Convert figures for a 2 column journal
@ -1,48 +0,0 @@
|
||||
\message{ !name(paper.tex)}% Created 2020-10-20 mar. 17:19
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[Afour,sageh,times]{sagej}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{grffile}
|
||||
\usepackage{longtable}
|
||||
\usepackage{wrapfig}
|
||||
\usepackage{rotating}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{textcomp}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{capt-of}
|
||||
\usepackage{hyperref}
|
||||
\usepackage[most]{tcolorbox}
|
||||
\usepackage{bm}
|
||||
\usepackage{booktabs}
|
||||
\usepackage{tabularx}
|
||||
\usepackage{array}
|
||||
\usepackage{siunitx}
|
||||
\usepackage[colorlinks,bookmarksopen,bookmarksnumbered,citecolor=red,urlcolor=red]{hyperref}
|
||||
\usepackage{amsmath,amssymb,amsfonts, cases}
|
||||
\usepackage{algorithmic, graphicx, textcomp}
|
||||
\usepackage{xcolor, import, hyperref}
|
||||
\usepackage{subcaption}
|
||||
\usepackage[USenglish, english]{babel}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{shapes.misc,arrows,arrows.meta}
|
||||
\newcommand\BibTeX{{\rmfamily B\kern-.05em \textsc{i\kern-.025em b}\kern-.08emT\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
|
||||
\def\volumeyear{2016}
|
||||
\author{Dehaeze Thomas\affilnum{1} and Collette Christophe\affilnum{2}}
|
||||
\affiliation{\affilnum{1}Precision Mechatronics Laboratory, University of Liege, Belgium\\
|
||||
\affilnum{2}BEAMS Department, Free University of Brussels, Belgium\\
|
||||
\affilnum{3}European Synchrotron Radiation Facility, Grenoble, France}
|
||||
\email{dehaeze.thomas@gmail.com}
|
||||
\bibliographystyle{SageH}
|
||||
\date{}
|
||||
\title{Active Damping of Rotating Platforms using Integral Force Feedback}
|
||||
\input{abstract.tex}
|
||||
\begin{document}
|
||||
|
||||
\message{ !name(paper.tex) !offset(-4) }
|
||||
\input{abstract.tex}
|
||||
\message{ !name(paper.tex) !offset(511) }
|
||||
|
||||
\end{document}
|
@ -1,8 +0,0 @@
|
||||
\begin{abstract}
|
||||
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
|
||||
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
|
||||
To overcome this issue, two modifications of the classical IFF control scheme are proposed.
|
||||
The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
|
||||
Conditions for stability and optimal parameters are derived.
|
||||
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on suspension modes.
|
||||
\end{abstract}
|
Before Width: | Height: | Size: 105 KiB |
Before Width: | Height: | Size: 94 KiB |
BIN
journal/figs/cedrat_xy25xs.pdf
Normal file
Before Width: | Height: | Size: 183 KiB |
Before Width: | Height: | Size: 263 KiB |
Before Width: | Height: | Size: 183 KiB |
Before Width: | Height: | Size: 9.8 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 161 KiB |
Before Width: | Height: | Size: 134 KiB |
Before Width: | Height: | Size: 130 KiB |
Before Width: | Height: | Size: 242 KiB |
Before Width: | Height: | Size: 259 KiB |
Before Width: | Height: | Size: 262 KiB |
Before Width: | Height: | Size: 234 KiB |
Before Width: | Height: | Size: 276 KiB |
Before Width: | Height: | Size: 157 KiB |
Before Width: | Height: | Size: 238 KiB |
Before Width: | Height: | Size: 84 KiB |
Before Width: | Height: | Size: 63 KiB |
Before Width: | Height: | Size: 91 KiB |
Before Width: | Height: | Size: 71 KiB |
Before Width: | Height: | Size: 88 KiB |
Before Width: | Height: | Size: 67 KiB |
@ -1,559 +0,0 @@
|
||||
#+TITLE: Active Damping of Rotating Platforms using Integral Force Feedback
|
||||
:DRAWER:
|
||||
#+LATEX_CLASS: sagej
|
||||
#+LATEX_CLASS_OPTIONS: [Afour,sagev,times]
|
||||
#+OPTIONS: toc:nil
|
||||
#+STARTUP: overview
|
||||
|
||||
#+DATE:
|
||||
#+AUTHOR:
|
||||
|
||||
#+LATEX_HEADER: \usepackage{amsmath,amssymb,amsfonts, cases}
|
||||
#+LATEX_HEADER: \usepackage{algorithmic, graphicx, textcomp}
|
||||
#+LATEX_HEADER: \usepackage{xcolor, import}
|
||||
#+LATEX_HEADER: \usepackage{subcaption}
|
||||
#+LATEX_HEADER: \usepackage[USenglish]{babel}
|
||||
#+LATEX_HEADER: \usepackage{tikz}
|
||||
#+LATEX_HEADER: \usetikzlibrary{shapes.misc,arrows,arrows.meta}
|
||||
|
||||
#+LATEX_HEADER_EXTRA: \hypersetup{colorlinks,bookmarksopen,bookmarksnumbered,citecolor=red,urlcolor=red}
|
||||
|
||||
#+LATEX_HEADER_EXTRA: \newcommand\BibTeX{{\rmfamily B\kern-.05em \textsc{i\kern-.025em b}\kern-.08emT\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
|
||||
#+LATEX_HEADER_EXTRA: \def\volumeyear{2016}
|
||||
|
||||
#+LATEX_HEADER_EXTRA: \author{Dehaeze Thomas\affilnum{1} and Collette Christophe\affilnum{2}}
|
||||
|
||||
#+LATEX_HEADER_EXTRA: \affiliation{\affilnum{1}Precision Mechatronics Laboratory, University of Liege, Belgium\\
|
||||
#+LATEX_HEADER_EXTRA: \affilnum{2}BEAMS Department, Free University of Brussels, Belgium\\
|
||||
#+LATEX_HEADER_EXTRA: \affilnum{3}European Synchrotron Radiation Facility, Grenoble, France}
|
||||
|
||||
#+LATEX_HEADER_EXTRA: \email{dehaeze.thomas@gmail.com}
|
||||
|
||||
#+LATEX_HEADER_EXTRA: \bibliographystyle{SageV}
|
||||
|
||||
#+LATEX_HEADER_EXTRA: \begin{abstract}
|
||||
#+LATEX_HEADER_EXTRA: This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
|
||||
#+LATEX_HEADER_EXTRA: Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
|
||||
#+LATEX_HEADER_EXTRA: To overcome this issue, two modifications of the classical IFF control scheme are proposed.
|
||||
#+LATEX_HEADER_EXTRA: The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
|
||||
#+LATEX_HEADER_EXTRA: Conditions for stability and optimal parameters are derived.
|
||||
#+LATEX_HEADER_EXTRA: The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on suspension modes.
|
||||
#+LATEX_HEADER_EXTRA: \end{abstract}
|
||||
#+LATEX_HEADER_EXTRA: \keywords{active damping, IFF}
|
||||
:END:
|
||||
|
||||
* LaTeX Config :noexport:
|
||||
#+begin_src latex :tangle config.tex
|
||||
|
||||
#+end_src
|
||||
|
||||
* Build :noexport:
|
||||
#+name: startblock
|
||||
#+BEGIN_SRC emacs-lisp :results none :tangle no
|
||||
(add-to-list 'org-latex-classes
|
||||
'("sagej"
|
||||
"\\documentclass{sagej}"
|
||||
("\\section{%s}" . "\\section*{%s}")
|
||||
("\\subsection{%s}" . "\\subsection*{%s}")
|
||||
("\\subsubsection{%s}" . "\\subsubsection*{%s}")
|
||||
("\\paragraph{%s}" . "\\paragraph*{%s}")
|
||||
("\\subparagraph{%s}" . "\\subparagraph*{%s}"))
|
||||
)
|
||||
#+END_SRC
|
||||
|
||||
* Introduction
|
||||
<<sec:introduction>>
|
||||
There is an increasing need to reduce the undesirable vibration of many sensitive equipment.
|
||||
A common method to reduce vibration is to mount the sensitive equipment on a suspended platform which attenuates the vibrations above the frequency of the suspension modes.
