Update Matlab code

This commit is contained in:
Thomas Dehaeze 2020-07-08 13:34:01 +02:00
parent 8557f8cdb9
commit 7ce335c001
3 changed files with 430 additions and 433 deletions

View File

@ -137,7 +137,7 @@ It is shown in Figure [[fig:campbell_diagram]], and one can see that the system
end
plot(Ws, zeros(size(Ws)), 'k--')
hold off;
xlabel('Rotation Frequency [rad/s]'); ylabel('Real Part');
xlabel('Rotational Speed [rad/s]'); ylabel('Real Part');
ax2 = subplot(1,2,2);
hold on;
@ -145,7 +145,7 @@ It is shown in Figure [[fig:campbell_diagram]], and one can see that the system
plot(Ws, imag(p_ws(p_i, :)), 'k-')
end
hold off;
xlabel('Rotation Frequency [rad/s]'); ylabel('Imaginary Part');
xlabel('Rotational Speed [rad/s]'); ylabel('Imaginary Part');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
@ -172,7 +172,7 @@ It is shown in Figure [[fig:campbell_diagram]], and one can see that the system
plot(Ws, real(p_ws(3, :)), '-', 'HandleVisibility', 'off')
plot(Ws, zeros(size(Ws)), 'k--', 'HandleVisibility', 'off')
hold off;
xlabel('Rotation Frequency $\Omega$'); ylabel('Real Part');
xlabel('Rotational Speed $\Omega$'); ylabel('Real Part');
xlim([0, 2*w0]);
xticks([0,w0/2,w0,3/2*w0,2*w0])
xticklabels({'$0$', '', '$\omega_0$', '', '$2 \omega_0$'})
@ -193,7 +193,7 @@ It is shown in Figure [[fig:campbell_diagram]], and one can see that the system
plot(Ws, imag(p_ws(3, :)), '-')
plot(Ws, zeros(size(Ws)), 'k--')
hold off;
xlabel('Rotation Frequency $\Omega$'); ylabel('Imaginary Part');
xlabel('Rotational Speed $\Omega$'); ylabel('Imaginary Part');
xlim([0, 2*w0]);
xticks([0,w0/2,w0,3/2*w0,2*w0])
xticklabels({'$0$', '', '$\omega_0$', '', '$2 \omega_0$'})
@ -482,7 +482,7 @@ Which then gives:
\end{align}
#+end_important
** Simscape Model
** Comparison of the Analytical Model and the Simscape Model
The rotation speed is set to $\Omega = 0.1 \omega_0$.
#+begin_src matlab
W = 0.1*w0; % [rad/s]
@ -515,7 +515,6 @@ And the transfer function from $[F_u, F_v]$ to $[f_u, f_v]$ is identified using
Giff.OutputName = {'fu', 'fv'};
#+end_src
** Comparison of the Analytical Model and the Simscape Model
The same transfer function from $[F_u, F_v]$ to $[f_u, f_v]$ is written down from the analytical model.
#+begin_src matlab
Giff_th = 1/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
@ -524,7 +523,6 @@ The same transfer function from $[F_u, F_v]$ to $[f_u, f_v]$ is written down fro
#+end_src
The two are compared in Figure [[fig:plant_iff_comp_simscape_analytical]] and found to perfectly match.
#+begin_src matlab :exports none
freqs = logspace(-1, 1, 1000);
@ -1123,40 +1121,36 @@ While it seems that small $\omega_i$ do allow more damping to be added to the sy
There must be an optimum for $\omega_i$.
To find the optimum, the gain that maximize the simultaneous damping of the mode is identified for a wide range of $\omega_i$ (Figure [[fig:mod_iff_damping_wi]]).
