Add some comments about what to write
This commit is contained in:
parent
e10e78cfd6
commit
d6241bb809
197
paper/paper.org
197
paper/paper.org
@ -48,7 +48,7 @@
|
||||
)
|
||||
#+END_SRC
|
||||
|
||||
* Abstract :ignore:
|
||||
* Abstract :ignore:
|
||||
#+BEGIN_EXPORT latex
|
||||
\abstract{
|
||||
Abstract text to be done
|
||||
@ -57,32 +57,32 @@
|
||||
|
||||
* Introduction
|
||||
<<sec:introduction>>
|
||||
*** Establish the importance of the research topic :ignore:
|
||||
** Establish the importance of the research topic :ignore:
|
||||
# Active Damping + Rotating System
|
||||
|
||||
Controller Poles are shown by black crosses (
|
||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
|
||||
).
|
||||
|
||||
*** Applications of active damping :ignore:
|
||||
** Applications of active damping :ignore:
|
||||
# Link to previous paper / tomography
|
||||
|
||||
cite:dehaeze18_sampl_stabil_for_tomog_exper
|
||||
# Such as the Nano-Active-Stabilization-System currently in development at the ESRF cite:dehaeze18_sampl_stabil_for_tomog_exper.
|
||||
|
||||
*** Current active damping techniques :ignore:
|
||||
** Current active damping techniques :ignore:
|
||||
# IFF, DVF
|
||||
|
||||
*** Describe a gap in the research :ignore:
|
||||
** Describe a gap in the research :ignore:
|
||||
# No literature on rotating systems => gyroscopic effects
|
||||
|
||||
*** Describe the paper itself / the problem which is addressed :ignore:
|
||||
** Describe the paper itself / the problem which is addressed :ignore:
|
||||
|
||||
*** Introduce Each part of the paper :ignore:
|
||||
** Introduce Each part of the paper :ignore:
|
||||
|
||||
* System Under Study
|
||||
** Rotating Positioning Platform
|
||||
* Dynamics of Rotating Positioning Platforms
|
||||
** Studied Rotating Positioning Platform
|
||||
# Simplest system where gyroscopic forces can be studied
|
||||
Consider the rotating X-Y stage of Figure [[fig:rotating_xy_platform]].
|
||||
Consider the rotating X-Y stage of Figure [[fig:system]].
|
||||
|
||||
# Present the system, parameters, assumptions
|
||||
|
||||
@ -98,16 +98,15 @@ Consider the rotating X-Y stage of Figure [[fig:rotating_xy_platform]].
|
||||
- $F_u$, $F_v$
|
||||
- $d_u$, $d_v$
|
||||
|
||||
#+name: fig:rotating_xy_platform
|
||||
#+name: fig:system
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system.pdf]]
|
||||
|
||||
|
||||
#+name: fig:cedrat_xy25xs
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :width 0.5\linewidth
|
||||
[[file:figs/cedrat_xy25xs.jpg]]
|
||||
# #+name: fig:cedrat_xy25xs
|
||||
# #+caption: Figure caption
|
||||
# #+attr_latex: :width 0.5\linewidth
|
||||
# [[file:figs/cedrat_xy25xs.jpg]]
|
||||
|
||||
** Equation of Motion
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $u$ and $v$.
|
||||
@ -234,6 +233,14 @@ When the rotation speed is null, the coupling terms are equal to zero and the di
|
||||
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure [[fig:campbell_diagram]]).
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram
|
||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
|
||||
| file:figs/campbell_diagram_real.pdf | file:figs/campbell_diagram_imag.pdf |
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
|
||||
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram
|
||||
#+attr_latex: :scale 1
|
||||
@ -243,10 +250,16 @@ As the rotation speed increases, one of the two resonant frequency goes to lower
|
||||
|
||||
The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
|
||||
# #+name: fig:plant_compare_rotating_speed
|
||||
# #+caption: Caption
|
||||
# #+attr_latex: :scale 1
|
||||
# [[file:figs/plant_compare_rotating_speed.pdf]]
|
||||
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_compare_rotating_speed.pdf]]
|
||||
#+caption: Dynamics
|
||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
|
||||
| file:figs/plant_compare_rotating_speed_direct.pdf | file:figs/plant_compare_rotating_speed_coupling.pdf |
|
||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
|
||||
|
||||
* Integral Force Feedback
|
||||
** Control Schematic
|
||||
@ -291,9 +304,21 @@ Which then gives:
|
||||
G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
|
||||
|
||||
** Plant Dynamics
|
||||
|
||||
#+name: fig:plant_iff_compare_rotating_speed
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
|
||||
|
||||
# Show that the low frequency gain is no longer zero
|
||||
|
||||
# Explain the two real zeros => change of gain but not of phase
|
||||
|
||||
# Explain physically why
|
||||
|
||||
** Integral Force Feedback
|
||||
|
||||
# General explanation for the Root Locus Plot
|
||||
|
||||
# MIMO root locus: gain is simultaneously increased for both decentralized controllers
|
||||
@ -305,37 +330,64 @@ Which then gives:
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_pure_iff.pdf]]
|
||||
|
||||
** Physical Interpretation
|
||||
# Physical Interpretation
|
||||
|
||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
|
||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
|
||||
|
||||
# Introduce next two sections where either:
|
||||
# - IFF is modified to deal with this low frequency behavior
|
||||
# - physical system is modified
|
||||
|
||||
* Integral Force Feedback with High Pass Filters
|
||||
** Modification of the Control Low
|
||||
|
||||
# Reference to Preumont where its done
|
||||
|
||||
|
||||
# Explain why it is usually done and why it is done here: the problem is the high gain at low frequency => high pass filter
|
||||
|
||||
** Close Loop Analysis
|
||||
|
||||
** Feedback Analysis
|
||||
|
||||
# Explain that now the low frequency loop gain does not reach a gain more than 1 (if g not so high)
|
||||
|
||||
#+name: fig:loop_gain_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/loop_gain_modified_iff.pdf]]