|
||||
In order to further decrease the residual vibrations, active damping can be used for reducing the magnification of the response in the vicinity of the resonances.
|
||||
|
||||
In cite:preumont92_activ_dampin_by_local_force, the Integral Force Feedback (IFF) control scheme has been proposed, where a force sensor, a force actuator and an integral controller are used to directly augment the damping of a mechanical system.
|
||||
When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros which facilitate to guarantee the stability of the closed loop system cite:preumont02_force_feedb_versus_accel_feedb.
|
||||
|
||||
However, when the platform is rotating, gyroscopic effects alter the system dynamics and IFF cannot be applied as is.
|
||||
The purpose of this paper is to study how the IFF strategy can be adapted to deal with these Gyroscopic effects.
|
||||
|
||||
The paper is structured as follows.
|
||||
Section ref:sec:dynamics presents a simple model of a rotating suspended platform that will be used throughout this study.
|
||||
Section ref:sec:iff explains how the unconditional stability of IFF is lost due to Gyroscopic effects induced by the rotation.
|
||||
Section ref:sec:iff_hpf suggests a simple modification of the control law such that damping can be added to the suspension modes in a robust way.
|
||||
Section ref:sec:iff_kp proposes to add springs in parallel with the force sensors to regain the unconditional stability of IFF.
|
||||
Section ref:sec:comparison compares both proposed modifications to the classical IFF in terms of damping authority and closed-loop system behavior.
|
||||
|
||||
* Dynamics of Rotating Platforms
|
||||
<<sec:dynamics>>
|
||||
** Model of a Rotating Platform :ignore:
|
||||
In order to study how the rotation does affect the use of IFF, a model of a suspended platform on top of a rotating stage is used.
|
||||
Figure ref:fig:system represents the model schematically which is the simplest in which gyroscopic forces can be studied.
|
||||
|
||||
#+name: fig:system
|
||||
#+caption: Schematic of the studied System
|
||||
#+attr_latex: :width 0.8\linewidth
|
||||
[[file:figs/system.pdf]]
|
||||
|
||||
The rotating stage is supposed to be ideal, meaning it induces a perfect rotation $\theta(t) = \Omega t$ where $\Omega$ is the rotational speed in $\si{\radian\per\second}$.
|
||||
|
||||
The suspended platform consists of two orthogonal actuators represented by three elements in parallel: a spring with a stiffness $k$ in $\si{\newton\per\meter}$, a dashpot with a damping coefficient $c$ in $\si{\newton\per\meter\second}$ and an ideal force source $F_u, F_v$.
|
||||
A payload with a mass $m$ in $\si{\kilo\gram}$, representing the sensitive equipment, is mounted on the (rotating) suspended platform.
|
||||
|
||||
Two reference frames are used: an inertial frame $(\vec{i}_x, \vec{i}_y, \vec{i}_z)$ and a uniform rotating frame $(\vec{i}_u, \vec{i}_v, \vec{i}_w)$ rigidly fixed on top of the rotating stage with $\vec{i}_w$ aligned with the rotation axis.
|
||||
The position of the payload is represented by $(d_u, d_v, 0)$ expressed in the rotating frame.
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Equations of Motion :ignore:
|
||||
To obtain the equations of motion for the system represented in Figure ref:fig:system, the Lagrangian equations are used:
|
||||
#+name: eq:lagrangian_equations
|
||||
\begin{equation}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
with $L = T - V$ the Lagrangian, $T$ the kinetic coenergy, $V$ the potential energy, $D$ the dissipation function, and $Q_i$ the generalized force associated with the generalized variable $\begin{bmatrix}q_1 & q_2\end{bmatrix} = \begin{bmatrix}d_u & d_v\end{bmatrix}$.
|
||||
The equation of motion corresponding to the constant rotation in the $(\vec{i}_x, \vec{i}_y)$ plane is disregarded as the motion is considered to be imposed by the rotation stage.
|
||||
#+name: eq:energy_functions_lagrange
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
T &= \frac{1}{2} m \left( \left( \dot{d}_u - \Omega d_v \right)^2 + \left( \dot{d}_v + \Omega d_u \right)^2 \right), \\
|
||||
V &= \frac{1}{2} k \left( {d_u}^2 + {d_v}^2 \right), \\
|
||||
D &= \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right), \quad Q_1 = F_u, \quad Q_2 = F_v
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
Substituting equations eqref:eq:energy_functions_lagrange into eqref:eq:lagrangian_equations for both generalized coordinates gives two coupled differential equations
|
||||
#+name: eq:eom_coupled
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega^2 ) d_u &= F_u + 2 m \Omega \dot{d}_v \\
|
||||
m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega^2}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The uniform rotation of the system induces two Gyroscopic effects as shown in eqref:eq:eom_coupled:
|
||||
- Centrifugal forces: that can been seen as added negative stiffness $- m \Omega^2$ along $\vec{i}_u$ and $\vec{i}_v$
|
||||
- Coriolis Forces: that couples the motion in the two orthogonal directions
|
||||
|
||||
# One can verify that without rotation ($\Omega = 0$) the system becomes equivalent to two uncoupled one degree of freedom mass-spring-damper systems:
|
||||
# #+name: eq:oem_no_rotation
|
||||
# \begin{subequations}
|
||||
# \begin{align}
|
||||
# m \ddot{d}_u + c \dot{d}_u + k d_u &= F_u \\
|
||||
# m \ddot{d}_v + c \dot{d}_v + k d_v &= F_v
|
||||
# \end{align}
|
||||
# \end{subequations}
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Transfer Functions in the Laplace domain :ignore:
|
||||
To study the dynamics of the system, the differential equations of motions eqref:eq:eom_coupled are transformed in the Laplace domain and the $2 \times 2$ transfer function matrix $\bm{G}_d$ from $\begin{bmatrix}F_u & F_v\end{bmatrix}$ to $\begin{bmatrix}d_u & d_v\end{bmatrix}$ is obtained
|
||||
\begin{align}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} &= \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix} \label{eq:Gd_mimo_tf} \\
|
||||
\bm{G}_{d}(1,1) &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
|
||||
&= \bm{G}_{d}(2,2) \nonumber \\
|
||||
\bm{G}_{d}(1,2) &= \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
|
||||
&= -\bm{G}_{d}(1,2) \nonumber
|
||||
\end{align}
|
||||
|
||||
To simplify the analysis, the undamped natural frequency $\omega_0$ and the damping ratio $\xi$ are used
|
||||
\begin{equation}
|
||||
\omega_0 = \sqrt{\frac{k}{m}} \text{ in } \si{\radian\per\second}, \quad \xi = \frac{c}{2 \sqrt{k m}}
|
||||
\end{equation}
|
||||
|
||||
The transfer function matrix $\bm{G}_d$ becomes equal to
|
||||
#+name: eq:Gd_w0_xi_k
|
||||
\begin{equation}
|
||||
\bm{G}_{d} =
|
||||
\frac{1}{k}
|
||||
\begin{bmatrix}
|
||||
\frac{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{- 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
For all further numerical analysis in this study, we consider $\omega_0 = \SI{1}{\radian\per\second}$, $k = \SI{1}{\newton\per\meter}$ and $\xi = 0.025 = \SI{2.5}{\percent}$.
|
||||
Even though no system with such parameters will be encountered in practice, conclusions can be drawn relative to these parameters such that they can be generalized to any other set of parameters.
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** System Dynamics and Campbell Diagram :ignore:
|
||||
The poles of $\bm{G}_d$ are the complex solutions $p$ of
|
||||
\begin{equation}
|
||||
\left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
|
||||
\end{equation}
|
||||
|
||||
Supposing small damping ($\xi \ll 1$), two pairs of complex conjugate poles are obtained:
|
||||
#+name: eq:pole_values
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \\
|
||||
p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The real part and complex part of these two pairs of complex conjugate poles are represented in Figure ref:fig:campbell_diagram as a function of the rotational speed $\Omega$.
|
||||
As the rotational speed increases, $p_{+}$ goes to higher frequencies and $p_{-}$ to lower frequencies.
|
||||
The system becomes unstable for $\Omega > \omega_0$ as the real part of $p_{-}$ is positive.
|
||||
Physically, the negative stiffness term $-m\Omega^2$ induced by centrifugal forces exceeds the spring stiffness $k$.
|
||||
|
||||
In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are assumed ($\Omega < \omega_0$).