#+begin_src matlab
wis = logspace(-2, 1, 31)*w0; % [rad/s]
opt_zeta = zeros(1, length(wis)); % Optimal simultaneous damping
#+begin_src matlab
wis = logspace(-2, 1, 100)*w0; % [rad/s]
opt_xi = zeros(1, length(wis)); % Optimal simultaneous damping
opt_gain = zeros(1, length(wis)); % Corresponding optimal gain
for wi_i = 1:length(wis)
wi = wis(wi_i);
gains = linspace(0, (w0^2/W^2 - 1)*wi, 100);
Kiff = 1/(s + wi)*eye(2);
for g = gains
Kiff = (g/(wi+s))*eye(2);
fun = @(g)computeSimultaneousDamping(g, Giff, Kiff);
[w, zeta] = damp(minreal(feedback(Giff, Kiff)));
if min(zeta) > opt_zeta(wi_i) && all(zeta > 0)
opt_zeta(wi_i) = min(zeta);
opt_gain(wi_i) = g;
end
end
[g_opt, xi_opt] = fminsearch(fun, 0.5*wi*((w0/W)^2 - 1));
opt_xi(wi_i) = 1/xi_opt;
opt_gain(wi_i) = g_opt;
end
#+end_src
#+begin_src matlab :exports none
figure;
yyaxis left
plot(wis, opt_zeta, '-o', 'DisplayName', '$\xi_{cl}$');
plot(wis, opt_xi, '-', 'DisplayName', '$\xi_{cl}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Attainable Damping Ratio $\xi$');
yyaxis right
hold on;
plot(wis, opt_gain, '-x', 'DisplayName', '$g_{opt}$');
plot(wis, opt_gain, '-', 'DisplayName', '$g_{opt}$');
plot(wis, wis*((w0/W)^2 - 1), '--', 'DisplayName', '$g_{max}$');
set(gca, 'YScale', 'lin');
ylim([0,10]);
@ -1792,7 +1786,63 @@ It is shown that large values of $k_p$ decreases the attainable damping.
exportFig('figs-inkscape/root_locus_iff_kps.pdf', 'width', 'wide', 'height', 'tall', 'png', false, 'pdf', false, 'svg', true);
#+end_src
** Optimal Gain
#+begin_src matlab
alphas = logspace(-2, 0, 100);
opt_xi = zeros(1, length(alphas)); % Optimal simultaneous damping
opt_gain = zeros(1, length(alphas)); % Corresponding optimal gain
Kiff = 1/s*eye(2);
for alpha_i = 1:length(alphas)
kp = alphas(alpha_i);
k = 1 - alphas(alpha_i);
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Giff = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
(s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
fun = @(g)computeSimultaneousDamping(g, Giff, Kiff);
[g_opt, xi_opt] = fminsearch(fun, 2);
opt_xi(alpha_i) = 1/xi_opt;
opt_gain(alpha_i) = g_opt;
end
#+end_src
#+begin_src matlab :exports none
figure;
yyaxis left
plot(alphas, opt_xi, '-', 'DisplayName', '$\xi_{cl}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Attainable Damping Ratio $\xi$');
yyaxis right
hold on;
plot(alphas, opt_gain, '-', 'DisplayName', '$g_{opt}$');
set(gca, 'YScale', 'lin');
ylim([0,2.5]);
ylabel('Controller gain $g$');
xlabel('$\alpha$');
set(gca, 'XScale', 'log');
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_damp_alpha.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:opt_damp_alpha
#+caption:
#+RESULTS:
[[file:figs/opt_damp_alpha.png]]
** TODO Optimal Gain
Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such that maximum damping are added to the poles of the closed loop system.
#+begin_src matlab
@ -1808,7 +1858,7 @@ Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such t
#+end_src
#+begin_src matlab
opt_zeta = 0;
opt_xi = 0;
opt_gain = 0;
gains = logspace(-2, 4, 1000);
@ -1816,10 +1866,10 @@ Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such t
for g = gains
Kiff = (g/s)*eye(2);
[w, zeta] = damp(minreal(feedback(Giff, Kiff)));
[w, xi] = damp(minreal(feedback(Giff, Kiff)));
if min(zeta) > opt_zeta && all(zeta > 0)
opt_zeta = min(zeta);
if min(xi) > opt_xi && all(xi > 0)
opt_xi = min(xi);
opt_gain = min(g);
end
end
@ -2061,54 +2111,41 @@ IFF With parallel Stiffness
In order to compare to three considered Active Damping techniques, gains that yield maximum damping of all the modes are computed for each case.
