Add captions
This commit is contained in:
parent
27fb92ea06
commit
cb4ce43ed1
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 239 KiB After Width: | Height: | Size: 239 KiB |
@ -79,6 +79,9 @@ Controller Poles are shown by black crosses (
|
||||
|
||||
** Introduce Each part of the paper :ignore:
|
||||
|
||||
This paper has been published
|
||||
The Matlab code that was use to obtain the results are available in cite:dehaeze20_activ_dampin_rotat_posit_platf.
|
||||
|
||||
* Dynamics of Rotating Positioning Platforms
|
||||
** Studied Rotating Positioning Platform
|
||||
# Simplest system where gyroscopic forces can be studied
|
||||
@ -86,11 +89,12 @@ Consider the rotating X-Y stage of Figure [[fig:system]].
|
||||
|
||||
# Present the system, parameters, assumptions
|
||||
|
||||
# Explain the frames (inertial frame x,y, rotating frame u,v)
|
||||
# iu, iv is linked to the rotating stage and supposed to be perfect
|
||||
|
||||
# Small displacements
|
||||
|
||||
# Constant rotating speed
|
||||
|
||||
# Explain the frames (inertial frame x,y, rotating frame u,v)
|
||||
# Constant rotational speed
|
||||
|
||||
- $k$: Actuator's Stiffness [N/m]
|
||||
- $m$: Payload's mass [kg]
|
||||
@ -99,7 +103,7 @@ Consider the rotating X-Y stage of Figure [[fig:system]].
|
||||
- $d_u$, $d_v$
|
||||
|
||||
#+name: fig:system
|
||||
#+caption: Figure caption
|
||||
#+caption: Schematic of the studied System
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system.pdf]]
|
||||
|
||||
@ -109,7 +113,7 @@ Consider the rotating X-Y stage of Figure [[fig:system]].
|
||||
# [[file:figs/cedrat_xy25xs.jpg]]
|
||||
|
||||
** Equation of Motion
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $u$ and $v$.
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $u$ and $v$ (describing the position of the mass in the rotating frame).
|
||||
|
||||
Let's express the kinetic energy $T$ and the potential energy $V$ of the mass $m$ (neglecting the rotational energy):
|
||||
|
||||
@ -189,8 +193,8 @@ With:
|
||||
- $\xi$ damping ratio
|
||||
|
||||
|
||||
** Constant Rotating Speed
|
||||
To simplify, let's consider a constant rotating speed $\dot{\theta} = \Omega$ and thus $\ddot{\theta} = 0$.
|
||||
** Constant Rotational Speed
|
||||
To simplify, let's consider a constant rotational speed $\dot{\theta} = \Omega$ and thus $\ddot{\theta} = 0$.
|
||||
|
||||
#+NAME: eq:coupledplant
|
||||
\begin{equation}
|
||||
@ -234,7 +238,7 @@ When the rotation speed in not null, the resonance frequency is duplicated into
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure [[fig:campbell_diagram]]).
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram
|
||||
#+caption: Campbell Diagram : Evolution of the poles as a function of the rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
|
||||
| file:figs/campbell_diagram_real.pdf | file:figs/campbell_diagram_imag.pdf |
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
@ -249,17 +253,17 @@ As the rotation speed increases, one of the two resonant frequency goes to lower
|
||||
|
||||
The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Bode Plots for $\bm{G}_d$
|
||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
|
||||
| file:figs/plant_compare_rotating_speed_direct.pdf | file:figs/plant_compare_rotating_speed_coupling.pdf |
|
||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
|
||||
|
||||
# #+name: fig:plant_compare_rotating_speed
|
||||
# #+caption: Caption
|
||||
# #+attr_latex: :scale 1
|
||||
# [[file:figs/plant_compare_rotating_speed.pdf]]
|
||||
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Dynamics
|
||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
|
||||
| file:figs/plant_compare_rotating_speed_direct.pdf | file:figs/plant_compare_rotating_speed_coupling.pdf |
|
||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
|
||||
|
||||
* Integral Force Feedback
|
||||
** Control Schematic
|
||||
|
||||
@ -306,12 +310,14 @@ Which then gives:
|
||||
** Plant Dynamics
|
||||
|
||||
#+name: fig:plant_iff_compare_rotating_speed
|
||||
#+caption: Figure caption
|
||||
#+caption: Bode plot of $\bm{G}_f$ for several rotational speeds $\Omega$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
|
||||
|
||||
# Show that the low frequency gain is no longer zero
|
||||
|
||||
# Write the analytical value of the low frequency gain
|
||||
|
||||
# Explain the two real zeros => change of gain but not of phase
|
||||
|
||||
# Explain physically why
|
||||
@ -325,7 +331,7 @@ Which then gives:
|
||||
# Explain the circles, crosses and black crosses (poles of the controller)
|
||||
|
||||
#+name: fig:root_locus_pure_iff
|
||||
#+caption: Root Locus
|
||||
#+caption: Root Locus for the Decentralized Integral Force Feedback
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_pure_iff.pdf]]
|
||||
|
||||
@ -354,7 +360,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Explain that now the low frequency loop gain does not reach a gain more than 1 (if g not so high)
|
||||
|
||||
#+name: fig:loop_gain_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+caption: Bode Plot of the Loop Gain for IFF with and without the HPF
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/loop_gain_modified_iff.pdf]]
|
||||
|
||||
@ -362,7 +368,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Actually, the system becomes unstable for g > ...
