diff --git a/paper/paper.org b/paper/paper.org index 42886de..612f65b 100644 --- a/paper/paper.org +++ b/paper/paper.org @@ -109,7 +109,7 @@ $\tilde{n}_1$ and $\tilde{n}_2$ are white noise with unitary power spectral dens \begin{equation} \begin{split} \hat{x} = {}&\left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x \\ - &+ \left( H_1 \hat{G}_1^{-1} N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} N_2 \right) \tilde{n}_2 + &+ \left( H_1 \hat{G}_1^{-1} G_1 N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} G_2 N_2 \right) \tilde{n}_2 \end{split} \end{equation} @@ -123,21 +123,18 @@ Complementary Filters H_1(s) + H_2(s) = 1 \end{equation} - \begin{equation} - \hat{x} = x + \left( H_1 \hat{G}_1^{-1} N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} N_2 \right) \tilde{n}_2 + \hat{x} = x + \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2 \end{equation} Perfect dynamics + filter noise - ** Super Sensor Noise - Let's note $n$ the super sensor noise. Its PSD is determined by: \begin{equation} - \Phi_n(\omega) = \left| H_1 \hat{G}_1^{-1} N_1 \right|^2 + \left| H_2 \hat{G}_2^{-1} N_2 \right|^2 + \Phi_n(\omega) = \left| H_1 N_1 \right|^2 + \left| H_2 N_2 \right|^2 \end{equation} ** $\mathcal{H}_2$ Synthesis of Complementary Filters @@ -147,18 +144,18 @@ The goal is to design $H_1(s)$ and $H_2(s)$ such that the effect of the noise so And the goal is the minimize the Root Mean Square (RMS) value of $n$: #+name: eq:rms_value_estimation \begin{equation} - \sigma_{n} = \sqrt{\int_0^\infty \Phi_{\hat{n}}(\omega) d\omega} = \left\| \begin{matrix} \hat{G}_1^{-1} N_1 H_1 \\ \hat{G}_2^{-1} N_2 H_2 \end{matrix} \right\|_2 + \sigma_{n} = \sqrt{\int_0^\infty \Phi_{\hat{n}}(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2 \end{equation} -Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\left\| \begin{matrix} \hat{G}_1^{-1} N_1 H_1 \\ \hat{G}_2^{-1} N_2 H_2 \end{matrix} \right\|_2$ is minimized. +Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2$ is minimized. \begin{equation} \begin{pmatrix} z_1 \\ z_2 \\ v \end{pmatrix} = \begin{bmatrix} - \hat{G}_1^{-1} N_1 & -\hat{G}_1^{-1} N_1 \\ - 0 & \hat{G}_2^{-1} N_2 \\ - 1 & 0 + N_1 & N_1 \\ + 0 & N_2 \\ + 1 & 0 \end{bmatrix} \begin{pmatrix} w \\ u \end{pmatrix}