#+begin_src matlab :exports none
%% IFF with pseudo integrators
gains = linspace(0, (w0^2/W^2 - 1)*wi, 100);
opt_zeta_iff = 0;
opt_gain_iff = 0;
fun = @(g)computeSimultaneousDamping(g, Giff, (1/(wi+s))*eye(2));
for g = gains
Kiff = (g/(wi+s))*eye(2);
[w, zeta] = damp(minreal(feedback(Giff, Kiff)));
if min(zeta) > opt_zeta_iff && all(zeta > 0)
opt_zeta_iff = min(zeta);
opt_gain_iff = g;
end
end
[opt_gain_iff, opt_xi_iff] = fminsearch(fun, 0.5*(w0^2/W^2 - 1)*wi);
opt_xi_iff = 1/opt_xi_iff;
#+end_src
#+begin_src matlab :exports none
%% IFF with Parallel Stiffness
gains = logspace(-2, 4, 100);
opt_zeta_kp = 0;
opt_gain_kp = 0;
fun = @(g)computeSimultaneousDamping(g, Giff_kp, 1/s*eye(2));
for g = gains
Kiff = g/s*eye(2);
[w, zeta] = damp(minreal(feedback(Giff_kp, Kiff)));
if min(zeta) > opt_zeta_kp && all(zeta > 0)
opt_zeta_kp = min(zeta);
opt_gain_kp = g;
end
end
[opt_gain_kp, opt_xi_kp] = fminsearch(fun, 2);
opt_xi_kp = 1/opt_xi_kp;
#+end_src
The obtained damping ratio and control are shown below.
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
data2orgtable([opt_zeta_iff, opt_zeta_kp; opt_gain_iff, opt_gain_kp]', {'Modified IFF', 'IFF with $k_p$'}, {'Obtained $\xi$', 'Control Gain'}, ' %.2f ');
data2orgtable([opt_xi_iff, opt_xi_kp; opt_gain_iff, opt_gain_kp]', {'Modified IFF', 'IFF with $k_p$'}, {'Obtained $\xi$', 'Control Gain'}, ' %.2f ');
#+end_src
#+RESULTS:
| | Obtained $\xi$ | Control Gain |
|----------------+----------------+--------------|
| Modified IFF | 0.83 | 2.0 |
| IFF with $k_p$ | 0.83 | 2.01 |
| Modified IFF | 0.83 | 1.99 |
| IFF with $k_p$ | 0.83 | 2.02 |
** Passive Damping - Critical Damping
\begin{equation}
\xi = \frac{c}{2 \sqrt{km}}
\end{equation}
Critical Damping corresponds to to $\xi = 1$, and thus:
\begin{equation}
c_{\text{crit}} = 2 \sqrt{km}
\end{equation}
#+begin_src matlab
c_opt = 2*sqrt(k*m);
#+end_src
@ -2226,12 +2263,13 @@ The obtained damping ratio and control are shown below.
'DisplayName', 'Open-Loop')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-2, 3e1]);
xlabel('Frequency [rad/s]'); ylabel('Transmissibility [m/m]');
legend('location', 'southwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/comp_transmissibility.pdf', 'width', 'wide', 'height', 'tall');
exportFig('figs/comp_transmissibility.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:comp_transmissibility
@ -2240,7 +2278,7 @@ The obtained damping ratio and control are shown below.
[[file:figs/comp_transmissibility.png]]
#+begin_src matlab :tangle no :exports none :results none
exportFig('figs-inkscape/comp_transmissibility.pdf', 'width', 'half', 'height', 'tall', 'png', false, 'pdf', false, 'svg', true);
exportFig('figs-inkscape/comp_transmissibility.pdf', 'width', 'half', 'height', 'normal', 'png', false, 'pdf', false, 'svg', true);
#+end_src
*** Compliance :ignore:
@ -2259,12 +2297,13 @@ The obtained damping ratio and control are shown below.