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.49\linewidth :align c
|
||||
| file:figs/campbell_diagram_real.pdf | file:figs/campbell_diagram_imag.pdf |
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
|
||||
Looking at the transfer function matrix $\bm{G}_d$ in Eq. eqref:eq:Gd_w0_xi_k, one can see that the two diagonal (direct) terms are equal and the two off-diagonal (coupling) terms are opposite.
|
||||
The bode plot of these two terms are shown in Figure ref:fig:plant_compare_rotating_speed for several rotational speeds $\Omega$.
|
||||
These plots confirm the expected behavior: the frequency of the two pairs of complex conjugate poles are further separated as $\Omega$ increases.
|
||||
For $\Omega > \omega_0$, the low frequency pair of complex conjugate poles $p_{-}$ becomes unstable.
|
||||
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Bode Plots for $\bm{G}_d$ for several rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.49\linewidth :align c
|
||||
| file:figs/plant_compare_rotating_speed_direct.pdf | file:figs/plant_compare_rotating_speed_coupling.pdf |
|
||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $-d_u/F_v$ |
|
||||
|
||||
* Decentralized Integral Force Feedback
|
||||
<<sec:iff>>
|
||||
** Force Sensors and Control Architecture :ignore:
|
||||
In order to apply IFF to the system, force sensors are added in series with the two actuators (Figure ref:fig:system_iff).
|
||||
As this study focuses on decentralized control, two identical controllers $K_F$ are used to feedback each of the sensed force to its associated actuator and no attempt is made to counteract the interactions in the system.
|
||||
The control diagram is schematically shown in Figure ref:fig:control_diagram_iff.
|
||||
|
||||
#+name: fig:system_iff
|
||||
#+caption: System with added Force Sensor in series with the actuators
|
||||
#+attr_latex: :width 0.8\linewidth
|
||||
[[file:figs/system_iff.pdf]]
|
||||
|
||||
#+name: fig:control_diagram_iff
|
||||
#+caption: Control Diagram for decentralized IFF
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/control_diagram_iff.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Plant Dynamics :ignore:
|
||||
The forces $\begin{bmatrix}f_u & f_v\end{bmatrix}$ measured by the two force sensors represented in Figure ref:fig:system_iff are equal to
|
||||
#+name: eq:measured_force
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Inserting eqref:eq:Gd_w0_xi_k into eqref:eq:measured_force yields
|
||||
\begin{align}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} &= \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix} \label{eq:Gf_mimo_tf} \\
|
||||
\bm{G}_{f} &= \begin{bmatrix}
|
||||
\frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{\left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix} \label{eq:Gf}
|
||||
\end{align}
|
||||
|
||||
The zeros of the diagonal terms of $\bm{G}_f$ are equal to (neglecting the damping for simplicity)
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:iff_zero_cc} \\
|
||||
z_r &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:iff_zero_real}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The frequency of the pair of complex conjugate zeros $z_c$ eqref:eq:iff_zero_cc always lies between the frequency of the two pairs of complex conjugate poles $p_{-}$ and $p_{+}$ eqref:eq:pole_values.
|
||||
|
||||
For non-null rotational speeds, two real zeros $z_r$ eqref:eq:iff_zero_real appear in the diagonal terms inducing a non-minimum phase behavior.
|
||||
This can be seen in the Bode plot of the diagonal terms (Figure ref:fig:plant_iff_compare_rotating_speed) where the low frequency gain is no longer zero while the phase stays at $\SI{180}{\degree}$.
|
||||
|
||||
The low frequency gain of $\bm{G}_f$ increases with the rotational speed $\Omega$
|
||||
#+name: eq:low_freq_gain_iff_plan
|
||||
\begin{equation}
|
||||
\lim_{\omega \to 0} \left| \bm{G}_f (j\omega) \right| = \begin{bmatrix}
|
||||
\frac{\Omega^2}{{\omega_0}^2 - \Omega^2} & 0 \\
|
||||
0 & \frac{\Omega^2}{{\omega_0}^2 - \Omega^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
This can be explained as follows: a constant force $F_u$ induces a small displacement of the mass $d_u = \frac{F_u}{k - m\Omega^2}$, which increases the centrifugal force $m\Omega^2d_u = \frac{\Omega^2}{{\omega_0}^2 - \Omega^2} F_u$ which is then measured by the force sensors.
|
||||
|
||||
#+name: fig:plant_iff_compare_rotating_speed
|
||||
#+caption: Bode plot of the dynamics from a force actuator to its collocated force sensor ($f_u/F_u$, $f_v/F_v$) for several rotational speeds $\Omega$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Decentralized Integral Force Feedback with Pure Integrators :ignore:
|
||||
<<sec:iff_pure_int>>
|
||||
The two IFF controllers $K_F$ consist of a pure integrator
|
||||
#+name: eq:Kf_pure_int
|
||||
\begin{equation}
|
||||
\bm{K}_F(s) = \begin{bmatrix} K_F(s) & 0 \\ 0 & K_F(s) \end{bmatrix}, \quad K_F(s) = g \cdot \frac{1}{s}
|
||||
\end{equation}
|
||||
where $g$ is a scalar representing the gain of the controller.
|
||||
|
||||
In order to see how the IFF affects the poles of the closed loop system, a Root Locus plot (Figure ref:fig:root_locus_pure_iff) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain $g$ varies from $0$ to $\infty$ for the two controllers $K_F$ simultaneously.
|
||||
As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by $\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};$) for $g = 0$ and coincide with the transmission zeros (shown by $\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];$) as $g \to \infty$.
|
||||
The direction of increasing gain is indicated by arrows $\tikz[baseline=-0.6ex] \draw[-{Stealth[round]},line width=2pt] (0,0) -- (0.3,0);$.
|
||||
|
||||
#+name: fig:root_locus_pure_iff
|
||||
#+caption: Root Locus: evolution of the closed-loop poles with increasing controller gains $g$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/root_locus_pure_iff.pdf]]
|
||||
|
||||
Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost as soon as the rotational speed in non-null due to gyroscopic effects.
|
||||
This can be seen in the Root Locus plot (Figure ref:fig:root_locus_pure_iff) where the poles corresponding to the controller are bound to the right half plane implying closed-loop system instability.
|
||||
|
||||
Physically, this can be explain like so: at low frequency, the loop gain is very large due to the pure integrators in $K_F$.
|
||||
The control system is thus canceling the spring forces which makes the suspended platform no able to hold the payload against centrifugal forces, hence the instability.
|
||||
|
||||
In order to apply decentralized IFF on rotating platforms, two solutions are proposed to deal with this instability problem.
|
||||
The first one consists of slightly modifying the control law (Section ref:sec:iff_hpf) while the second one consists of adding springs in parallel with the force sensors (Section ref:sec:iff_kp).
|
||||
|
||||
* Integral Force Feedback with High Pass Filter
|
||||
<<sec:iff_hpf>>
|
||||
** Modification of the Control Law :ignore:
|
||||
As was explained in the previous section, the instability comes in part from the high gain at low frequency caused by the pure integrators.
|
||||
|
||||
In order to limit this low frequency controller gain, an high pass filter (HPF) can be added to the controller
|
||||
#+name: eq:IFF_LHF
|
||||
\begin{equation}
|
||||
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
This is equivalent to slightly shifting the controller pole to the left along the real axis.
|
||||
|
||||
This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator cite:preumont91_activ.
|
||||
This is however not the case in this study as it will become clear in the next section.
