (Figure fig:sensor_model_uncertainty), the super sensor dynamics is then equals to:

\begin{equation} \begin{aligned} \frac{\hat{x}}{x} &= \Big( H_1 \hat{G}_1^{-1} \hat{G}_1 (1 + W_1 \Delta_1) + H_2 \hat{G}_2^{-1} \hat{G}_2 (1 + W_2 \Delta_2) \Big) \\ &= \Big( H_1 (1 + W_1 \Delta_1) + H_2 (1 + W_2 \Delta_2) \Big) \\ &= \left( 1 + H_1 W_1 \Delta_1 + H_2 W_2 \Delta_2 \right), \quad \|\Delta_i\|_\infty<1 \end{aligned} \end{equation}
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/sensor_model_uncertainty.png
Sensor Model including Dynamical Uncertainty

The uncertainty set of the transfer function from $\hat{x}$ to $x$ at frequency $\omega$ is bounded in the complex plane by a circle centered on 1 and with a radius equal to $|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|$ as shown in Figure fig:uncertainty_set_super_sensor.

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/uncertainty_set_super_sensor.png
Super Sensor model uncertainty displayed in the complex plane

Optimal Super Sensor Noise: $\mathcal{H}_2$ Synthesis

<<sec:optimal_comp_filters>>

Introduction   ignore

In this section, the two sensors are merged together using complementary

The idea is to combine sensors that works in different frequency range using complementary filters. Doing so, one "super sensor" is obtained that can have better noise characteristics than the individual sensors over a large frequency range. The complementary filters have to be designed in order to minimize the effect noise of each sensor on the super sensor noise.

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/sensor_fusion_noise_arch.png
Optimal Sensor Fusion Architecture

H-Two Synthesis

As $\tilde{n}_1$ and $\tilde{n}_2$ are normalized white noise: $\Phi_{\tilde{n}_1}(\omega) = \Phi_{\tilde{n}_2}(\omega) = 1$ and we have: \[ \sigma_{\hat{x}} = \sqrt{\int_0^\infty |H_1 N_1|^2(\omega) + |H_2 N_2|^2(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2 \] Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2$ is minimized.

For that, we use the $\mathcal{H}_2$ Synthesis.

We use the generalized plant architecture shown on Figure fig:h_two_optimal_fusion.

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/h_two_optimal_fusion.png
Architecture used for $\mathcal{H}_\infty$ synthesis of complementary filters
\begin{equation*} \begin{pmatrix} z \\ v \end{pmatrix} = \begin{pmatrix} 0 & N_2 & 1 \\ N_1 & -N_2 & 0 \end{pmatrix} \begin{pmatrix} W_1 \\ W_2 \\ u \end{pmatrix} \end{equation*}

The transfer function from $[n_1, n_2]$ to $\hat{x}$ is: \[ \begin{bmatrix} N_1 H_1 \\ N_2 (1 - H_1) \end{bmatrix} \] If we define $H_2 = 1 - H_1$, we obtain: \[ \begin{bmatrix} N_1 H_1 \\ N_2 H_2 \end{bmatrix} \]

Thus, if we minimize the $\mathcal{H}_2$ norm of this transfer function, we minimize the RMS value of $\hat{x}$.

We define the generalized plant $P$ on matlab as shown on Figure

  P = [N1 -N1;
       0   N2;
       1   0];

And we do the $\mathcal{H}_2$ synthesis using the h2syn command.

  [H2, ~, gamma] = h2syn(P, 1, 1);

Finally, we define $H_2(s) = 1 - H_1(s)$.

  H1 = 1 - H2;

The complementary filters obtained are shown on Figure

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/htwo_comp_filters.png

Obtained complementary filters using the $\mathcal{H}_2$ Synthesis (png, pdf)

Sensor Noise

The PSD of the noise of the individual sensor and of the super sensor are shown in Figure fig:psd_sensors_htwo_synthesis.

The Cumulative Power Spectrum (CPS) is shown on Figure fig:cps_h2_synthesis.

The obtained RMS value of the super sensor is lower than the RMS value of the individual sensors.

  PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
  PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
  PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;

  CPS_S1 = cumtrapz(freqs, PSD_S1);
  CPS_S2 = cumtrapz(freqs, PSD_S2);
  CPS_H2 = cumtrapz(freqs, PSD_H2);

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/psd_sensors_htwo_synthesis.png

Power Spectral Density of the estimated $\hat{x}$ using the two sensors alone and using the optimally fused signal (png, pdf)

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/cps_h2_synthesis.png

Cumulative Power Spectrum of individual sensors and super sensor using the $\mathcal{H}_2$ synthesis (png, pdf)
RMS [m/s]
Integrated Acceleration 0.005
Derived Position 0.08
Super Sensor - $\mathcal{H}_2$ 0.0012

Time Domain Simulation

Parameters of the time domain simulation.

  Fs = 1e4; % Sampling Frequency [Hz]
  Ts = 1/Fs; % Sampling Time [s]

  t = 0:Ts:2; % Time Vector [s]

Time domain velocity.

  v = 0.1*sin((10*t).*t)';

Generate noises in velocity corresponding to sensor 1 and 2:

  n1 = lsim(N1, sqrt(Fs/2)*randn(length(t), 1), t);
  n2 = lsim(N2, sqrt(Fs/2)*randn(length(t), 1), t);

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/super_sensor_time_domain_h2.png

Noise of individual sensors and noise of the super sensor

Discrepancy between sensor dynamics and model

Conclusion

From the above complementary filter design with the $\mathcal{H}_2$ and $\mathcal{H}_\infty$ synthesis, it still seems that the $\mathcal{H}_2$ synthesis gives the complementary filters that permits to obtain the minimal super sensor noise (when measuring with the $\mathcal{H}_2$ norm).

However, the synthesis does not take into account the robustness of the sensor fusion.

Robust Sensor Fusion: $\mathcal{H}_\infty$ Synthesis

<<sec:comp_filter_robustness>>

Introduction   ignore

We initially considered perfectly known sensor dynamics so that it can be perfectly inverted.

We now take into account the fact that the sensor dynamics is only partially known. To do so, we model the uncertainty that we have on the sensor dynamics by multiplicative input uncertainty as shown in Figure fig:sensor_fusion_arch_uncertainty.

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/sensor_fusion_arch_uncertainty.png
Sensor fusion architecture with sensor dynamics uncertainty

The objective here is to design complementary filters $H_1(s)$ and $H_2(s)$ in order to minimize the dynamical uncertainty of the super sensor.

Super Sensor Dynamical Uncertainty

In practical systems, the sensor dynamics has always some level of uncertainty.

The dynamics of the super sensor is represented by

\begin{align*} \frac{\hat{x}}{x} &= (1 + W_1 \Delta_1) H_1 + (1 + W_2 \Delta_2) H_2 \\ &= 1 + W_1 H_1 \Delta_1 + W_2 H_2 \Delta_2 \end{align*}

with $\Delta_i$ is any transfer function satisfying $\| \Delta_i \|_\infty < 1$.

We see that as soon as we have some uncertainty in the sensor dynamics, we have that the complementary filters have some effect on the transfer function from $x$ to $\hat{x}$.

The uncertainty set of the transfer function from $\hat{x}$ to $x$ at frequency $\omega$ is bounded in the complex plane by a circle centered on 1 and with a radius equal to $|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|$ (figure fig:uncertainty_gain_phase_variation).

We then have that the angle introduced by the super sensor is bounded by $\arcsin(\epsilon)$: \[ \angle \frac{\hat{x}}{x}(j\omega) \le \arcsin \Big(|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|\Big) \]

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/uncertainty_gain_phase_variation.png
Maximum phase variation

Synthesis objective

The uncertainty region of the super sensor dynamics is represented by a circle in the complex plane as shown in Figure fig:uncertainty_gain_phase_variation.

At each frequency $\omega$, the radius of the circle is $|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|$.

Thus, the phase shift $\Delta\phi(\omega)$ due to the super sensor uncertainty is bounded by: \[ |\Delta\phi(\omega)| \leq \arcsin\big( |W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)| \big) \]

Let's define some allowed frequency depend phase shift $\Delta\phi_\text{max}(\omega) > 0$ such that: \[ |\Delta\phi(\omega)| < \Delta\phi_\text{max}(\omega), \quad \forall\omega \]

If $H_1(s)$ and $H_2(s)$ are designed such that \[ |W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)| < \sin\big( \Delta\phi_\text{max}(\omega) \big) \]

The maximum phase shift due to dynamic uncertainty at frequency $\omega$ will be $\Delta\phi_\text{max}(\omega)$.

Requirements as an $\mathcal{H}_\infty$ norm

We now try to express this requirement in terms of an $\mathcal{H}_\infty$ norm.

