Add some comments about what to write
This commit is contained in:
		
							
								
								
									
										197
									
								
								paper/paper.org
									
									
									
									
									
								
							
							
						
						
									
										197
									
								
								paper/paper.org
									
									
									
									
									
								
							@@ -48,7 +48,7 @@
 | 
			
		||||
               )
 | 
			
		||||
#+END_SRC
 | 
			
		||||
 | 
			
		||||
* Abstract                                                           :ignore:
 | 
			
		||||
* Abstract                                                            :ignore:
 | 
			
		||||
#+BEGIN_EXPORT latex
 | 
			
		||||
\abstract{
 | 
			
		||||
    Abstract text to be done
 | 
			
		||||
@@ -57,32 +57,32 @@
 | 
			
		||||
 | 
			
		||||
* Introduction
 | 
			
		||||
<<sec:introduction>>
 | 
			
		||||
*** Establish the importance of the research topic                 :ignore:
 | 
			
		||||
** Establish the importance of the research topic                    :ignore:
 | 
			
		||||
# Active Damping + Rotating System
 | 
			
		||||
 | 
			
		||||
Controller Poles are shown by black crosses (
 | 
			
		||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
 | 
			
		||||
).
 | 
			
		||||
 | 
			
		||||
*** Applications of active damping                                  :ignore:
 | 
			
		||||
** Applications of active damping                                    :ignore:
 | 
			
		||||
# Link to previous paper / tomography
 | 
			
		||||
 | 
			
		||||
cite:dehaeze18_sampl_stabil_for_tomog_exper
 | 
			
		||||
# Such as the Nano-Active-Stabilization-System currently in development at the ESRF cite:dehaeze18_sampl_stabil_for_tomog_exper.
 | 
			
		||||
 | 
			
		||||
*** Current active damping techniques                               :ignore:
 | 
			
		||||
** Current active damping techniques                                 :ignore:
 | 
			
		||||
# IFF, DVF
 | 
			
		||||
 | 
			
		||||
*** Describe a gap in the research                                 :ignore:
 | 
			
		||||
** Describe a gap in the research                                    :ignore:
 | 
			
		||||
# No literature on rotating systems => gyroscopic effects
 | 
			
		||||
 | 
			
		||||
*** Describe the paper itself / the problem which is addressed     :ignore:
 | 
			
		||||
** Describe the paper itself / the problem which is addressed        :ignore:
 | 
			
		||||
 | 
			
		||||
*** Introduce Each part of the paper                               :ignore:
 | 
			
		||||
** Introduce Each part of the paper                                  :ignore:
 | 
			
		||||
 | 
			
		||||
* System Under Study
 | 
			
		||||
** Rotating Positioning Platform
 | 
			
		||||
* Dynamics of Rotating Positioning Platforms
 | 
			
		||||
** Studied Rotating Positioning Platform
 | 
			
		||||
# Simplest system where gyroscopic forces can be studied
 | 
			
		||||
Consider the rotating X-Y stage of Figure [[fig:rotating_xy_platform]].
 | 
			
		||||
Consider the rotating X-Y stage of Figure [[fig:system]].
 | 
			
		||||
 | 
			
		||||
# Present the system, parameters, assumptions
 | 
			
		||||
 | 
			
		||||
@@ -98,16 +98,15 @@ Consider the rotating X-Y stage of Figure [[fig:rotating_xy_platform]].
 | 
			
		||||
- $F_u$, $F_v$
 | 
			
		||||
- $d_u$, $d_v$
 | 
			
		||||
 | 
			
		||||
#+name: fig:rotating_xy_platform
 | 
			
		||||
#+name: fig:system
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/system.pdf]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#+name: fig:cedrat_xy25xs
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :width 0.5\linewidth
 | 
			
		||||
[[file:figs/cedrat_xy25xs.jpg]]
 | 
			
		||||
# #+name: fig:cedrat_xy25xs
 | 
			
		||||
# #+caption: Figure caption
 | 
			
		||||
# #+attr_latex: :width 0.5\linewidth
 | 
			
		||||
# [[file:figs/cedrat_xy25xs.jpg]]
 | 
			
		||||
 | 
			
		||||
** Equation of Motion
 | 
			
		||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $u$ and $v$.
 | 
			
		||||
@@ -234,6 +233,14 @@ When the rotation speed is null, the coupling terms are equal to zero and the di
 | 
			
		||||
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
 | 
			
		||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure [[fig:campbell_diagram]]).
 | 
			
		||||
 | 
			
		||||
#+name: fig:campbell_diagram
 | 
			
		||||
#+caption: Campbell Diagram
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
 | 
			
		||||
| file:figs/campbell_diagram_real.pdf     | file:figs/campbell_diagram_imag.pdf          |
 | 
			