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Feedback Analysis :ignore:
|
||||
The loop gains, $K_F(s)$ times the direct dynamics $f_u/F_u$, with and without the added HPF are shown in Figure ref:fig:loop_gain_modified_iff.
|
||||
The effect of the added HPF limits the low frequency gain as expected.
|
||||
|
||||
The Root Loci for the decentralized IFF with and without the HPF are displayed in Figure ref:fig:root_locus_modified_iff.
|
||||
With the added HPF, the poles of the closed loop system are shown to be stable up to some value of the gain $g_\text{max}$
|
||||
#+name: eq:gmax_iff_hpf
|
||||
\begin{equation}
|
||||
g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)
|
||||
\end{equation}
|
||||
It is interesting to note that $g_{\text{max}}$ also corresponds to the gain where the low frequency loop gain (Figure ref:fig:loop_gain_modified_iff) reaches one.
|
||||
|
||||
#+name: fig:loop_gain_modified_iff
|
||||
#+caption: Modification of the loop gain with the added HFP, $g = 2$, $\omega_i = 0.1 \omega_0$ and $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/loop_gain_modified_iff.pdf]]
|
||||
|
||||
#+name: fig:root_locus_modified_iff
|
||||
#+caption: Modification of the Root Locus with the added HPF, $\omega_i = 0.1 \omega_0$ and $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_modified_iff.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Optimal Control Parameters :ignore:
|
||||
Two parameters can be tuned for the modified controller eqref:eq:IFF_LHF: the gain $g$ and the pole's location $\omega_i$.
|
||||
The optimal values of $\omega_i$ and $g$ are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized.
|
||||
|
||||
In order to visualize how $\omega_i$ does affect the attainable damping, the Root Loci for several $\omega_i$ are displayed in Figure ref:fig:root_locus_wi_modified_iff.
|
||||
It is shown that even though small $\omega_i$ seem to allow more damping to be added to the suspension modes, the control gain $g$ may be limited to small values due to eqref:eq:gmax_iff_hpf.
|
||||
|
||||
#+name: fig:root_locus_wi_modified_iff
|
||||
#+caption: Root Locus for several HPF cut-off frequencies $\omega_i$, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/root_locus_wi_modified_iff.pdf]]
|
||||
|
||||
In order to study this trade off, the attainable closed-loop damping ratio $\xi_{\text{cl}}$ is computed as a function of $\omega_i/\omega_0$.
|
||||
The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also displayed and compared with the gain $g_{\text{max}}$ at which the system becomes unstable (Figure ref:fig:mod_iff_damping_wi).
|
||||
|
||||
#+name: fig:mod_iff_damping_wi
|
||||
#+caption: Attainable damping ratio $\xi_\text{cl}$ as a function of $\omega_i/\omega_0$. Corresponding control gain $g_\text{opt}$ and $g_\text{max}$ are also shown
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/mod_iff_damping_wi.pdf]]
|
||||
|
||||
Three regions can be observed:
|
||||
- $\omega_i/\omega_0 < 0.02$: the added damping is limited by the maximum allowed control gain $g_{\text{max}}$
|
||||
- $0.02 < \omega_i/\omega_0 < 0.2$: the attainable damping ratio is maximized and is reached for $g \approx 2$
|
||||
- $0.2 < \omega_i/\omega_0$: the added damping decreases as $\omega_i/\omega_0$ increases
|
||||
|
||||
* Integral Force Feedback with Parallel Springs
|
||||
<<sec:iff_kp>>
|
||||
** Stiffness in Parallel with the Force Sensor :ignore:
|
||||
In this section additional springs in parallel with the force sensors are added to counteract the negative stiffness induced by the rotation.
|
||||
Such springs are schematically shown in Figure ref:fig:system_parallel_springs where $k_a$ is the stiffness of the actuator and $k_p$ the stiffness in parallel with the actuator and force sensor.
|
||||
|
||||
Amplified piezoelectric stack actuators can also be used for such purpose where a part of the piezoelectric stack is used as an actuator while the rest is used as a force sensor cite:souleille18_concep_activ_mount_space_applic.
|
||||
The parallel stiffness $k_p$ then corresponds to the amplification structure.
|
||||
An example of such system is shown in Figure ref:fig:cedrat_xy25xs.
|
||||
|
||||
#+name: fig:system_parallel_springs
|
||||
#+caption: Studied system with additional springs in parallel with the actuators and force sensors
|
||||
#+attr_latex: :width 0.8\linewidth
|
||||
[[file:figs/system_parallel_springs.pdf]]
|
||||
|
||||
|
||||
#+name: fig:cedrat_xy25xs
|
||||
#+caption: XY Piezoelectric Stage (XY25XS from Cedrat Technology)
|
||||
#+attr_latex: :width 0.8\linewidth
|
||||
[[file:figs/cedrat_xy25xs.png]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Effect of the Parallel Stiffness on the Plant Dynamics :ignore:
|
||||
The forces $\begin{bmatrix}f_u & f_v\end{bmatrix}$ measured by the two force sensors represented in Figure ref:fig:system_parallel_springs are equal to
|
||||
#+name: eq:measured_force_kp
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k_a)
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
In order to keep the overall stiffness $k = k_a + k_p$ constant, thus not modifying the open-loop poles as $k_p$ is changed, a scalar parameter $\alpha$ ($0 \le \alpha < 1$) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor
|
||||
\begin{equation}
|
||||
k_p = \alpha k, \quad k_a = (1 - \alpha) k
|
||||
\end{equation}
|
||||
|
||||
The equations of motion are derived and transformed in the Laplace domain
|
||||
\begin{align}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} &=
|
||||
\bm{G}_k
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} \label{eq:Gk_mimo_tf} \\
|
||||
\bm{G}_k &=
|
||||
\begin{bmatrix}
|
||||
\frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{\left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix} \label{eq:Gk}
|
||||
\end{align}
|
||||
|
||||
Comparing $\bm{G}_k$ eqref:eq:Gk with $\bm{G}_f$ eqref:eq:Gf shows that while the poles of the system are kept the same, the zeros of the diagonal terms have changed.
|
||||
The two real zeros $z_r$ eqref:eq:iff_zero_real that were inducing non-minimum phase behavior are transformed into complex conjugate zeros if the following condition hold
|
||||
#+name: eq:kp_cond_cc_zeros
|
||||
\begin{equation}
|
||||
\alpha > \frac{\Omega^2}{{\omega_0}^2} \quad \Leftrightarrow \quad k_p > m \Omega^2
|
||||
\end{equation}
|
||||
|
||||
Thus, if the added parallel stiffness $k_p$ is higher than the negative stiffness induced by centrifugal forces $m \Omega^2$, the direct dynamics from actuator to force sensor will show minimum phase behavior.
|
||||
This is confirmed by the Bode plot of the direct dynamics in Figure ref:fig:plant_iff_kp.
|
||||
|
||||
Figure ref:fig:root_locus_iff_kp shows Root Loci plots for $k_p = 0$, $k_p < m \Omega^2$ and $k_p > m \Omega^2$ when $K_F$ is a pure integrator eqref:eq:Kf_pure_int.
|
||||
It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system stay in the (stable) right half-plane, and hence the unconditional stability of IFF is recovered.
|
||||
|
||||
#+name: fig:plant_iff_kp
|
||||
#+caption: Bode Plot of $f_u/F_u$ without parallel spring, with parallel springs with stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_kp.pdf]]
|
||||
|
||||
#+name: fig:root_locus_iff_kp
|
||||
#+caption: Root Locus for IFF without parallel spring, with parallel springs with stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/root_locus_iff_kp.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Optimal Parallel Stiffness :ignore:
|
||||
Even though the parallel stiffness $k_p$ has no impact on the open-loop poles (as the overall stiffness $k$ stays constant), it has a large impact on the transmission zeros.
|
||||
Moreover, as the attainable damping is generally proportional to the distance between poles and zeros cite:preumont18_vibrat_contr_activ_struc_fourt_edition, the parallel stiffness $k_p$ is foreseen to have a large impact on the attainable damping.
|
||||
|
||||
To study this effect, Root Locus plots for several parallel stiffnesses $k_p > m \Omega^2$ are shown in Figure ref:fig:root_locus_iff_kps.
|
||||
The frequencies of the transmission zeros of the system are increasing with the parallel stiffness $k_p$ and the associated attainable damping is reduced.
|
||||
Therefore, even though the parallel stiffness $k_p$ should be larger than $m \Omega^2$ for stability reasons, it should not be taken too high as this would limit the attainable bandwidth.
|
||||
|
||||
This is confirmed in Figure ref:fig:mod_iff_damping_kp where the attainable closed-loop damping ratio $\xi_{\text{cl}}$ and the associated control gain $g_\text{opt}$ are computed as a function of $\alpha$.
|
||||
|
||||
#+name: fig:root_locus_iff_kps
|
||||
#+caption: Comparison the Root Locus for three parallel stiffnessses $k_p$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/root_locus_iff_kps.pdf]]
|
||||
|
||||
|
||||
#+name: fig:mod_iff_damping_kp
|
||||
#+caption: Optimal Damping Ratio $\xi_\text{opt}$ and the corresponding optimal gain $g_\text{opt}$ as a function of $\alpha$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/mod_iff_damping_kp.pdf]]
|
||||
|
||||
* Comparison and Discussion
|
||||
<<sec:comparison>>
|
||||
** Introduction :ignore:
|
||||
Two modifications to adapt the IFF control strategy to rotating platforms have been proposed in Sections ref:sec:iff_hpf and ref:sec:iff_kp.
|
||||
These two methods are now compared in terms of added damping, closed-loop compliance and transmissibility.
|
||||
|
||||
For the following comparisons, the cut-off frequency for the HPF is set to $\omega_i = 0.1 \omega_0$ and the stiffness of the parallel springs is set to $k_p = 5 m \Omega^2$.