'DisplayName', 'Open-Loop')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylim([1e-2, 3e1]);
xlabel('Frequency [rad/s]'); ylabel('Compliance [m/N]');
legend('location', 'southwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/comp_compliance.pdf', 'width', 'wide', 'height', 'tall');
exportFig('figs/comp_compliance.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:comp_compliance
@ -2273,7 +2312,263 @@ The obtained damping ratio and control are shown below.
[[file:figs/comp_compliance.png]]
#+begin_src matlab :tangle no :exports none :results none
exportFig('figs-inkscape/comp_compliance.pdf', 'width', 'half', 'height', 'tall', 'png', false, 'pdf', false, 'svg', true);
exportFig('figs-inkscape/comp_compliance.pdf', 'width', 'half', 'height', 'normal', 'png', false, 'pdf', false, 'svg', true);
#+end_src
** DC Compliance
*** Pseudo Integrator IFF :ignore:
#+begin_src matlab :exports none
k = 1;
m = 1;
w0 = sqrt(k/m);
#+end_src
#+begin_src matlab :exports none
Gwi = tf(zeros(4,4));
Gwi.InputName = {'Fx', 'Fy', 'Fu', 'Fv'};
Gwi.OutputName = {'dx', 'dy', 'fu', 'fv'};
Gp = ((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2;
Gwi('dx', 'Fu') = (1/k)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))/Gp;
Gwi('dy', 'Fv') = (1/k)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))/Gp;
Gwi('dx', 'Fx') = (1/k)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))/Gp;
Gwi('dy', 'Fy') = (1/k)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))/Gp;
Gwi('dx', 'Fv') = (1/k)*(2*W*s/(w0^2))/Gp;
Gwi('dy', 'Fu') = -(1/k)*(2*W*s/(w0^2))/Gp;
Gwi('dx', 'Fy') = (1/k)*(2*W*s/(w0^2))/Gp;
Gwi('dy', 'Fx') = -(1/k)*(2*W*s/(w0^2))/Gp;
Gwi('fu', 'Fu') = ((s^2/w0^2 - W^2/w0^2)*(s^2/w0^2 + 2*xi*s/w0 + 1 - W^2/w0^2) + (2*(s/w0)*(W/w0))^2)/Gp;
Gwi('fv', 'Fv') = ((s^2/w0^2 - W^2/w0^2)*(s^2/w0^2 + 2*xi*s/w0 + 1 - W^2/w0^2) + (2*(s/w0)*(W/w0))^2)/Gp;
Gwi('fu', 'Fv') = -(2*xi*s/w0 + 1)*(2*(s/w0)*(W/w0))/Gp;
Gwi('fv', 'Fu') = (2*xi*s/w0 + 1)*(2*(s/w0)*(W/w0))/Gp;
Gwi('fu', 'Fx') = -(c*s + k)*(1/k)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))/Gp;
Gwi('fv', 'Fy') = -(c*s + k)*(1/k)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))/Gp;
Gwi('fu', 'Fy') = -(c*s + k)*(1/k)*(2*W*s/(w0^2))/Gp;
Gwi('fv', 'Fx') = (c*s + k)*(1/k)*(2*W*s/(w0^2))/Gp;
#+end_src
#+begin_src matlab
wis = logspace(-2, 1, 100)*w0; % [rad/s]
opt_xi_wi = zeros(1, length(wis)); % Optimal simultaneous damping
opt_gain_wi = zeros(1, length(wis)); % Corresponding optimal gain
C_dc_gain_wi = zeros(1, length(wis)); % Compliance DC value
for wi_i = 1:length(wis)
wi = wis(wi_i);
Kiff = 1/(s + wi)*eye(2);
fun = @(g)computeSimultaneousDamping(g, Gwi({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff);
[g_opt, xi_opt] = fminsearch(fun, 0.5*wi*((w0/W)^2 - 1));
opt_xi_wi(wi_i) = 1/xi_opt;
opt_gain_wi(wi_i) = g_opt;
G_dc_gain = dcgain(lft(Gwi, -g_opt/(s + wi)*eye(2), 2, 2));