Let's define one weight $W_\phi(s)$ that represents the maximum wanted phase uncertainty: \[ |W_{\phi}(j\omega)|^{-1} \approx \sin(\Delta\phi_{\text{max}}(\omega)), \quad \forall\omega \]

Then:

\begin{align*} & |W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)| < \sin\big( \Delta\phi_\text{max}(\omega) \big), \quad \forall\omega \\ \Longleftrightarrow & |W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)| < |W_\phi(j\omega)|^{-1}, \quad \forall\omega \\ \Longleftrightarrow & \left| W_1(j\omega) H_1(j\omega) W_\phi(j\omega) \right| + \left| W_2(j\omega) H_2(j\omega) W_\phi(j\omega) \right| < 1, \quad \forall\omega \end{align*}

Which is approximately equivalent to (with an error of maximum $\sqrt{2}$):

\begin{equation} \left\| \begin{matrix} W_1(s) W_\phi(s) H_1(s) \\ W_2(s) W_\phi(s) H_2(s) \end{matrix} \right\|_\infty < 1 \end{equation}

One should not forget that at frequency where both sensors has unknown dynamics ($|W_1(j\omega)| > 1$ and $|W_2(j\omega)| > 1$), the super sensor dynamics will also be unknown and the phase uncertainty cannot be bounded. Thus, at these frequencies, $|W_\phi|$ should be smaller than $1$.

Weighting Function used to bound the super sensor uncertainty

Let's define $W_\phi(s)$ in order to bound the maximum allowed phase uncertainty $\Delta\phi_\text{max}$ of the super sensor dynamics.

  Dphi = 10; % [deg]

  Wu = createWeight('n', 2, 'w0', 2*pi*4e2, 'G0', 1/sin(Dphi*pi/180), 'G1', 1/4, 'Gc', 1);
  save('./mat/Wu.mat', 'Wu');

The obtained upper bounds on the complementary filters in order to limit the phase uncertainty of the super sensor are represented in Figure fig:upper_bounds_comp_filter_max_phase_uncertainty.

  <<plt-matlab>>
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/upper_bounds_comp_filter_max_phase_uncertainty.png
Upper bounds on the complementary filters set in order to limit the maximum phase uncertainty of the super sensor to 30 degrees until 500Hz (png, pdf)

$\mathcal{H}_\infty$ Synthesis

The $\mathcal{H}_\infty$ synthesis architecture used for the complementary filters is shown in Figure fig:h_infinity_robust_fusion.

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/h_infinity_robust_fusion.png
Architecture used for $\mathcal{H}_\infty$ synthesis of complementary filters

The generalized plant is defined below.

  P = [Wu*W1 -Wu*W1;
       0       Wu*W2;
       1       0];

And we do the $\mathcal{H}_\infty$ synthesis using the hinfsyn command.

  [H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');

  Test bounds:  0.7071 <=  gamma  <=  1.291

    gamma        X>=0        Y>=0       rho(XY)<1    p/f
  9.554e-01     0.0e+00     0.0e+00     3.529e-16     p
  8.219e-01     0.0e+00     0.0e+00     5.204e-16     p
  7.624e-01     3.8e-17     0.0e+00     1.955e-15     p
  7.342e-01     0.0e+00     0.0e+00     5.612e-16     p
  7.205e-01     0.0e+00     0.0e+00     7.184e-16     p
  7.138e-01     0.0e+00     0.0e+00     0.000e+00     p
  7.104e-01     4.1e-16     0.0e+00     6.749e-15     p
  7.088e-01     0.0e+00     0.0e+00     2.794e-15     p
  7.079e-01     0.0e+00     0.0e+00     6.503e-16     p
  7.075e-01     0.0e+00     0.0e+00     4.302e-15     p

  Best performance (actual): 0.7071

And $H_1(s)$ is defined as the complementary of $H_2(s)$.

  H1 = 1 - H2;

The obtained complementary filters are shown in Figure fig:comp_filter_hinf_uncertainty.

  <<plt-matlab>>
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/comp_filter_hinf_uncertainty.png
Obtained complementary filters (png, pdf)

Super sensor uncertainty

  H2_filters = load('./mat/H2_filters.mat', 'H2', 'H1');

The uncertainty of the super sensor cannot be made smaller than both the individual sensor. Ideally, it would follow the minimum uncertainty of both sensors.