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Comparison of the Attainable Damping :ignore:
|
||||
Figure ref:fig:comp_root_locus shows the Root Loci for the two proposed IFF modifications.
|
||||
While the two pairs of complex conjugate open-loop poles are identical for both techniques, the transmission zeros are not.
|
||||
This means that the closed-loop behavior of both systems will differ when large control gains are used.
|
||||
|
||||
One can observe that the closed loop poles of the system with added springs (in red) are bounded to the left half plane implying unconditional stability.
|
||||
This is not the case for the system where the controller is augmented with an HPF (in blue).
|
||||
|
||||
It is interesting to note that the maximum added damping is very similar for both techniques and is reached for the same control gain $g_\text{opt} \approx 2 \omega_0$.
|
||||
|
||||
#+name: fig:comp_root_locus
|
||||
#+caption: Root Locus for the two proposed modifications of decentralized IFF, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/comp_root_locus.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
** Comparison Transmissibility and Compliance :ignore:
|
||||
The two proposed techniques are now compared in terms of closed-loop transmissibility and compliance.
|
||||
|
||||
The transmissibility is defined as the transfer function from the displacement of the rotating stage to the displacement of the payload.
|
||||
It is used to characterize how much vibration is transmitted through the suspended platform to the payload.
|
||||
|
||||
The compliance describes the displacement response of the payload to external forces applied to it.
|
||||
This is a useful metric when disturbances are directly applied to the payload.
|
||||
|
||||
The two techniques are also compared with passive damping (Figure ref:fig:system) where the damping coefficient $c$ is tuned to critically damp the resonance when the rotating speed is null.
|
||||
\begin{equation}
|
||||
c_\text{crit} = 2 \sqrt{k m}
|
||||
\end{equation}
|
||||
|
||||
Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility (Figure ref:fig:comp_transmissibility) and compliance (Figure ref:fig:comp_compliance).
|
||||
It is also confirmed that these two techniques can significantly damp the suspension modes.
|
||||
|
||||
#+name: fig:comp_transmissibility
|
||||
#+caption: Comparison of the two proposed Active Damping Techniques - Transmissibility
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_transmissibility.pdf]]
|
||||
|
||||
|
||||
#+name: fig:comp_compliance
|
||||
#+caption: Comparison of the two proposed Active Damping Techniques - Compliance
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_compliance.pdf]]
|
||||
|
||||
On can see in Figure ref:fig:comp_transmissibility that the problem of the degradation of the transmissibility at high frequency when using passive damping techniques is overcome by the use of IFF.
|
||||
|
||||
The addition of the HPF or the use of the parallel stiffness permit to limit the degradation of the compliance as compared with classical IFF (Figure ref:fig:comp_compliance).
|
||||
|
||||
* Conclusion
|
||||
<<sec:conclusion>>
|
||||
|
||||
Due to gyroscopic effects, decentralized IFF with pure integrators was shown to be unstable when applied to rotating platforms.
|
||||
Two modifications of the classical IFF control have been proposed to overcome this issue.
|
||||
|
||||
The first modification concerns the controller and consists of adding an high pass filter to the pure integrators.
|
||||
This is equivalent as to moving the controller pole to the left along the real axis.
|
||||
This renders the closed loop system stable up to some value of the controller gain $g_\text{max}$.
|
||||
|
||||
The second proposed modification concerns the mechanical system.
|
||||
Additional springs are added in parallel with the actuators and force sensors.
|
||||
It was shown that if the stiffness $k_p$ of the additional springs is larger than the negative stiffness $m \Omega^2$ induced by centrifugal forces, the classical decentralized IFF regains its unconditional stability property.
|
||||
|
||||
While having very different implementations, both proposed modifications are very similar when it comes to the attainable damping and the obtained closed loop system behavior.
|
||||
|
||||
Future work will focus on the experimental validation of the proposed active damping techniques.
|
||||
|
||||
The Matlab code that was used for this study is available under a MIT License and archived in Zenodo cite:dehaeze20_activ_dampin_rotat_posit_platf.
|
||||
|
||||
* Acknowledgment
|
||||
:PROPERTIES:
|
||||
:UNNUMBERED: t
|
||||
:END:
|
||||
|
||||
This research benefited from a FRIA grant from the French Community of Belgium.
|
||||
|
||||
* Bibliography :ignore:
|
||||
\bibliography{ref.bib}
|
@ -1,41 +1,32 @@
|
||||
% Created 2020-10-26 lun. 18:45
|
||||
% Created 2020-10-29 jeu. 12:36
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[Afour,sagev,times]{sagej}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{grffile}
|
||||
\usepackage{longtable}
|
||||
\usepackage{wrapfig}
|
||||
\usepackage{rotating}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{textcomp}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{capt-of}
|
||||
\usepackage{hyperref}
|
||||
\usepackage[most]{tcolorbox}
|
||||
\usepackage{bm}
|
||||
\usepackage{booktabs}
|
||||
\usepackage{tabularx}
|
||||
\usepackage{array}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{amsmath,amssymb,amsfonts, cases}
|
||||
\usepackage{algorithmic, graphicx, textcomp}
|
||||
\usepackage{xcolor, import}
|
||||
\usepackage{subcaption}
|
||||
\usepackage[USenglish, english]{babel}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{shapes.misc,arrows,arrows.meta}
|
||||
|
||||
\usepackage{natbib}
|
||||
\bibliographystyle{SageV}
|
||||
|
||||
\newcommand\BibTeX{{\rmfamily B\kern-.05em \textsc{i\kern-.025em b}\kern-.08em
|
||||
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
|
||||
|
||||
\hypersetup{colorlinks,bookmarksopen,bookmarksnumbered,citecolor=red,urlcolor=red}
|
||||
\newcommand\BibTeX{{\rmfamily B\kern-.05em \textsc{i\kern-.025em b}\kern-.08emT\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
|
||||
\def\volumeyear{2016}
|
||||
\author{Dehaeze Thomas\affilnum{1} and Collette Christophe\affilnum{2}}
|
||||
\author{Dehaeze Thomas\affilnum{1,3} and Collette Christophe\affilnum{1,2}}
|
||||
\affiliation{\affilnum{1}Precision Mechatronics Laboratory, University of Liege, Belgium\\
|
||||
\affilnum{2}BEAMS Department, Free University of Brussels, Belgium\\
|
||||
\affilnum{3}European Synchrotron Radiation Facility, Grenoble, France}
|
||||
\email{dehaeze.thomas@gmail.com}
|
||||
\bibliographystyle{SageV}
|
||||
\begin{abstract}
|
||||
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
|
||||
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
|
||||
@ -44,7 +35,7 @@ The first consists of slightly modifying the control law while the second consis
|
||||
Conditions for stability and optimal parameters are derived.
|
||||
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on suspension modes.
|
||||
\end{abstract}
|
||||
\keywords{active damping, IFF}
|
||||
\keywords{Active damping, IFF, Rotating platform}
|
||||
\date{}
|
||||
\title{Active Damping of Rotating Platforms using Integral Force Feedback}
|
||||
\begin{document}
|
||||
@ -52,7 +43,7 @@ The results reveal that, despite their different implementations, both modified
|
||||
\maketitle
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:orgdef8140}
|
||||
\label{sec:org6f081c2}
|
||||
\label{sec:introduction}
|
||||
There is an increasing need to reduce the undesirable vibration of many sensitive equipment.
