Shrinked two figures to make them subfigures
This commit is contained in:
parent
42a0f82b8e
commit
e5eae190fa
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 189 KiB After Width: | Height: | Size: 184 KiB |
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 303 KiB After Width: | Height: | Size: 318 KiB |
@ -354,26 +354,36 @@ Either the control law can be change (Section ref:sec:iff_hpf) or the mechanical
|
||||
** Modification of the Control Low
|
||||
# Reference to Preumont where its done
|
||||
|
||||
|
||||
# Equation with the new control law
|
||||
# Equivalent as to add a HFP or to slightly move the pole to the left
|
||||
In order to limit the low frequency loop gain, an high pass filter (HPF) can be added to the controller.
|
||||
The controller becomes
|
||||
#+NAME: eq:IFF_LHF
|
||||
\begin{equation}
|
||||
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\bm{K}_F(s) = \begin{bmatrix} K_F(s) & 0 \\ 0 & K_F(s) \end{bmatrix}, \quad K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
# Explain why it is usually done and why it is done here: the problem is the high gain at low frequency => high pass filter
|
||||
|
||||
This is equivalent as to slightly shifting to pole to the left along the real axis.
|
||||
This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator cite:preumont91_activ.
|
||||
|
||||
** Feedback Analysis
|
||||
# Explain what do we mean for Loop Gain (loop gain for the decentralized loop)
|
||||
|
||||
#+attr_latex: :options [c]{0.45\linewidth}
|
||||
#+begin_minipage
|
||||
#+name: fig:loop_gain_modified_iff
|
||||
#+caption: Bode Plot of the loop gain for IFF with and without the HPF with, $g = 2$, $\omega_i = 0.1 \omega_0$ and $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1 :float nil
|
||||
[[file:figs/loop_gain_modified_iff.pdf]]
|
||||
#+end_minipage
|
||||
\hfill
|
||||
#+attr_latex: :options [c]{0.5\linewidth}
|
||||
#+begin_minipage
|
||||
#+name: fig:root_locus_modified_iff
|
||||
#+caption: Root Locus for IFF with and without the HPF, $\omega_i = 0.1 \omega_0$ and $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1 :float nil
|
||||
[[file:figs/root_locus_modified_iff.pdf]]
|
||||
#+end_minipage
|
||||
|
||||
# Explain that now the low frequency loop gain does not reach a gain more than 1 (if g not so high)
|
||||
|
||||
#+name: fig:loop_gain_modified_iff
|
||||
#+caption: Bode Plot of the Loop Gain for IFF with and without the HPF with $\omega_i = 0.1 \omega_0$, $g = 2$ and $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/loop_gain_modified_iff.pdf]]
|
||||
|
||||
# Explain how the root locus changes (the pole corresponding to the controller is moved to the left)
|
||||
|
||||
@ -389,12 +399,6 @@ As shown in Figure ref:fig:root_locus_modified_iff, the poles of the closed loop
|
||||
|
||||
# Say that this corresponds as to have a low frequency gain of the loop gain less thank 1
|
||||
|
||||
|
||||
#+name: fig:root_locus_modified_iff
|
||||
#+caption: Root Locus for IFF with and without the HPF, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_modified_iff.pdf]]
|
||||
|
||||
** Optimal Control Parameters
|
||||
|
||||
# Controller: two parameters: gain and wi
|
||||
|
BIN
paper/paper.pdf
BIN
paper/paper.pdf
Binary file not shown.
@ -1,4 +1,4 @@
|
||||
% Created 2020-07-01 mer. 10:02
|
||||
% Created 2020-07-01 mer. 10:48
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -53,7 +53,7 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:org38db2d2}
|
||||
\label{sec:org6a18e43}
|
||||
\label{sec:introduction}
|
||||
Due to gyroscopic effects, the guaranteed robustness properties of Integral Force Feedback do not hold.
|
||||
Either the control architecture can be slightly modified or mechanical changes in the system can be performed.
|
||||
@ -61,10 +61,10 @@ This paper has been published
|
||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
|
||||
|
||||
\section{Dynamics of Rotating Positioning Platforms}
|
||||
\label{sec:orgd0419a7}
|
||||
\label{sec:orgd72985f}
|
||||
\label{sec:dynamics}
|
||||
\subsection{Model of a Rotating Positioning Platform}
|
||||
\label{sec:org4c3a41a}
|
||||
\label{sec:org617200e}
|
||||
In order to study how the rotation of a positioning platforms does affect the use of force feedback, a simple model of an X-Y positioning stage on top of a rotating stage is developed.