C_dc_gain_wi(wi_i) = G_dc_gain(1,1);
end
#+end_src
*** IFF With parallel Stiffness :ignore:
#+begin_src matlab
alphas = logspace(-2, 0, 100);
opt_xi_kp = zeros(1, length(alphas)); % Optimal simultaneous damping
opt_gain_kp = zeros(1, length(alphas)); % Corresponding optimal gain
C_dc_gain_kp = zeros(1, length(alphas)); % DC gain of the compliance
Kiff = 1/s*eye(2);
for alpha_i = 1:length(alphas)
kp = alphas(alpha_i);
k = 1 - alphas(alpha_i);
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Gkp = tf(zeros(4,4));
Gkp.InputName = {'Fx', 'Fy', 'Fu', 'Fv'};
Gkp.OutputName = {'dx', 'dy', 'fu', 'fv'};
Gp = ((s^2)/(w0p^2) + 2*xip*s/w0p + 1 - (W^2)/(w0p^2))^2 + (2*W*s/(w0p^2))^2;
Gkp('dx', 'Fu') = (1/(k + kp))*((s^2)/(w0p^2) + 2*xip*s/w0p + 1 - (W^2)/(w0p^2))/Gp;
Gkp('dy', 'Fv') = (1/(k + kp))*((s^2)/(w0p^2) + 2*xip*s/w0p + 1 - (W^2)/(w0p^2))/Gp;
Gkp('dx', 'Fx') = (1/(k + kp))*((s^2)/(w0p^2) + 2*xip*s/w0p + 1 - (W^2)/(w0p^2))/Gp;
Gkp('dy', 'Fy') = (1/(k + kp))*((s^2)/(w0p^2) + 2*xip*s/w0p + 1 - (W^2)/(w0p^2))/Gp;
Gkp('dx', 'Fv') = (1/(k + kp))*(2*W*s/(w0p^2))/Gp;
Gkp('dy', 'Fu') = -(1/(k + kp))*(2*W*s/(w0p^2))/Gp;
Gkp('dx', 'Fy') = (1/(k + kp))*(2*W*s/(w0p^2))/Gp;
Gkp('dy', 'Fx') = -(1/(k + kp))*(2*W*s/(w0p^2))/Gp;
Gkp('fu', 'Fu') = ((s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2)/Gp;
Gkp('fv', 'Fv') = ((s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2)/Gp;
Gkp('fu', 'Fv') = -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p))/Gp;
Gkp('fv', 'Fu') = (2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p))/Gp;
Gkp('fu', 'Fx') = -(c*s + k)*(1/(k + kp))*((s^2)/(w0p^2) + 2*xip*s/w0p + 1 - (W^2)/(w0p^2))/Gp;
Gkp('fv', 'Fy') = -(c*s + k)*(1/(k + kp))*((s^2)/(w0p^2) + 2*xip*s/w0p + 1 - (W^2)/(w0p^2))/Gp;
Gkp('fu', 'Fy') = -(c*s + k)*(1/(k + kp))*(2*W*s/(w0p^2))/Gp;
Gkp('fv', 'Fx') = (c*s + k)*(1/(k + kp))*(2*W*s/(w0p^2))/Gp;
fun = @(g)computeSimultaneousDamping(g, Gkp({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff);
[g_opt, xi_opt] = fminsearch(fun, 2);
opt_xi_kp(alpha_i) = 1/xi_opt;
opt_gain_kp(alpha_i) = g_opt;
G_dc_gain = dcgain(lft(Gkp, -g_opt/s*eye(2), 2, 2));
C_dc_gain_kp(alpha_i) = G_dc_gain(1,1);
end
#+end_src
*** Comparison :ignore:
#+begin_src matlab :exports none
figure;
yyaxis left
plot(alphas, C_dc_gain_kp, '-', 'DisplayName', '$|T(0)|$');
set(gca, 'YScale', 'log');
ylim([0, 1e3]);
ylabel('DC value of the Compliance');
yyaxis right
hold on;
plot(alphas, opt_xi_kp, '-', 'DisplayName', '$\xi_{opt}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Optimal Damping Ratio');
xlabel('$\alpha$');
set(gca, 'XScale', 'log');
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/compliance_dc_gain_wi.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:compliance_dc_gain_wi
#+caption:
#+RESULTS:
[[file:figs/compliance_dc_gain_wi.png]]
#+begin_src matlab :exports none
figure;