|
||||
A common method to reduce vibration is to mount the sensitive equipment on a suspended platform which attenuates the vibrations above the frequency of the suspension modes.
|
||||
@ -72,21 +63,21 @@ Section \ref{sec:iff_kp} proposes to add springs in parallel with the force sens
|
||||
Section \ref{sec:comparison} compares both proposed modifications to the classical IFF in terms of damping authority and closed-loop system behavior.
|
||||
|
||||
\section{Dynamics of Rotating Platforms}
|
||||
\label{sec:org392ac57}
|
||||
\label{sec:org42fff77}
|
||||
\label{sec:dynamics}
|
||||
In order to study how the rotation does affect the use of IFF, a model of a suspended platform on top of a rotating stage is used.
|
||||
Figure \ref{fig:system} represents the model schematically which is the simplest in which gyroscopic forces can be studied.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{figs/system.pdf}
|
||||
\includegraphics[width=0.8\linewidth]{system.pdf}
|
||||
\caption{\label{fig:system}Schematic of the studied System}
|
||||
\end{figure}
|
||||
|
||||
The rotating stage is supposed to be ideal, meaning it induces a perfect rotation \(\theta(t) = \Omega t\) where \(\Omega\) is the rotational speed in \(\si{\radian\per\second}\).
|
||||
The rotating stage is supposed to be ideal, meaning it induces a perfect rotation \(\theta(t) = \Omega t\) where \(\Omega\) is the rotational speed in rad/s.
|
||||
|
||||
The suspended platform consists of two orthogonal actuators represented by three elements in parallel: a spring with a stiffness \(k\) in \(\si{\newton\per\meter}\), a dashpot with a damping coefficient \(c\) in \(\si{\newton\per\meter\second}\) and an ideal force source \(F_u, F_v\).
|
||||
A payload with a mass \(m\) in \(\si{\kilo\gram}\), representing the sensitive equipment, is mounted on the (rotating) suspended platform.
|
||||
The suspended platform consists of two orthogonal actuators represented by three elements in parallel: a spring with a stiffness \(k\) in N/m, a dashpot with a damping coefficient \(c\) in N/(m/s) and an ideal force source \(F_u, F_v\).
|
||||
A payload with a mass \(m\) in kg, representing the sensitive equipment, is mounted on the (rotating) suspended platform.
|
||||
|
||||
Two reference frames are used: an inertial frame \((\vec{i}_x, \vec{i}_y, \vec{i}_z)\) and a uniform rotating frame \((\vec{i}_u, \vec{i}_v, \vec{i}_w)\) rigidly fixed on top of the rotating stage with \(\vec{i}_w\) aligned with the rotation axis.
|
||||
The position of the payload is represented by \((d_u, d_v, 0)\) expressed in the rotating frame.
|
||||
@ -123,33 +114,46 @@ The uniform rotation of the system induces two Gyroscopic effects as shown in \e
|
||||
\item Coriolis Forces: that couples the motion in the two orthogonal directions
|
||||
\end{itemize}
|
||||
|
||||
One can verify that without rotation (\(\Omega = 0\)) the system becomes equivalent to two uncoupled one degree of freedom mass-spring-damper systems:
|
||||
\begin{subequations}
|
||||
\label{eq:oem_no_rotation}
|
||||
\begin{align}
|
||||
m \ddot{d}_u + c \dot{d}_u + k d_u &= F_u \\
|
||||
m \ddot{d}_v + c \dot{d}_v + k d_v &= F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\par
|
||||
To study the dynamics of the system, the differential equations of motions \eqref{eq:eom_coupled} are transformed in the Laplace domain and the \(2 \times 2\) transfer function matrix \(\bm{G}_d\) from \(\begin{bmatrix}F_u & F_v\end{bmatrix}\) to \(\begin{bmatrix}d_u & d_v\end{bmatrix}\) is obtained
|
||||
\begin{align}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} &= \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix} \label{eq:Gd_mimo_tf} \\
|
||||
\bm{G}_{d}(1,1) &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
|
||||
&= \bm{G}_{d}(2,2) \nonumber \\
|
||||
\bm{G}_{d}(1,2) &= \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
|
||||
&= -\bm{G}_{d}(1,2) \nonumber
|
||||
\end{align}
|
||||
\begin{equation}
|
||||
\label{eq:Gd_mimo_tf}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\bm{G}_{d}(1,1) &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
|
||||
&= \bm{G}_{d}(2,2) \nonumber \\
|
||||
\bm{G}_{d}(1,2) &= \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
|
||||
&= -\bm{G}_{d}(1,2) \nonumber
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
To simplify the analysis, the undamped natural frequency \(\omega_0\) and the damping ratio \(\xi\) are used
|
||||
\begin{equation}
|
||||
\omega_0 = \sqrt{\frac{k}{m}} \text{ in } \si{\radian\per\second}, \quad \xi = \frac{c}{2 \sqrt{k m}}
|
||||
\omega_0 = \sqrt{\frac{k}{m}} \text{ in rad/s}, \quad \xi = \frac{c}{2 \sqrt{k m}}
|
||||
\end{equation}
|
||||
|
||||
The transfer function matrix \(\bm{G}_d\) becomes equal to
|
||||
\begin{equation}
|
||||
The elements of the transfer function matrix \(\bm{G}_d\) become equal to
|
||||
\begin{subequations}
|
||||
\label{eq:Gd_w0_xi_k}
|
||||
\bm{G}_{d} =
|
||||
\frac{1}{k}
|
||||
\begin{bmatrix}
|
||||
\frac{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{- 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
\begin{align}
|
||||
\bm{G}_{d}(1,1) &= {\scriptstyle \frac{\frac{1}{k} \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \\
|
||||
\bm{G}_{d}(1,2) &= {\scriptstyle \frac{\frac{1}{k} \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} }
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
For all further numerical analysis in this study, we consider \(\omega_0 = \SI{1}{\radian\per\second}\), \(k = \SI{1}{\newton\per\meter}\) and \(\xi = 0.025 = \SI{2.5}{\percent}\).
|
||||
For all further numerical analysis in this study, we consider \(\omega_0 = 1\,\text{rad}/s\), \(k = 1\,N/m\) and \(\xi = 0.025 = 2.5\,\%\).
|
||||
Even though no system with such parameters will be encountered in practice, conclusions can be drawn relative to these parameters such that they can be generalized to any other set of parameters.
|
||||
|
||||
\par
|
||||
@ -175,13 +179,13 @@ Physically, the negative stiffness term \(-m\Omega^2\) induced by centrifugal fo
|
||||
In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are assumed (\(\Omega < \omega_0\)).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{campbell_diagram_real.pdf}
|
||||
\caption{\label{fig:campbell_diagram_real} Real Part}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{campbell_diagram_imag.pdf}
|
||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
@ -196,13 +200,13 @@ For \(\Omega > \omega_0\), the low frequency pair of complex conjugate poles \(p
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_direct.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms \(d_u/F_u\), \(d_v/F_v\)}
|
||||
\includegraphics[width=\linewidth]{plant_compare_rotating_speed_direct.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms \(d_u/F_u\) and \(d_v/F_v\)}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_coupling.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms \(d_v/F_u\), \(-d_u/F_v\)}
|
||||
\includegraphics[width=\linewidth]{plant_compare_rotating_speed_coupling.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms \(d_v/F_u\) and -\(d_u/F_v\)}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\caption{\label{fig:plant_compare_rotating_speed}Bode Plots for \(\bm{G}_d\) for several rotational speed \(\Omega\)}
|
||||
@ -210,7 +214,7 @@ For \(\Omega > \omega_0\), the low frequency pair of complex conjugate poles \(p
|
||||
\end{figure}
|
||||
|
||||
\section{Decentralized Integral Force Feedback}
|
||||
\label{sec:orgcaa78cf}
|
||||
\label{sec:org955ee19}
|
||||
\label{sec:iff}
|
||||
In order to apply IFF to the system, force sensors are added in series with the two actuators (Figure \ref{fig:system_iff}).