|
||||
|
||||
The model is schematically represented in Figure \ref{fig:system} and forms the simplest system where gyroscopic forces can be studied.
|
||||
@ -95,7 +95,7 @@ The position of the payload is represented by \((d_u, d_v)\) expressed in the ro
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations of Motion}
|
||||
\label{sec:orga2d4956}
|
||||
\label{sec:orgb84906d}
|
||||
To obtain of equation of motion for the system represented in Figure \ref{fig:system}, the Lagrangian equations are used:
|
||||
\begin{equation}
|
||||
\label{eq:lagrangian_equations}
|
||||
@ -139,7 +139,7 @@ One can verify that without rotation (\(\Omega = 0\)) the system becomes equival
|
||||
\end{subequations}
|
||||
|
||||
\subsection{Transfer Functions in the Laplace domain}
|
||||
\label{sec:org16be790}
|
||||
\label{sec:orgda6662b}
|
||||
To study the dynamics of the system, the differential equations of motions \eqref{eq:eom_coupled} are transformed in the Laplace domain and the transfer function matrix from \(\begin{bmatrix}F_u & F_v\end{bmatrix}\) to \(\begin{bmatrix}d_u & d_v\end{bmatrix}\) is obtained:
|
||||
\begin{equation}
|
||||
\label{eq:Gd_mimo_tf}
|
||||
@ -177,7 +177,7 @@ For all the numerical analysis in this study, \(\omega_0 = \SI{1}{\radian\per\se
|
||||
Even tough no system with such parameters will be encountered in practice, conclusions will be drawn relative to these parameters such that they can be generalized to any other parameter.
|
||||
|
||||
\subsection{System Dynamics and Campbell Diagram}
|
||||
\label{sec:org0ed334c}
|
||||
\label{sec:org006f494}
|
||||
The poles of \(\bm{G}_d\) are the complex solutions \(p\) of
|
||||
\begin{equation}
|
||||
\left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
|
||||
@ -232,10 +232,10 @@ For \(\Omega > \omega_0\), the low frequency complex conjugate poles \(p_{-}\) b
|
||||
\end{figure}
|
||||
|
||||
\section{Decentralized Integral Force Feedback}
|
||||
\label{sec:org284335d}
|
||||
\label{sec:org586ab0c}
|
||||
\label{sec:iff}
|
||||
\subsection{Force Sensors and Control Architecture}
|
||||
\label{sec:org5b8858f}
|
||||
\label{sec:org56ae682}
|
||||
In order to apply Decentralized Integral Force Feedback to the system, force sensors are added in series with the two actuators (Figure \ref{fig:system_iff}).
|
||||
Two identical controllers \(K_F\) are added to feedback each of the sensed forces to its collocated actuator.
|
||||
The control diagram is shown in Figure \ref{fig:control_diagram_iff}.
|
||||
@ -255,7 +255,7 @@ The control diagram is shown in Figure \ref{fig:control_diagram_iff}.
|
||||
\end{minipage}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:orge8dea8f}
|
||||
\label{sec:org6b43274}
|
||||
The forces measured by the force sensors are equal to:
|
||||
\begin{equation}
|
||||
\label{eq:measured_force}
|
||||
@ -310,7 +310,7 @@ This low frequency gain can be explained as follows: a constant force induces a
|
||||
\end{figure}
|
||||
|
||||
\subsection{Decentralized Integral Force Feedback with Pure Integrators}
|
||||
\label{sec:org8280bcd}
|
||||
\label{sec:orgaedf7bc}
|
||||
The two IFF controllers \(K_F\) are pure integrators
|
||||
\begin{equation}
|
||||
\bm{K}_F(s) = \begin{bmatrix} K_F(s) & 0 \\ 0 & K_F(s) \end{bmatrix}, \quad K_F(s) = g \cdot \frac{1}{s}
|
||||
@ -335,18 +335,37 @@ Two system modifications are proposed in the next sections to deal with this sta
|
||||
Either the control law can be change (Section \ref{sec:iff_hpf}) or the mechanical system slightly modified (Section \ref{sec:iff_kp}).