yyaxis left
plot(wis, abs(C_dc_gain_wi), '-', 'DisplayName', '$|T(0)|$');
set(gca, 'YScale', 'log');
ylim([0, 1e3]);
ylabel('DC value of the Compliance');
yyaxis right
hold on;
plot(wis, opt_xi_wi, '-', 'DisplayName', '$\xi_{opt}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Optimal Damping Ratio');
xlabel('$\omega_i$');
set(gca, 'XScale', 'log');
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/compliance_dc_gain_kp.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:compliance_dc_gain_kp
#+caption:
#+RESULTS:
[[file:figs/compliance_dc_gain_kp.png]]
#+begin_src matlab :exports none
figure;
hold on;
plot(opt_xi_wi, C_dc_gain_wi, '-', 'DisplayName', '$\omega_i$');
plot(opt_xi_kp, C_dc_gain_kp, '-', 'DisplayName', '$k_p$');
hold off
set(gca, 'YScale', 'log');
ylim([0, 1e3]);
ylabel('DC value of the Compliance');
xlabel('Optimal Damping Ratio');
legend('location', 'northwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_damp_vs_dc_comp.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:opt_damp_vs_dc_comp
#+caption:
#+RESULTS:
[[file:figs/opt_damp_vs_dc_comp.png]]
*** Comparison :ignore:
#+begin_src matlab :exports none
figure;
yyaxis left
plot(wis, opt_xi_wi, '-', 'DisplayName', '$\xi_{cl}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Attainable Damping Ratio $\xi$');
yyaxis right
hold on;
plot(wis, opt_gain_wi, '-', 'DisplayName', '$g_{opt}$');
plot(wis, wis*((w0/W)^2 - 1), '--', 'DisplayName', '$g_{max}$');
set(gca, 'YScale', 'lin');
ylim([0,10]);
ylabel('Controller gain $g$');
xlabel('$\omega_i/\omega_0$');
set(gca, 'XScale', 'log');
legend('location', 'northeast');
#+end_src
#+begin_src matlab :exports none
figure;
yyaxis left
plot(alphas, opt_xi_kp, '-', 'DisplayName', '$\xi_{cl}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Attainable Damping Ratio $\xi$');
yyaxis right
hold on;
plot(alphas, opt_gain_kp, '-', 'DisplayName', '$g_{opt}$');
set(gca, 'YScale', 'lin');
ylim([0,2.5]);
ylabel('Controller gain $g$');
xlabel('$\alpha$');
set(gca, 'XScale', 'log');
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/mod_iff_damping_kp.pdf', 'width', 'normal', 'height', 'normal');
#+end_src
#+name: fig:mod_iff_damping_kp
#+caption:
#+RESULTS:
[[file:figs/mod_iff_damping_kp.png]]
#+begin_src matlab :tangle no :exports none :results none
exportFig('figs-inkscape/mod_iff_damping_kp.pdf', 'width', 'half', 'height', '650', 'png', false, 'pdf', false, 'svg', true);
#+end_src
* Notations
@ -2452,3 +2747,15 @@ This Matlab function is accessible [[file:src/rootLocusPolesSorted.m][here]].
#+begin_src matlab
poles = poles.';
#+end_src
** =computeSimultaneousDamping=
#+begin_src matlab :tangle src/computeSimultaneousDamping.m
function [xi_min] = computeSimultaneousDamping(g, G, K)
[w, xi] = damp(minreal(feedback(G, g*K)));
xi_min = 1/min(xi);
if xi_min < 0
xi_min = 1e8;
end
end
#+end_src

Binary file not shown.

