Remove unused plant inverse
This commit is contained in:
parent
86ad85f17c
commit
cdb103b3f5
@ -109,7 +109,7 @@ $\tilde{n}_1$ and $\tilde{n}_2$ are white noise with unitary power spectral dens
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\hat{x} = {}&\left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x \\
|
\hat{x} = {}&\left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x \\
|
||||||
&+ \left( H_1 \hat{G}_1^{-1} N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} N_2 \right) \tilde{n}_2
|
&+ \left( H_1 \hat{G}_1^{-1} G_1 N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} G_2 N_2 \right) \tilde{n}_2
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@ -123,21 +123,18 @@ Complementary Filters
|
|||||||
H_1(s) + H_2(s) = 1
|
H_1(s) + H_2(s) = 1
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\hat{x} = x + \left( H_1 \hat{G}_1^{-1} N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} N_2 \right) \tilde{n}_2
|
\hat{x} = x + \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
Perfect dynamics + filter noise
|
Perfect dynamics + filter noise
|
||||||
|
|
||||||
|
|
||||||
** Super Sensor Noise
|
** Super Sensor Noise
|
||||||
|
|
||||||
Let's note $n$ the super sensor noise.
|
Let's note $n$ the super sensor noise.
|
||||||
|
|
||||||
Its PSD is determined by:
|
Its PSD is determined by:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\Phi_n(\omega) = \left| H_1 \hat{G}_1^{-1} N_1 \right|^2 + \left| H_2 \hat{G}_2^{-1} N_2 \right|^2
|
\Phi_n(\omega) = \left| H_1 N_1 \right|^2 + \left| H_2 N_2 \right|^2
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
** $\mathcal{H}_2$ Synthesis of Complementary Filters
|
** $\mathcal{H}_2$ Synthesis of Complementary Filters
|
||||||
@ -147,17 +144,17 @@ The goal is to design $H_1(s)$ and $H_2(s)$ such that the effect of the noise so
|
|||||||
And the goal is the minimize the Root Mean Square (RMS) value of $n$:
|
And the goal is the minimize the Root Mean Square (RMS) value of $n$:
|
||||||
#+name: eq:rms_value_estimation
|
#+name: eq:rms_value_estimation
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\sigma_{n} = \sqrt{\int_0^\infty \Phi_{\hat{n}}(\omega) d\omega} = \left\| \begin{matrix} \hat{G}_1^{-1} N_1 H_1 \\ \hat{G}_2^{-1} N_2 H_2 \end{matrix} \right\|_2
|
\sigma_{n} = \sqrt{\int_0^\infty \Phi_{\hat{n}}(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\left\| \begin{matrix} \hat{G}_1^{-1} N_1 H_1 \\ \hat{G}_2^{-1} N_2 H_2 \end{matrix} \right\|_2$ is minimized.
|
Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2$ is minimized.
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
z_1 \\ z_2 \\ v
|
z_1 \\ z_2 \\ v
|
||||||
\end{pmatrix} = \begin{bmatrix}
|
\end{pmatrix} = \begin{bmatrix}
|
||||||
\hat{G}_1^{-1} N_1 & -\hat{G}_1^{-1} N_1 \\
|
N_1 & N_1 \\
|
||||||
0 & \hat{G}_2^{-1} N_2 \\
|
0 & N_2 \\
|
||||||
1 & 0
|
1 & 0
|
||||||
\end{bmatrix} \begin{pmatrix}
|
\end{bmatrix} \begin{pmatrix}
|
||||||
w \\ u
|
w \\ u
|
||||||
|
Loading…
x
Reference in New Issue
Block a user