		||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#+name: fig:campbell_diagram
 | 
			
		||||
#+caption: Campbell Diagram
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
@@ -243,10 +250,16 @@ As the rotation speed increases, one of the two resonant frequency goes to lower
 | 
			
		||||
 | 
			
		||||
The magnitude of the coupling terms are increasing with the rotation speed.
 | 
			
		||||
 | 
			
		||||
# #+name: fig:plant_compare_rotating_speed
 | 
			
		||||
# #+caption: Caption
 | 
			
		||||
# #+attr_latex: :scale 1
 | 
			
		||||
# [[file:figs/plant_compare_rotating_speed.pdf]]
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_compare_rotating_speed
 | 
			
		||||
#+caption: Caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/plant_compare_rotating_speed.pdf]]
 | 
			
		||||
#+caption: Dynamics
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
 | 
			
		||||
| file:figs/plant_compare_rotating_speed_direct.pdf                             | file:figs/plant_compare_rotating_speed_coupling.pdf                               |
 | 
			
		||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
 | 
			
		||||
 | 
			
		||||
* Integral Force Feedback
 | 
			
		||||
** Control Schematic
 | 
			
		||||
@@ -291,9 +304,21 @@ Which then gives:
 | 
			
		||||
  G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
** Plant Dynamics
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_iff_compare_rotating_speed
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
 | 
			
		||||
 | 
			
		||||
# Show that the low frequency gain is no longer zero
 | 
			
		||||
 | 
			
		||||
# Explain the two real zeros => change of gain but not of phase
 | 
			
		||||
 | 
			
		||||
# Explain physically why
 | 
			
		||||
 | 
			
		||||
** Integral Force Feedback
 | 
			
		||||
 | 
			
		||||
# General explanation for the Root Locus Plot
 | 
			
		||||
 | 
			
		||||
# MIMO root locus: gain is simultaneously increased for both decentralized controllers
 | 
			
		||||
@@ -305,37 +330,64 @@ Which then gives:
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_pure_iff.pdf]]
 | 
			
		||||
 | 
			
		||||
** Physical Interpretation
 | 
			
		||||
# Physical Interpretation
 | 
			
		||||
 | 
			
		||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
 | 
			
		||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
 | 
			
		||||
 | 
			
		||||
# Introduce next two sections where either:
 | 
			
		||||
# - IFF is modified to deal with this low frequency behavior
 | 
			
		||||
# - physical system is modified
 | 
			
		||||
 | 
			
		||||
* Integral Force Feedback with High Pass Filters
 | 
			
		||||
** Modification of the Control Low
 | 
			
		||||
 | 
			
		||||
# Reference to Preumont where its done
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Explain why it is usually done and why it is done here: the problem is the high gain at low frequency => high pass filter
 | 
			
		||||
 | 
			
		||||
** Close Loop Analysis
 | 
			
		||||
 | 
			
		||||
** Feedback Analysis
 | 
			
		||||
 | 
			
		||||
# Explain that now the low frequency loop gain does not reach a gain more than 1 (if g not so high)
 | 
			
		||||
 | 
			
		||||
#+name: fig:loop_gain_modified_iff
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/loop_gain_modified_iff.pdf]]
 | 
			
		||||
 | 
			
		||||
# Not the system can be stable for small values of g
 | 
			
		||||
# Actually, the system becomes unstable for g > ...
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_modified_iff
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_modified_iff_ter.pdf]]
 | 
			
		||||
[[file:figs/root_locus_modified_iff.pdf]]
 | 
			
		||||
 | 
			
		||||
** Optimal Cut-Off Frequency
 | 
			
		||||
 | 
			
		||||
# Controller: two parameters: gain and wi
 | 
			
		||||
 | 
			
		||||
# Try few wi
 | 
			
		||||
 | 
			
		||||
# Small wi seems to allow more damping to be added
 | 
			
		||||
# but the gain is limited to small values
 | 
			
		||||
 | 
			
		||||
# Trade off
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_wi_modified_iff
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_wi_modified_iff_bis.pdf]]
 | 
			
		||||
[[file:figs/root_locus_wi_modified_iff.pdf]]
 | 
			
		||||
 | 
			
		||||
# Study this trade-off
 | 
			
		||||
 | 
			
		||||
# Explain how the figure is obtained
 | 
			
		||||
 | 
			
		||||
# for small wi => gain limited
 | 
			
		||||
# for large wi => damping limited
 | 
			
		||||
# wi = 0.1 w0 is chosen
 | 
			
		||||
 | 
			
		||||
#+name: fig:mod_iff_damping_wi
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
@@ -343,60 +395,101 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
[[file:figs/mod_iff_damping_wi.pdf]]
 | 
			