We here just used very wimple weights. For instance, we could improve the dynamical uncertainty of the super sensor by making $|W_\phi(j\omega)|$ smaller bellow 2Hz where the dynamical uncertainty of the sensor 1 is small.

Super sensor noise

We now compute the obtain Power Spectral Density of the super sensor's noise. The noise characteristics of both individual sensor are defined below.

The PSD of both sensor and of the super sensor is shown in Figure fig:psd_sensors_hinf_synthesis. The CPS of both sensor and of the super sensor is shown in Figure fig:cps_sensors_hinf_synthesis.

  PSD_S2   = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
  PSD_S1   = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
  PSD_Hinf = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
  PSD_H2   = abs(squeeze(freqresp(N1*H2_filters.H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2_filters.H2, freqs, 'Hz'))).^2;

  CPS_S2   = cumtrapz(freqs, PSD_S2);
  CPS_S1   = cumtrapz(freqs, PSD_S1);
  CPS_Hinf = cumtrapz(freqs, PSD_Hinf);
  CPS_H2   = cumtrapz(freqs, PSD_H2);
  <<plt-matlab>>
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/psd_sensors_hinf_synthesis.png
Power Spectral Density of the obtained super sensor using the $\mathcal{H}_\infty$ synthesis (png, pdf)
  <<plt-matlab>>
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/cps_sensors_hinf_synthesis.png
Cumulative Power Spectrum of the obtained super sensor using the $\mathcal{H}_\infty$ synthesis (png, cps)

Conclusion

Using the $\mathcal{H}_\infty$ synthesis, the dynamical uncertainty of the super sensor can be bounded to acceptable values.

However, the RMS of the super sensor noise is not optimized as it was the case with the $\mathcal{H}_2$ synthesis

Optimal and Robust Sensor Fusion: Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis

<<sec:mixed_synthesis_sensor_fusion>>

Introduction   ignore

/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/sensor_fusion_arch_full.png
Sensor fusion architecture with sensor dynamics uncertainty

Mixed $\mathcal{H}_2$ / $\mathcal{H}_\infty$ Synthesis - Introduction

The goal is to design complementary filters such that:

  • the maximum uncertainty of the super sensor is bounded
  • the RMS value of the super sensor noise is minimized

To do so, we can use the Mixed $\mathcal{H}_2$ / $\mathcal{H}_\infty$ Synthesis.

The Matlab function for that is h2hinfsyn (doc).

Noise characteristics and Uncertainty of the individual sensors

Both dynamical uncertainty and noise characteristics of the individual sensors are shown in Figure fig:mixed_synthesis_noise_uncertainty_sensors.

  <<plt-matlab>>
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/mixed_synthesis_noise_uncertainty_sensors.png
Noise characteristsics and Dynamical uncertainty of the individual sensors (png, pdf)

Weighting Functions on the uncertainty of the super sensor

We design weights for the $\mathcal{H}_\infty$ part of the synthesis in order to limit the dynamical uncertainty of the super sensor. The maximum wanted multiplicative uncertainty is shown in Figure .The idea here is that we don't really need low uncertainty at low frequency but only near the crossover frequency that is suppose to be around 300Hz here.

Mixed $\mathcal{H}_2$ / $\mathcal{H}_\infty$ Synthesis

The synthesis architecture that is used here is shown in Figure fig:mixed_h2_hinf_synthesis.

The controller $K$ is synthesized such that it:

  • Keeps the $\mathcal{H}_\infty$ norm $G$ of the transfer function from $w$ to $z_\infty$ bellow some specified value
  • Keeps the $\mathcal{H}_2$ norm $H$ of the transfer function from $w$ to $z_2$ bellow some specified value
  • Minimizes a trade-off criterion of the form $W_1 G^2 + W_2 H^2$ where $W_1$ and $W_2$ are specified values
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs-tikz/mixed_h2_hinf_synthesis.png
Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis

Here, we define $P$ such that:

\begin{align*} \left\| \frac{z_\infty}{w} \right\|_\infty &= \left\| \begin{matrix}W_1(s) H_1(s) \\ W_2(s) H_2(s)\end{matrix} \right\|_\infty \\ \left\| \frac{z_2}{w} \right\|_2 &= \left\| \begin{matrix}N_1(s) H_1(s) \\ N_2(s) H_2(s)\end{matrix} \right\|_2 \end{align*}

Then:

  • we specify the maximum value for the $\mathcal{H}_\infty$ norm between $w$ and $z_\infty$ to be $1$
  • we don't specify any maximum value for the $\mathcal{H}_2$ norm between $w$ and $z_2$
  • we choose $W_1 = 0$ and $W_2 = 1$ such that the objective is to minimize the $\mathcal{H}_2$ norm between $w$ and $z_2$

The synthesis objective is to have: \[ \left\| \frac{z_\infty}{w} \right\|_\infty = \left\| \begin{matrix}W_1(s) H_1(s) \\ W_2(s) H_2(s)\end{matrix} \right\|_\infty < 1 \] and to minimize: \[ \left\| \frac{z_2}{w} \right\|_2 = \left\| \begin{matrix}N_1(s) H_1(s) \\ N_2(s) H_2(s)\end{matrix} \right\|_2 \] which is what we wanted.

We define the generalized plant that will be used for the mixed synthesis.

  W1u = ss(W2*Wu); W2u = ss(W1*Wu); % Weight on the uncertainty
  W1n = ss(N2); W2n = ss(N1); % Weight on the noise

  P = [W1u -W1u;
       0    W2u;
       W1n -W1n;
       0    W2n;
       1    0];

The mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis is performed below.

  Nmeas = 1; Ncon = 1; Nz2 = 2;

  [H1, ~, normz, ~] = h2hinfsyn(P, Nmeas, Ncon, Nz2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 0.01, 'DISPLAY', 'on');

  H2 = 1 - H1;

The obtained complementary filters are shown in Figure fig:comp_filters_mixed_synthesis.

  <<plt-matlab>>
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/comp_filters_mixed_synthesis.png
Obtained complementary filters after mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis (png, pdf)

Obtained Super Sensor's noise

The PSD and CPS of the super sensor's noise are shown in Figure fig:psd_super_sensor_mixed_syn and Figure fig:cps_super_sensor_mixed_syn respectively.

  PSD_S2     = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
  PSD_S1     = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
  PSD_H2Hinf = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;

  CPS_S2     = cumtrapz(freqs, PSD_S2);
  CPS_S1     = cumtrapz(freqs, PSD_S1);
  CPS_H2Hinf = cumtrapz(freqs, PSD_H2Hinf);
  <<plt-matlab>>
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/psd_super_sensor_mixed_syn.png
Power Spectral Density of the Super Sensor obtained with the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis (png, pdf)
  <<plt-matlab>>
/tdehaeze/dehaeze20_optim_robus_compl_filte/media/commit/27db1ace65484daa80c7fca293163ac83c9e0ce4/matlab/figs/cps_super_sensor_mixed_syn.png
Cumulative Power Spectrum of the Super Sensor obtained with the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis (png, pdf)

Obtained Super Sensor's Uncertainty

The uncertainty on the super sensor's dynamics is shown in Figure

Comparison Hinf H2 H2/Hinf

  H2_filters      = load('./mat/H2_filters.mat',      'H2', 'H1');
  Hinf_filters    = load('./mat/Hinf_filters.mat',    'H2', 'H1');
  H2_Hinf_filters = load('./mat/H2_Hinf_filters.mat', 'H2', 'H1');
  PSD_H2 = abs(squeeze(freqresp(N2*H2_filters.H2, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N1*H2_filters.H1, freqs, 'Hz'))).^2;
  CPS_H2 = cumtrapz(freqs, PSD_H2);

  PSD_Hinf = abs(squeeze(freqresp(N2*Hinf_filters.H2, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N1*Hinf_filters.H1, freqs, 'Hz'))).^2;
  CPS_Hinf = cumtrapz(freqs, PSD_Hinf);

  PSD_H2Hinf = abs(squeeze(freqresp(N2*H2_Hinf_filters.H2, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N1*H2_Hinf_filters.H1, freqs, 'Hz'))).^2;
  CPS_H2Hinf = cumtrapz(freqs, PSD_H2Hinf);
RMS [m/s]
Optimal: $\mathcal{H}_2$ 0.0012
Robust: $\mathcal{H}_\infty$ 0.041
Mixed: $\mathcal{H}_2/\mathcal{H}_\infty$ 0.011

Conclusion

This synthesis methods allows both to:

  • limit the dynamical uncertainty of the super sensor
  • minimize the RMS value of the estimation

Matlab Functions

<<sec:matlab_functions>>

createWeight

<<sec:createWeight>>

This Matlab function is accessible here.