|
||||
As this study focuses on decentralized control, two identical controllers \(K_F\) are used to feedback each of the sensed force to its associated actuator and no attempt is made to counteract the interactions in the system.
|
||||
@ -218,13 +222,13 @@ The control diagram is schematically shown in Figure \ref{fig:control_diagram_if
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{figs/system_iff.pdf}
|
||||
\includegraphics[width=0.8\linewidth]{system_iff.pdf}
|
||||
\caption{\label{fig:system_iff}System with added Force Sensor in series with the actuators}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/control_diagram_iff.pdf}
|
||||
\includegraphics[scale=1]{control_diagram_iff.pdf}
|
||||
\caption{\label{fig:control_diagram_iff}Control Diagram for decentralized IFF}
|
||||
\end{figure}
|
||||
|
||||
@ -238,13 +242,18 @@ The forces \(\begin{bmatrix}f_u & f_v\end{bmatrix}\) measured by the two force s
|
||||
\end{equation}
|
||||
|
||||
Inserting \eqref{eq:Gd_w0_xi_k} into \eqref{eq:measured_force} yields
|
||||
\begin{align}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} &= \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix} \label{eq:Gf_mimo_tf} \\
|
||||
\bm{G}_{f} &= \begin{bmatrix}
|
||||
\frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{\left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix} \label{eq:Gf}
|
||||
\end{align}
|
||||
\begin{equation}
|
||||
\label{eq:Gf_mimo_tf}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{subequations}
|
||||
\label{eq:Gf}
|
||||
\begin{align}
|
||||
\bm{G}_{f}(1,1) &= {\scriptstyle \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \\
|
||||
\bm{G}_{f}(1,2) &= {\scriptstyle \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} }
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The zeros of the diagonal terms of \(\bm{G}_f\) are equal to (neglecting the damping for simplicity)
|
||||
\begin{subequations}
|
||||
@ -257,7 +266,7 @@ The zeros of the diagonal terms of \(\bm{G}_f\) are equal to (neglecting the dam
|
||||
The frequency of the pair of complex conjugate zeros \(z_c\) \eqref{eq:iff_zero_cc} always lies between the frequency of the two pairs of complex conjugate poles \(p_{-}\) and \(p_{+}\) \eqref{eq:pole_values}.
|
||||
|
||||
For non-null rotational speeds, two real zeros \(z_r\) \eqref{eq:iff_zero_real} appear in the diagonal terms inducing a non-minimum phase behavior.
|
||||
This can be seen in the Bode plot of the diagonal terms (Figure \ref{fig:plant_iff_compare_rotating_speed}) where the low frequency gain is no longer zero while the phase stays at \(\SI{180}{\degree}\).
|
||||
This can be seen in the Bode plot of the diagonal terms (Figure \ref{fig:plant_iff_compare_rotating_speed}) where the low frequency gain is no longer zero while the phase stays at \(180\,\text{deg}\).
|
||||
|
||||
The low frequency gain of \(\bm{G}_f\) increases with the rotational speed \(\Omega\)
|
||||
\begin{equation}
|
||||
@ -272,7 +281,7 @@ This can be explained as follows: a constant force \(F_u\) induces a small displ
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/plant_iff_compare_rotating_speed.pdf}
|
||||
\includegraphics[scale=1]{plant_iff_compare_rotating_speed.pdf}
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of the dynamics from a force actuator to its collocated force sensor (\(f_u/F_u\), \(f_v/F_v\)) for several rotational speeds \(\Omega\)}
|
||||
\end{figure}
|
||||
|
||||
@ -286,12 +295,12 @@ The two IFF controllers \(K_F\) consist of a pure integrator
|
||||
where \(g\) is a scalar representing the gain of the controller.
|
||||
|
||||
In order to see how the IFF affects the poles of the closed loop system, a Root Locus plot (Figure \ref{fig:root_locus_pure_iff}) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain \(g\) varies from \(0\) to \(\infty\) for the two controllers \(K_F\) simultaneously.
|
||||
As explained in \cite{preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr}, the closed-loop poles start at the open-loop poles (shown by \(\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};\)) for \(g = 0\) and coincide with the transmission zeros (shown by \(\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];\)) as \(g \to \infty\).
|
||||
The direction of increasing gain is indicated by arrows \(\tikz[baseline=-0.6ex] \draw[-{Stealth[round]},line width=2pt] (0,0) -- (0.3,0);\).
|
||||
As explained in \cite{preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr}, the closed-loop poles start at the open-loop poles (shown by crosses) for \(g = 0\) and coincide with the transmission zeros (shown by circles) as \(g \to \infty\).
|
||||
The direction of increasing gain is indicated by arrows.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_pure_iff.pdf}
|
||||
\includegraphics[scale=1]{root_locus_pure_iff.pdf}
|
||||
\caption{\label{fig:root_locus_pure_iff}Root Locus: evolution of the closed-loop poles with increasing controller gains \(g\)}
|
||||
\end{figure}
|
||||
|
||||
@ -305,7 +314,7 @@ In order to apply decentralized IFF on rotating platforms, two solutions are pro
|
||||
The first one consists of slightly modifying the control law (Section \ref{sec:iff_hpf}) while the second one consists of adding springs in parallel with the force sensors (Section \ref{sec:iff_kp}).
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filter}
|
||||
\label{sec:org704f416}
|
||||
\label{sec:orgeb779c5}
|
||||
\label{sec:iff_hpf}
|
||||
As was explained in the previous section, the instability comes in part from the high gain at low frequency caused by the pure integrators.
|
||||
|
||||
@ -334,13 +343,13 @@ It is interesting to note that \(g_{\text{max}}\) also corresponds to the gain w
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
|
||||
\includegraphics[scale=1]{loop_gain_modified_iff.pdf}
|
||||
\caption{\label{fig:loop_gain_modified_iff}Modification of the loop gain with the added HFP, \(g = 2\), \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
|
||||
\includegraphics[scale=1]{root_locus_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_modified_iff}Modification of the Root Locus with the added HPF, \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
@ -353,7 +362,7 @@ It is shown that even though small \(\omega_i\) seem to allow more damping to be
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_wi_modified_iff.pdf}
|
||||
\includegraphics[scale=1]{root_locus_wi_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_wi_modified_iff}Root Locus for several HPF cut-off frequencies \(\omega_i\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
@ -362,7 +371,7 @@ The gain \(g_{\text{opt}}\) at which this maximum damping is obtained is also di
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/mod_iff_damping_wi.pdf}
|
||||
\includegraphics[scale=1]{mod_iff_damping_wi.pdf}
|
||||
\caption{\label{fig:mod_iff_damping_wi}Attainable damping ratio \(\xi_\text{cl}\) as a function of \(\omega_i/\omega_0\). Corresponding control gain \(g_\text{opt}\) and \(g_\text{max}\) are also shown}
|
||||
\end{figure}
|
||||
|
||||
@ -374,7 +383,7 @@ Three regions can be observed:
|
||||
\end{itemize}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:org1c4a11f}
|
||||
\label{sec:org41af864}
|
||||
\label{sec:iff_kp}
|
||||
In this section additional springs in parallel with the force sensors are added to counteract the negative stiffness induced by the rotation.
|
||||
Such springs are schematically shown in Figure \ref{fig:system_parallel_springs} where \(k_a\) is the stiffness of the actuator and \(k_p\) the stiffness in parallel with the actuator and force sensor.