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filters}
|
||||
\label{sec:org6cc7c03}
|
||||
\label{sec:org34f8977}
|
||||
\label{sec:iff_hpf}
|
||||
\subsection{Modification of the Control Low}
|
||||
\label{sec:org9575a34}
|
||||
\label{sec:org809db54}
|
||||
In order to limit the low frequency loop gain, an high pass filter (HPF) can be added to the controller.
|
||||
The controller becomes
|
||||
\begin{equation}
|
||||
\label{eq:IFF_LHF}
|
||||
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\bm{K}_F(s) = \begin{bmatrix} K_F(s) & 0 \\ 0 & K_F(s) \end{bmatrix}, \quad K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
This is equivalent as to slightly shifting to pole to the left along the real axis.
|
||||
This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator \cite{preumont91_activ}.
|
||||
|
||||
\subsection{Feedback Analysis}
|
||||
\label{sec:orgbc7c7f2}
|
||||
\label{sec:orga2d434f}
|
||||
\begin{minipage}[c]{0.45\linewidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
|
||||
\captionof{figure}{\label{fig:loop_gain_modified_iff}Bode Plot of the loop gain for IFF with and without the HPF with, \(g = 2\), \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[c]{0.5\linewidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
|
||||
\captionof{figure}{\label{fig:root_locus_modified_iff}Root Locus for IFF with and without the HPF, \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
|
||||
@ -358,15 +377,14 @@ As shown in Figure \ref{fig:root_locus_modified_iff}, the poles of the closed lo
|
||||
g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)
|
||||
\end{equation}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_modified_iff}Root Locus for IFF with and without the HPF, \(\Omega = 0.1 \omega_0\)}
|
||||
\label{fig:root_locus_modified_iff}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Control Parameters}
|
||||
\label{sec:org6e31c47}
|
||||
\label{sec:org7cc60ca}
|
||||
|
||||
Two parameters can be tuned for the controller \eqref{eq:IFF_LHF}, the gain \(g\) and the frequency of the pole \(\omega_i\).
|
||||
|
||||
@ -387,10 +405,10 @@ The optimal values of \(\omega_i\) and \(g\) may be considered as the values for
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:org8681b34}
|
||||
\label{sec:org8ffeef1}
|
||||
\label{sec:iff_kp}
|
||||
\subsection{Stiffness in Parallel with the Force Sensor}
|
||||
\label{sec:org0dff3a7}
|
||||
\label{sec:org831f255}
|
||||
Stiffness can be added in parallel to the force sensor to counteract the negative stiffness due to centrifugal forces.
|
||||
If the added stiffness is higher than the maximum negative stiffness, then the poles of the IFF damped system will stay in the (stable) right half-plane.
|
||||
|
||||
@ -412,7 +430,7 @@ The forces measured by the force sensors are equal to:
|
||||
This could represent a system where
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:orgc00a18e}
|
||||
\label{sec:org98721cc}
|
||||
|
||||
We define an adimensional parameter \(\alpha\), \(0 \le \alpha < 1\), that describes the proportion of the stiffness in parallel with the actuator and force sensor:
|
||||
\begin{subequations}
|
||||
@ -444,7 +462,7 @@ The overall stiffness \(k\) stays constant:
|
||||
\end{equation}
|
||||
|
||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
|
||||
\label{sec:orgdbd366f}
|
||||
\label{sec:org0b03ba2}
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\alpha > \frac{\Omega^2}{{\omega_0}^2} \\
|
||||
@ -465,7 +483,7 @@ The overall stiffness \(k\) stays constant:
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Parallel Stiffness}
|
||||
\label{sec:org8a2fab9}
|
||||
\label{sec:org0aa60d8}
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kps.pdf}
|
||||
@ -480,15 +498,15 @@ The overall stiffness \(k\) stays constant:
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
|
||||
\label{sec:orgf0c901c}
|
||||
\label{sec:orgde2e2f0}
|
||||
\label{sec:comparison}
|
||||
\subsection{Physical Comparison}
|
||||
\label{sec:orgb81fedd}
|
||||
\label{sec:org661a4d0}
|
||||
|
||||
|
||||
|
||||
\subsection{Attainable Damping}
|
||||
\label{sec:org9975e71}
|
||||
\label{sec:orgb54beda}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -497,7 +515,7 @@ The overall stiffness \(k\) stays constant:
|
||||
\end{figure}
|
||||
|
||||
\subsection{Transmissibility and Compliance}
|
||||
\label{sec:org0a87dc5}
|
||||
\label{sec:org63e90d2}
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/comp_compliance.pdf}
|
||||
@ -512,11 +530,11 @@ The overall stiffness \(k\) stays constant:
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:orgcf2c965}
|
||||
\label{sec:org646f615}
|
||||
\label{sec:conclusion}
|
||||
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:orga6bcde3}
|
||||
\label{sec:org7bb2645}
|
||||
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user