|
||||
|
||||
# Not the system can be stable for small values of g
|
||||
# Actually, the system becomes unstable for g > ...
|
||||
|
||||
#+name: fig:root_locus_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_modified_iff_ter.pdf]]
|
||||
[[file:figs/root_locus_modified_iff.pdf]]
|
||||
|
||||
** Optimal Cut-Off Frequency
|
||||
|
||||
# Controller: two parameters: gain and wi
|
||||
|
||||
# Try few wi
|
||||
|
||||
# Small wi seems to allow more damping to be added
|
||||
# but the gain is limited to small values
|
||||
|
||||
# Trade off
|
||||
|
||||
#+name: fig:root_locus_wi_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_wi_modified_iff_bis.pdf]]
|
||||
[[file:figs/root_locus_wi_modified_iff.pdf]]
|
||||
|
||||
# Study this trade-off
|
||||
|
||||
# Explain how the figure is obtained
|
||||
|
||||
# for small wi => gain limited
|
||||
# for large wi => damping limited
|
||||
# wi = 0.1 w0 is chosen
|
||||
|
||||
#+name: fig:mod_iff_damping_wi
|
||||
#+caption: Figure caption
|
||||
@ -343,60 +395,101 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
[[file:figs/mod_iff_damping_wi.pdf]]
|
||||
|
||||
* Integral Force Feedback with Parallel Springs
|
||||
** Stiffness in Parallel with the Force Sensor
|
||||
|
||||
#+name: fig:rotating_xy_platform_springs
|
||||
# Zeros = remove force sensor
|
||||
# We want to have stable zeros => add stiffnesses in parallel
|
||||
|
||||
#+name: fig:system_parallel_springs
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/rotating_xy_platform_springs.pdf]]
|
||||
[[file:figs/system_parallel_springs.pdf]]
|
||||
|
||||
# Maybe add the fact that this is equivalent to amplified piezo for instance
|
||||
|
||||
# Equations: sensed force
|
||||
|
||||
# New parameters
|
||||
|
||||
** Effect of the Parallel Stiffness on the Plant Dynamics
|
||||
|
||||
# Negative Stiffness due to rotation => the stiffness should be larger than that
|
||||
|
||||
# For kp < negative stiffness => real zeros
|
||||
# For kp > negative stiffness => complex conjugate zeros
|
||||
|
||||
#+name: fig:plant_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_kp.pdf]]
|
||||
|
||||
# Location of the zeros as a function of kp
|
||||
|
||||
# Show that it is the case on the root locus
|
||||
|
||||
#+name: fig:root_locus_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kp.pdf]]
|
||||
|
||||
# For kp > m Omega => unconditionally stable
|
||||
|
||||
** Optimal Parallel Stiffness
|
||||
|
||||
# Explain that we have k = ka + kp constant in order to have the same resonance
|
||||
|
||||
|
||||
# Large Stiffness decreases the attainable damping
|
||||
|
||||
# kp = 2mOmega to 5mOmega is ok
|
||||
|
||||
#+name: fig:root_locus_iff_kps
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kps.pdf]]
|
||||
|
||||
#+name: fig:root_locus_iff_kp_bis
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kp_ter.pdf]]
|
||||
|
||||
#+name: fig:root_locus_opt_gain_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_opt_gain_iff_kp.pdf]]
|
||||
|
||||
#+name: fig:plant_iff_compare_rotating_speed
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
|
||||
|
||||
* Direct Velocity Feedback
|
||||
** Control Schematic
|
||||
#+name: fig:system_dvf
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system_dvf.pdf]]
|
||||
|
||||
** Equations
|
||||
|
||||
|
||||
|
||||
** Relative Direct Velocity Feedback
|
||||
|
||||
#+name: fig:root_locus_dvf
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_dvf.pdf]]
|
||||
|
||||
* Comparison of the Proposed Active Damping Techniques
|
||||
* Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages
|
||||
|
||||
**
|
||||
|
||||
#+name: fig:comp_root_locus
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_root_locus.pdf]]
|
||||
|
||||
#+name: fig:comp_compliance
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_compliance.pdf]]
|
||||
#+name: fig:comp_active_damping
|
||||
#+caption: Comparison of the three proposed Active Damping Techniques
|
||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
|
||||
| file:figs/comp_compliance.pdf | file:figs/comp_transmissibility.pdf |
|
||||
| <<fig:comp_compliance>> Transmissibility | <<fig:comp_transmissibility>> Compliance |
|
||||
|
||||
#+name: fig:comp_transmissibility
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_transmissibility.pdf]]
|
||||
# #+name: fig:comp_compliance
|
||||
# #+caption: Figure caption
|
||||
# #+attr_latex: :scale 1
|
||||
# [[file:figs/comp_compliance.pdf]]
|
||||
|
||||
# #+name: fig:comp_transmissibility
|
||||
# #+caption: Figure caption
|
||||
# #+attr_latex: :scale 1
|
||||
# [[file:figs/comp_transmissibility.pdf]]
|
||||
|
||||
* Conclusion
|
||||
<<sec:conclusion>>
|
||||
@ -407,5 +500,5 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
:UNNUMBERED: t
|
||||
:END:
|
||||
|
||||
* Bibliography :ignore:
|
||||
* Bibliography :ignore:
|
||||
\bibliography{ref.bib}
|
||||
|
Loading…
Reference in New Issue
Block a user