|
||||
@ -385,14 +394,14 @@ An example of such system is shown in Figure \ref{fig:cedrat_xy25xs}.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{figs/system_parallel_springs.pdf}
|
||||
\includegraphics[width=0.8\linewidth]{system_parallel_springs.pdf}
|
||||
\caption{\label{fig:system_parallel_springs}Studied system with additional springs in parallel with the actuators and force sensors}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{figs/cedrat_xy25xs.png}
|
||||
\includegraphics[width=0.8\linewidth]{cedrat_xy25xs.pdf}
|
||||
\caption{\label{fig:cedrat_xy25xs}XY Piezoelectric Stage (XY25XS from Cedrat Technology)}
|
||||
\end{figure}
|
||||
|
||||
@ -411,16 +420,20 @@ In order to keep the overall stiffness \(k = k_a + k_p\) constant, thus not modi
|
||||
\end{equation}
|
||||
|
||||
The equations of motion are derived and transformed in the Laplace domain
|
||||
\begin{equation}
|
||||
\label{eq:Gk_mimo_tf}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\bm{G}_k
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{subequations}
|
||||
\label{eq:Gk}
|
||||
\begin{align}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} &=
|
||||
\bm{G}_k
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} \label{eq:Gk_mimo_tf} \\
|
||||
\bm{G}_k &=
|
||||
\begin{bmatrix}
|
||||
\frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{\left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix} \label{eq:Gk}
|
||||
\bm{G}_{k}(1,1) &= {\scriptstyle \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} } \\
|
||||
\bm{G}_{k}(1,2) &= {\scriptstyle \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} }
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
Comparing \(\bm{G}_k\) \eqref{eq:Gk} with \(\bm{G}_f\) \eqref{eq:Gf} shows that while the poles of the system are kept the same, the zeros of the diagonal terms have changed.
|
||||
The two real zeros \(z_r\) \eqref{eq:iff_zero_real} that were inducing non-minimum phase behavior are transformed into complex conjugate zeros if the following condition hold
|
||||
@ -437,13 +450,13 @@ It is shown that if the added stiffness is higher than the maximum negative stif
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_kp.pdf}
|
||||
\includegraphics[scale=1]{plant_iff_kp.pdf}
|
||||
\caption{\label{fig:plant_iff_kp}Bode Plot of \(f_u/F_u\) without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kp.pdf}
|
||||
\includegraphics[scale=1]{root_locus_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
@ -455,23 +468,23 @@ To study this effect, Root Locus plots for several parallel stiffnesses \(k_p >
|
||||
The frequencies of the transmission zeros of the system are increasing with the parallel stiffness \(k_p\) and the associated attainable damping is reduced.
|
||||
Therefore, even though the parallel stiffness \(k_p\) should be larger than \(m \Omega^2\) for stability reasons, it should not be taken too high as this would limit the attainable bandwidth.
|
||||
|
||||
This is confirmed in Figure \ref{fig:mod_iff_damping_kp} where the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) and the associated control gain \(g_\text{opt}\) are computed as a function of \(\alpha\).
|
||||
This is confirmed in Figure \ref{fig:opt_damp_alpha} where the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) and the associated control gain \(g_\text{opt}\) are computed as a function of \(\alpha\).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kps.pdf}
|
||||
\includegraphics[scale=1]{root_locus_iff_kps.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kps}Comparison the Root Locus for three parallel stiffnessses \(k_p\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/mod_iff_damping_kp.pdf}
|
||||
\caption{\label{fig:mod_iff_damping_kp}Optimal Damping Ratio \(\xi_\text{opt}\) and the corresponding optimal gain \(g_\text{opt}\) as a function of \(\alpha\)}
|
||||
\includegraphics[scale=1]{opt_damp_alpha.pdf}
|
||||
\caption{\label{fig:opt_damp_alpha}Optimal Damping Ratio \(\xi_\text{opt}\) and the corresponding optimal gain \(g_\text{opt}\) as a function of \(\alpha\)}
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison and Discussion}
|
||||
\label{sec:orgcd508a8}
|
||||
\label{sec:org2279161}
|
||||
\label{sec:comparison}
|
||||
Two modifications to adapt the IFF control strategy to rotating platforms have been proposed in Sections \ref{sec:iff_hpf} and \ref{sec:iff_kp}.
|
||||
These two methods are now compared in terms of added damping, closed-loop compliance and transmissibility.
|
||||
@ -490,7 +503,7 @@ It is interesting to note that the maximum added damping is very similar for bot
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/comp_root_locus.pdf}
|
||||
\includegraphics[scale=1]{comp_root_locus.pdf}
|
||||
\caption{\label{fig:comp_root_locus}Root Locus for the two proposed modifications of decentralized IFF, \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
@ -513,14 +526,14 @@ It is also confirmed that these two techniques can significantly damp the suspen
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_transmissibility.pdf}
|
||||
\includegraphics[scale=1]{comp_transmissibility.pdf}
|
||||
\caption{\label{fig:comp_transmissibility}Comparison of the two proposed Active Damping Techniques - Transmissibility}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_compliance.pdf}
|
||||
\includegraphics[scale=1]{comp_compliance.pdf}
|
||||
\caption{\label{fig:comp_compliance}Comparison of the two proposed Active Damping Techniques - Compliance}
|
||||
\end{figure}
|
||||
|
||||
@ -529,7 +542,7 @@ On can see in Figure \ref{fig:comp_transmissibility} that the problem of the deg
|
||||
The addition of the HPF or the use of the parallel stiffness permit to limit the degradation of the compliance as compared with classical IFF (Figure \ref{fig:comp_compliance}).
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:org6cd163b}
|
||||
\label{sec:org40ed087}
|
||||
\label{sec:conclusion}
|
||||
|
||||
Due to gyroscopic effects, decentralized IFF with pure integrators was shown to be unstable when applied to rotating platforms.
|
||||
@ -550,8 +563,8 @@ Future work will focus on the experimental validation of the proposed active dam
|
||||
The Matlab code that was used for this study is available under a MIT License and archived in Zenodo \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
|
||||
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:org7856ac4}
|
||||
This research benefited from a FRIA grant from the French Community of Belgium.
|
||||
\label{sec:org7ba6f08}
|
||||
This research benefited from a FRIA grant (grant number: FC 31597) from the French Community of Belgium.
|
||||
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
BIN
matlab/figs-inkscape/comp_root_locus.svg
Normal file
After Width: | Height: | Size: 182 KiB |
After Width: | Height: | Size: 162 KiB |
Before Width: | Height: | Size: 232 KiB After Width: | Height: | Size: 233 KiB |
BIN
matlab/figs-inkscape/root_locus_iff_kp_zoom.svg
Normal file
After Width: | Height: | Size: 70 KiB |
BIN
matlab/figs-inkscape/root_locus_iff_kps.svg
Normal file
After Width: | Height: | Size: 162 KiB |
After Width: | Height: | Size: 148 KiB |
Before Width: | Height: | Size: 319 KiB After Width: | Height: | Size: 319 KiB |
After Width: | Height: | Size: 118 KiB |
BIN
matlab/figs-inkscape/root_locus_modified_iff_zoom.svg
Normal file
After Width: | Height: | Size: 78 KiB |
BIN
matlab/figs-inkscape/root_locus_pure_iff.svg
Normal file
After Width: | Height: | Size: 194 KiB |
Before Width: | Height: | Size: 405 KiB After Width: | Height: | Size: 389 KiB |
BIN
matlab/figs-inkscape/root_locus_wi_modified_iff_zoom.svg
Normal file
After Width: | Height: | Size: 128 KiB |
Before Width: | Height: | Size: 46 KiB After Width: | Height: | Size: 32 KiB |
BIN
matlab/figs/campbell_diagram_imag.pdf
Normal file
BIN
matlab/figs/campbell_diagram_imag.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
matlab/figs/campbell_diagram_real.pdf
Normal file
BIN
matlab/figs/campbell_diagram_real.png
Normal file
After Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 78 KiB After Width: | Height: | Size: 55 KiB |
Before Width: | Height: | Size: 34 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 83 KiB |
Before Width: | Height: | Size: 91 KiB |
Before Width: | Height: | Size: 83 KiB |
Before Width: | Height: | Size: 108 KiB After Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 72 KiB After Width: | Height: | Size: 54 KiB |
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 205 KiB |
BIN
matlab/figs/plant_compare_rotating_speed_coupling.pdf
Normal file
BIN
matlab/figs/plant_compare_rotating_speed_coupling.png
Normal file
After Width: | Height: | Size: 63 KiB |
BIN
matlab/figs/plant_compare_rotating_speed_direct.pdf
Normal file
BIN
matlab/figs/plant_compare_rotating_speed_direct.png
Normal file
After Width: | Height: | Size: 61 KiB |
Before Width: | Height: | Size: 146 KiB |
Before Width: | Height: | Size: 157 KiB After Width: | Height: | Size: 147 KiB |