    function [W] = createWeight(args)
    % createWeight -
    %
    % Syntax: [in_data] = createWeight(in_data)
    %
    % Inputs:
    %    - n  - Weight Order
    %    - G0 - Low frequency Gain
    %    - G1 - High frequency Gain
    %    - Gc - Gain of W at frequency w0
    %    - w0 - Frequency at which |W(j w0)| = Gc
    %
    % Outputs:
    %    - W - Generated Weight

        arguments
            args.n  (1,1) double {mustBeInteger, mustBePositive} = 1
            args.G0 (1,1) double {mustBeNumeric, mustBePositive} = 0.1
            args.G1 (1,1) double {mustBeNumeric, mustBePositive} = 10
            args.Gc (1,1) double {mustBeNumeric, mustBePositive} = 1
            args.w0 (1,1) double {mustBeNumeric, mustBePositive} = 1
        end

      mustBeBetween(args.G0, args.Gc, args.G1);

      s = tf('s');

      W = (((1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (args.G0/args.Gc)^(1/args.n))/((1/args.G1)^(1/args.n)*(1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (1/args.Gc)^(1/args.n)))^args.n;

      end

      % Custom validation function
      function mustBeBetween(a,b,c)
          if ~((a > b && b > c) || (c > b && b > a))
              eid = 'createWeight:inputError';
              msg = 'Gc should be between G0 and G1.';
              throwAsCaller(MException(eid,msg))
          end
      end

plotMagUncertainty

<<sec:plotMagUncertainty>>

This Matlab function is accessible here.

  function [p] = plotMagUncertainty(W, freqs, args)
  % plotMagUncertainty -
  %
  % Syntax: [p] = plotMagUncertainty(W, freqs, args)
  %
  % Inputs:
  %    - W     - Multiplicative Uncertainty Weight
  %    - freqs - Frequency Vector [Hz]
  %    - args  - Optional Arguments:
  %      - G
  %      - color_i
  %      - opacity
  %
  % Outputs:
  %    - p - Plot Handle

  arguments
      W
      freqs double {mustBeNumeric, mustBeNonnegative}
      args.G = tf(1)
      args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
      args.opacity (1,1) double {mustBeNumeric, mustBePositive} = 0.3
      args.DisplayName char = ''
  end

  % Get defaults colors
  colors = get(groot, 'defaultAxesColorOrder');

  p = patch([freqs flip(freqs)], ...
            [abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*(1 + abs(squeeze(freqresp(W, freqs, 'Hz')))); ...
             flip(abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*max(1 - abs(squeeze(freqresp(W, freqs, 'Hz'))), 1e-6))], 'w', ...
            'DisplayName', args.DisplayName);

  p.FaceColor = colors(args.color_i, :);
  p.EdgeColor = 'none';
  p.FaceAlpha = args.opacity;

  end

plotPhaseUncertainty

<<sec:plotPhaseUncertainty>>

This Matlab function is accessible here.

  function [p] = plotPhaseUncertainty(W, freqs, args)
  % plotPhaseUncertainty -
  %
  % Syntax: [p] = plotPhaseUncertainty(W, freqs, args)
  %
  % Inputs:
  %    - W     - Multiplicative Uncertainty Weight
  %    - freqs - Frequency Vector [Hz]
  %    - args  - Optional Arguments:
  %      - G
  %      - color_i
  %      - opacity
  %
  % Outputs:
  %    - p - Plot Handle

  arguments
      W
      freqs double {mustBeNumeric, mustBeNonnegative}
      args.G = tf(1)
      args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
      args.opacity (1,1) double {mustBeNumeric, mustBePositive} = 0.3
      args.DisplayName char = ''
  end

  % Get defaults colors
  colors = get(groot, 'defaultAxesColorOrder');

  % Compute Phase Uncertainty
  Dphi = 180/pi*asin(abs(squeeze(freqresp(W, freqs, 'Hz'))));
  Dphi(abs(squeeze(freqresp(W, freqs, 'Hz'))) > 1) = 360;

  % Compute Plant Phase
  G_ang = 180/pi*angle(squeeze(freqresp(args.G, freqs, 'Hz')));

  p = patch([freqs flip(freqs)], [G_ang+Dphi; flip(G_ang-Dphi)], 'w', ...
            'DisplayName', args.DisplayName);

  p.FaceColor = colors(args.color_i, :);
  p.EdgeColor = 'none';
  p.FaceAlpha = args.opacity;

  end

Bibliography   ignore

bibliographystyle:unsrt bibliography:ref.bib