|
||||
|
||||
#+name: fig:root_locus_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+caption: Root Locus for IFF with and without the HPF
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_modified_iff.pdf]]
|
||||
|
||||
@ -378,7 +384,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Trade off
|
||||
|
||||
#+name: fig:root_locus_wi_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+caption: Root Locus for several HPF cut-off frequencies $\omega_i$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_wi_modified_iff.pdf]]
|
||||
|
||||
@ -391,7 +397,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# wi = 0.1 w0 is chosen
|
||||
|
||||
#+name: fig:mod_iff_damping_wi
|
||||
#+caption: Figure caption
|
||||
#+caption: Attainable damping ratio $\xi_\text{cl}$ as a function of the HPF cut-off frequency. Corresponding control gain $g_\text{opt}$ and $g_\text{max}$ are also shown
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/mod_iff_damping_wi.pdf]]
|
||||
|
||||
@ -402,7 +408,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# We want to have stable zeros => add stiffnesses in parallel
|
||||
|
||||
#+name: fig:system_parallel_springs
|
||||
#+caption: Figure caption
|
||||
#+caption: System with added springs $k_p$ in parallel with the actuators
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system_parallel_springs.pdf]]
|
||||
|
||||
@ -420,7 +426,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# For kp > negative stiffness => complex conjugate zeros
|
||||
|
||||
#+name: fig:plant_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+caption: Bode Plot of $f_u/F_u$ without parallel spring, with parallel springs with stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_kp.pdf]]
|
||||
|
||||
@ -429,7 +435,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Show that it is the case on the root locus
|
||||
|
||||
#+name: fig:root_locus_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+caption: Root Locus for IFF without parallel spring, with parallel springs with stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kp.pdf]]
|
||||
|
||||
@ -443,7 +449,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Large Stiffness decreases the attainable damping
|
||||
|
||||
#+name: fig:root_locus_iff_kps
|
||||
#+caption: Figure caption
|
||||
#+caption: Root Locus for IFF for several parallel spring stiffnesses $k_p$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kps.pdf]]
|
||||
|
||||
@ -451,7 +457,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Example with kp = 5 m Omega
|
||||
|
||||
#+name: fig:root_locus_opt_gain_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+caption: Root Locus for IFF with $k_p = 5 m \Omega^2$. The poles of the system using the gain that yields the maximum damping ratio are shown by black crosses
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_opt_gain_iff_kp.pdf]]
|
||||
|
||||
@ -464,7 +470,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Equation with the control law
|
||||
|
||||
#+name: fig:system_dvf
|
||||
#+caption: Figure caption
|
||||
#+caption: System with relative velocity sensors and with decentralized controllers $K_V$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system_dvf.pdf]]
|
||||
|
||||
@ -490,7 +496,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Arbitrary Damping can be added to the poles
|
||||
|
||||
#+name: fig:root_locus_dvf
|
||||
#+caption: Figure caption
|
||||
#+caption: Root Locus for Decentralized Direct Velocity Feedback for several rotational speeds $\Omega$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_dvf.pdf]]
|
||||
|
||||
@ -502,7 +508,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
** Attainable Damping
|
||||
|
||||
#+name: fig:comp_root_locus
|
||||
#+caption: Figure caption
|
||||
#+caption: Root Locus for the three proposed decentralized active damping techniques: IFF with HFP, IFF with parallel springs, and relative DVF
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_root_locus.pdf]]
|
||||
|
||||
@ -519,8 +525,6 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
# Relative DVF degrades the transmissibility at high frequency
|
||||
# The roll-off is -1 instead of -2
|
||||
|
||||
#
|
||||
|
||||
#+name: fig:comp_active_damping
|
||||
#+caption: Comparison of the three proposed Active Damping Techniques
|
||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
|
||||
|
BIN
paper/paper.pdf
BIN
paper/paper.pdf
Binary file not shown.