View File

@ -1,389 +1,79 @@
%% Clear Workspace and Close figures
clear; close all; clc;
% Attainable Damping as a function of $k_p$
%% Intialize Laplace variable
s = zpk('s');
tic;
alphas = logspace(-2, 0, 10);
gains = linspace(0.5, 2.5, 100);
% Plant Parameters
% Let's define initial values for the model.
opt_zeta = zeros(1, length(alphas)); % Optimal simultaneous damping
opt_gain = zeros(1, length(alphas)); % Corresponding optimal gain
k = 1; % Actuator Stiffness [N/m]
c = 0.05; % Actuator Damping [N/(m/s)]
m = 1; % Payload mass [kg]
xi = c/(2*sqrt(k*m));
w0 = sqrt(k/m); % [rad/s]
kp = 0; % [N/m]
cp = 0; % [N/(m/s)]
% Comparison of the Analytical Model and the Simscape Model
% The same transfer function from $[F_u, F_v]$ to $[f_u, f_v]$ is written down from the analytical model.
W = 0.1*w0; % [rad/s]
kp = 1.5*m*W^2;
cp = 0;
Kiff = tf(zeros(2));
Kdvf = tf(zeros(2));
open('rotating_frame.slx');
%% Name of the Simulink File
mdl = 'rotating_frame';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/K'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/G'], 2, 'openoutput'); io_i = io_i + 1;
Giff = linearize(mdl, io, 0);
%% Input/Output definition
Giff.InputName = {'Fu', 'Fv'};
Giff.OutputName = {'fu', 'fv'};
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Giff_th = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
(s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2 ];
Giff_th.InputName = {'Fu', 'Fv'};
Giff_th.OutputName = {'fu', 'fv'};
freqs = logspace(-1, 1, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs))), '-')
plot(freqs, abs(squeeze(freqresp(Giff_th(1,1), freqs))), '--')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
title('$f_u/F_u$, $f_v/F_v$');
ax3 = subplot(2, 2, 3);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,1), freqs))), '-')
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_th(1,1), freqs))), '--')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([-180 180]);
hold off;
ax2 = subplot(2, 2, 2);
hold on;
plot(freqs, abs(squeeze(freqresp(Giff(1,2), freqs))), '-')
plot(freqs, abs(squeeze(freqresp(Giff_th(1,2), freqs))), '--')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
title('$f_u/F_v$, $f_v/F_u$');
ax4 = subplot(2, 2, 4);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,2), freqs))), '-', ...
'DisplayName', 'Simscape')
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_th(1,2), freqs))), '--', ...
'DisplayName', 'Analytical')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([-180 180]);
hold off;
legend('location', 'northeast');
linkaxes([ax1,ax2,ax3,ax4],'x');
xlim([freqs(1), freqs(end)]);
linkaxes([ax1,ax2],'y');
% Effect of the parallel stiffness on the IFF plant
% The rotation speed is set to $\Omega = 0.1 \omega_0$.
W = 0.1*w0; % [rad/s]
% And the IFF plant (transfer function from $[F_u, F_v]$ to $[f_u, f_v]$) is identified in three different cases:
% - without parallel stiffness
% - with a small parallel stiffness $k_p < m \Omega^2$
% - with a large parallel stiffness $k_p > m \Omega^2$
% The results are shown in Figure [[fig:plant_iff_kp]].
% One can see that for $k_p > m \Omega^2$, the systems shows alternating complex conjugate poles and zeros.
kp = 0;
cp = 0;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Giff = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
(s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
kp = 0.5*m*W^2;
cp = 0;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Giff_s = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
(s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
kp = 1.5*m*W^2;
cp = 0;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Giff_l = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
(s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
freqs = logspace(-2, 1, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs))), 'k-')
plot(freqs, abs(squeeze(freqresp(Giff_s(1,1), freqs))), 'k--')
plot(freqs, abs(squeeze(freqresp(Giff_l(1,1), freqs))), 'k:')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,1), freqs))), 'k-', ...
'DisplayName', '$k_p = 0$')
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_s(1,1), freqs))), 'k--', ...
'DisplayName', '$k_p < m\Omega^2$')
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_l(1,1), freqs))), 'k:', ...