		||||
 | 
			
		||||
* Integral Force Feedback with Parallel Springs
 | 
			
		||||
** Stiffness in Parallel with the Force Sensor
 | 
			
		||||
 | 
			
		||||
#+name: fig:rotating_xy_platform_springs
 | 
			
		||||
# Zeros = remove force sensor
 | 
			
		||||
# We want to have stable zeros => add stiffnesses in parallel
 | 
			
		||||
 | 
			
		||||
#+name: fig:system_parallel_springs
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/rotating_xy_platform_springs.pdf]]
 | 
			
		||||
[[file:figs/system_parallel_springs.pdf]]
 | 
			
		||||
 | 
			
		||||
# Maybe add the fact that this is equivalent to amplified piezo for instance
 | 
			
		||||
 | 
			
		||||
# Equations: sensed force
 | 
			
		||||
 | 
			
		||||
# New parameters
 | 
			
		||||
 | 
			
		||||
** Effect of the Parallel Stiffness on the Plant Dynamics
 | 
			
		||||
 | 
			
		||||
# Negative Stiffness due to rotation => the stiffness should be larger than that
 | 
			
		||||
 | 
			
		||||
# For kp < negative stiffness => real zeros
 | 
			
		||||
# For kp > negative stiffness => complex conjugate zeros
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_iff_kp
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/plant_iff_kp.pdf]]
 | 
			
		||||
 | 
			
		||||
# Location of the zeros as a function of kp
 | 
			
		||||
 | 
			
		||||
# Show that it is the case on the root locus
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_iff_kp
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_iff_kp.pdf]]
 | 
			
		||||
 | 
			
		||||
# For kp > m Omega => unconditionally stable
 | 
			
		||||
 | 
			
		||||
** Optimal Parallel Stiffness
 | 
			
		||||
 | 
			
		||||
# Explain that we have k = ka + kp constant in order to have the same resonance
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Large Stiffness decreases the attainable damping
 | 
			
		||||
 | 
			
		||||
# kp = 2mOmega to 5mOmega is ok
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_iff_kps
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_iff_kps.pdf]]
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_iff_kp_bis
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_iff_kp_ter.pdf]]
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_opt_gain_iff_kp
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_opt_gain_iff_kp.pdf]]
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_iff_compare_rotating_speed
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
 | 
			
		||||
 | 
			
		||||
* Direct Velocity Feedback
 | 
			
		||||
** Control Schematic
 | 
			
		||||
#+name: fig:system_dvf
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/system_dvf.pdf]]
 | 
			
		||||
 | 
			
		||||
** Equations
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
** Relative Direct Velocity Feedback
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_dvf
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_dvf.pdf]]
 | 
			
		||||
 | 
			
		||||
* Comparison of the Proposed Active Damping Techniques
 | 
			
		||||
* Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages
 | 
			
		||||
 | 
			
		||||
**
 | 
			
		||||
 | 
			
		||||
#+name: fig:comp_root_locus
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/comp_root_locus.pdf]]
 | 
			
		||||
 | 
			
		||||
#+name: fig:comp_compliance
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/comp_compliance.pdf]]
 | 
			
		||||
#+name: fig:comp_active_damping
 | 
			
		||||
#+caption: Comparison of the three proposed Active Damping Techniques
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
 | 
			
		||||
| file:figs/comp_compliance.pdf            | file:figs/comp_transmissibility.pdf      |
 | 
			
		||||
| <<fig:comp_compliance>> Transmissibility | <<fig:comp_transmissibility>> Compliance |
 | 
			
		||||
 | 
			
		||||
#+name: fig:comp_transmissibility
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/comp_transmissibility.pdf]]
 | 
			
		||||
# #+name: fig:comp_compliance
 | 
			
		||||
# #+caption: Figure caption
 | 
			
		||||
# #+attr_latex: :scale 1
 | 
			
		||||
# [[file:figs/comp_compliance.pdf]]
 | 
			
		||||
 | 
			
		||||
# #+name: fig:comp_transmissibility
 | 
			
		||||
# #+caption: Figure caption
 | 
			
		||||
# #+attr_latex: :scale 1
 | 
			
		||||
# [[file:figs/comp_transmissibility.pdf]]
 | 
			
		||||
 | 
			
		||||
* Conclusion
 | 
			
		||||
<<sec:conclusion>>
 | 
			
		||||
@@ -407,5 +500,5 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
:UNNUMBERED: t
 | 
			
		||||
:END:
 | 
			
		||||
 | 
			
		||||
* Bibliography                                                       :ignore:
 | 
			
		||||
* Bibliography                                                        :ignore:
 | 
			
		||||
\bibliography{ref.bib}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user