123
paper/paper.tex
123
paper/paper.tex
@ -1,4 +1,4 @@
|
||||
% Created 2020-06-24 mer. 15:36
|
||||
% Created 2020-06-24 mer. 16:28
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -37,13 +37,6 @@
|
||||
\usetikzlibrary{shapes.misc}
|
||||
\date{}
|
||||
\title{Active Damping of Rotating Positioning Platforms}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Active Damping of Rotating Positioning Platforms},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 27.0.91 (Org mode 9.4)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
@ -53,16 +46,18 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:orgbec19fa}
|
||||
\label{sec:org3cbd2ff}
|
||||
\label{sec:introduction}
|
||||
Controller Poles are shown by black crosses (
|
||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
|
||||
).
|
||||
This paper has been published
|
||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
|
||||
|
||||
\section{Dynamics of Rotating Positioning Platforms}
|
||||
\label{sec:org81be86a}
|
||||
\label{sec:org3cf58d1}
|
||||
\subsection{Studied Rotating Positioning Platform}
|
||||
\label{sec:orgf8fad9b}
|
||||
\label{sec:orgf321431}
|
||||
Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
|
||||
\begin{itemize}
|
||||
@ -76,12 +71,13 @@ Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system.pdf}
|
||||
\caption{\label{fig:system}Figure caption}
|
||||
\caption{\label{fig:system}Schematic of the studied System}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Equation of Motion}
|
||||
\label{sec:org926ba54}
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \(u\) and \(v\).
|
||||
\label{sec:org9612ace}
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \(u\) and \(v\) (describing the position of the mass in the rotating frame).
|
||||
|
||||
Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy):
|
||||
|
||||
@ -125,7 +121,7 @@ Thus, the term \(- m\dot{\theta}^2\) acts like a negative stiffness (due to \tex
|
||||
|
||||
|
||||
\subsection{Transfer Functions in the Laplace domain}
|
||||
\label{sec:org298e237}
|
||||
\label{sec:org1590670}
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
@ -163,9 +159,9 @@ With:
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{Constant Rotating Speed}
|
||||
\label{sec:org8d2eda6}
|
||||
To simplify, let's consider a constant rotating speed \(\dot{\theta} = \Omega\) and thus \(\ddot{\theta} = 0\).
|
||||
\subsection{Constant Rotational Speed}
|
||||
\label{sec:orgd9375df}
|
||||
To simplify, let's consider a constant rotational speed \(\dot{\theta} = \Omega\) and thus \(\ddot{\theta} = 0\).
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:coupledplant}
|
||||
@ -213,7 +209,7 @@ As the rotation speed increases, one of the two resonant frequency goes to lower
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
|
||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:campbell_diagram}Campbell Diagram}
|
||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the poles as a function of the rotational speed \(\Omega\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
@ -229,14 +225,15 @@ The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_coupling.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms \(d_v/F_u\), \(d_u/F_v\)}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:plant_compare_rotating_speed}Dynamics}
|
||||
\caption{\label{fig:plant_compare_rotating_speed}Bode Plots for \(\bm{G}_d\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
|
||||
\section{Integral Force Feedback}
|
||||
\label{sec:org2e8c85f}
|
||||
\label{sec:org95f47e8}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:org50b6359}
|
||||
\label{sec:org8bb26ea}
|
||||
|
||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
|
||||
|
||||
@ -247,7 +244,7 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:org99c13a7}
|
||||
\label{sec:orgbd9ebe0}
|
||||
The sensed forces are equal to:
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
@ -279,143 +276,153 @@ Which then gives:
|
||||
\end{align}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:org1e476e3}
|
||||
\label{sec:org392809f}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_compare_rotating_speed.pdf}
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Figure caption}
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of \(\bm{G}_f\) for several rotational speeds \(\Omega\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Integral Force Feedback}
|
||||
\label{sec:orga5d8887}
|
||||
\label{sec:org049877c}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_pure_iff.pdf}
|
||||
\caption{\label{fig:root_locus_pure_iff}Root Locus}
|
||||
\caption{\label{fig:root_locus_pure_iff}Root Locus for the Decentralized Integral Force Feedback}
|
||||
\end{figure}
|
||||
|
||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
|
||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
|
||||
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filters}
|
||||
\label{sec:org569b7db}
|
||||
\label{sec:org54452db}
|
||||
\subsection{Modification of the Control Low}
|
||||
\label{sec:org4d0c1ca}
|
||||
\label{sec:org325cdd4}
|
||||
|
||||
|
||||
\subsection{Feedback Analysis}
|
||||
\label{sec:org1f34d25}
|
||||
\label{sec:org5efee77}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
|
||||
\caption{\label{fig:loop_gain_modified_iff}Figure caption}
|
||||
\caption{\label{fig:loop_gain_modified_iff}Bode Plot of the Loop Gain for IFF with and without the HPF}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_modified_iff}Figure caption}
|
||||
\caption{\label{fig:root_locus_modified_iff}Root Locus for IFF with and without the HPF}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Cut-Off Frequency}
|
||||
\label{sec:org04a5aa4}
|
||||
\label{sec:orgd5828e4}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_wi_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_wi_modified_iff}Figure caption}
|
||||
\caption{\label{fig:root_locus_wi_modified_iff}Root Locus for several HPF cut-off frequencies \(\omega_i\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/mod_iff_damping_wi.pdf}
|
||||
\caption{\label{fig:mod_iff_damping_wi}Figure caption}
|
||||
\caption{\label{fig:mod_iff_damping_wi}Attainable damping ratio \(\xi_\text{cl}\) as a function of the HPF cut-off frequency. Corresponding control gain \(g_\text{opt}\) and \(g_\text{max}\) are also shown}
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:org03c54a4}
|
||||
\label{sec:org22884d6}
|
||||
\subsection{Stiffness in Parallel with the Force Sensor}
|
||||
\label{sec:orgc2d9221}
|
||||
\label{sec:orgb871bfd}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system_parallel_springs.pdf}
|
||||
\caption{\label{fig:system_parallel_springs}Figure caption}
|
||||
\caption{\label{fig:system_parallel_springs}System with added springs \(k_p\) in parallel with the actuators}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
|
||||
\label{sec:org8097ba5}
|
||||
\label{sec:org4d37cce}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_kp.pdf}
|
||||
\caption{\label{fig:plant_iff_kp}Figure caption}
|
||||
\caption{\label{fig:plant_iff_kp}Bode Plot of \(f_u/F_u\) without any parallel stiffness, with a parallel stiffness \(k_p < m \Omega^2\) and with \(k_p > m \Omega^2\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kp}Figure caption}
|
||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without any parallel stiffness, with a parallel stiffness \(k_p < m \Omega^2\) and with \(k_p > m \Omega^2\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Optimal Parallel Stiffness}
|
||||
\label{sec:org1f2e167}
|
||||
\label{sec:orgd19b212}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kps.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kps}Figure caption}
|
||||
\caption{\label{fig:root_locus_iff_kps}Root Locus for IFF for several parallel spring stiffnesses \(k_p\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_opt_gain_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_opt_gain_iff_kp}Figure caption}
|
||||
\caption{\label{fig:root_locus_opt_gain_iff_kp}Root Locus for IFF with \(k_p = 5 m \Omega^2\). The poles of the system using the gain that yields the maximum damping ratio are shown by black crosses}
|
||||
\end{figure}
|
||||
|
||||
\section{Direct Velocity Feedback}
|
||||
\label{sec:orgda2e325}
|
||||
\label{sec:org6904969}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:org0e84009}
|
||||
\label{sec:org103e18b}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system_dvf.pdf}
|
||||
\caption{\label{fig:system_dvf}Figure caption}
|
||||
\caption{\label{fig:system_dvf}System with relative velocity sensors and with decentralized controllers \(K_V\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:org7cc244c}
|
||||
\label{sec:org793c22d}
|
||||
|
||||
|
||||
|
||||
\subsection{Relative Direct Velocity Feedback}
|
||||
\label{sec:org668d842}
|
||||
\label{sec:orgc28d518}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_dvf.pdf}
|
||||
\caption{\label{fig:root_locus_dvf}Figure caption}
|
||||
\caption{\label{fig:root_locus_dvf}Root Locus for Decentralized Direct Velocity Feedback for several rotational speeds \(\Omega\)}
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
|
||||
\label{sec:orgade0126}
|
||||
**
|
||||
\label{sec:org6af1fdb}
|
||||
\subsection{Physical Comparison}
|
||||
\label{sec:orgdff3aa2}
|
||||
|
||||
**
|
||||
|
||||
|
||||
\subsection{Attainable Damping}
|
||||
\label{sec:org22c8f42}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_root_locus.pdf}
|
||||
\caption{\label{fig:comp_root_locus}Figure caption}
|
||||
\caption{\label{fig:comp_root_locus}Root Locus for the three proposed decentralized active damping techniques: IFF with HFP, IFF with parallel springs, and relative DVF}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Transmissibility and Compliance}
|
||||
\label{sec:org59b0db2}
|
||||
\label{sec:org3e2cf56}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -431,13 +438,13 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:org4b70853}
|
||||
\label{sec:orge292803}
|
||||
\label{sec:conclusion}
|
||||
|
||||
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:org7708a14}
|
||||
\label{sec:orgaf681fb}
|
||||
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user