'DisplayName', '$k_p > m\Omega^2$')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([-180 180]);
hold off;
legend('location', 'southwest');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
% IFF when adding a spring in parallel
% In Figure [[fig:root_locus_iff_kp]] is displayed the Root Locus in the three considered cases with
% \begin{equation}
% K_{\text{IFF}} = \frac{g}{s} \begin{bmatrix}
% 1 & 0 \\
% 0 & 1
% \end{bmatrix}
% \end{equation}
% One can see that for $k_p > m \Omega^2$, the root locus stays in the left half of the complex plane and thus the control system is unconditionally stable.
% Thus, decentralized IFF controller with pure integrators can be used if:
% \begin{equation}
% k_{p} > m \Omega^2
% \end{equation}
figure;
gains = logspace(-2, 2, 100);
subplot(1,2,1);
hold on;
set(gca,'ColorOrderIndex',1);
plot(real(pole(Giff)), imag(pole(Giff)), 'x', ...
'DisplayName', '$k_p = 0$');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(Giff)), imag(tzero(Giff)), 'o', ...
'HandleVisibility', 'off');
for g = gains
cl_poles = pole(feedback(Giff, (g/s)*eye(2)));
set(gca,'ColorOrderIndex',1);
plot(real(cl_poles), imag(cl_poles), '.', ...
'HandleVisibility', 'off');
end
set(gca,'ColorOrderIndex',2);
plot(real(pole(Giff_s)), imag(pole(Giff_s)), 'x', ...
'DisplayName', '$k_p < m\Omega^2$');
set(gca,'ColorOrderIndex',2);
plot(real(tzero(Giff_s)), imag(tzero(Giff_s)), 'o', ...
'HandleVisibility', 'off');
for g = gains
cl_poles = pole(feedback(Giff_s, (g/s)*eye(2)));
set(gca,'ColorOrderIndex',2);
plot(real(cl_poles), imag(cl_poles), '.', ...
'HandleVisibility', 'off');
end
set(gca,'ColorOrderIndex',3);
plot(real(pole(Giff_l)), imag(pole(Giff_l)), 'x', ...
'DisplayName', '$k_p > m\Omega^2$');
set(gca,'ColorOrderIndex',3);
plot(real(tzero(Giff_l)), imag(tzero(Giff_l)), 'o', ...
'HandleVisibility', 'off');
for g = gains
set(gca,'ColorOrderIndex',3);
cl_poles = pole(feedback(Giff_l, (g/s)*eye(2)));
plot(real(cl_poles), imag(cl_poles), '.', ...
'HandleVisibility', 'off');
end
hold off;
axis square;
xlim([-1, 0.2]); ylim([0, 1.2]);
xlabel('Real Part'); ylabel('Imaginary Part');
legend('location', 'northwest');
subplot(1,2,2);
hold on;
set(gca,'ColorOrderIndex',1);
plot(real(pole(Giff)), imag(pole(Giff)), 'x');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(Giff)), imag(tzero(Giff)), 'o');
for g = gains
cl_poles = pole(feedback(Giff, (g/s)*eye(2)));
set(gca,'ColorOrderIndex',1);
plot(real(cl_poles), imag(cl_poles), '.');
end
set(gca,'ColorOrderIndex',2);
plot(real(pole(Giff_s)), imag(pole(Giff_s)), 'x');
set(gca,'ColorOrderIndex',2);
plot(real(tzero(Giff_s)), imag(tzero(Giff_s)), 'o');
for g = gains
cl_poles = pole(feedback(Giff_s, (g/s)*eye(2)));
set(gca,'ColorOrderIndex',2);
plot(real(cl_poles), imag(cl_poles), '.');
end
set(gca,'ColorOrderIndex',3);
plot(real(pole(Giff_l)), imag(pole(Giff_l)), 'x');
set(gca,'ColorOrderIndex',3);
plot(real(tzero(Giff_l)), imag(tzero(Giff_l)), 'o');
for g = gains
set(gca,'ColorOrderIndex',3);
cl_poles = pole(feedback(Giff_l, (g/s)*eye(2)));
plot(real(cl_poles), imag(cl_poles), '.');
end
hold off;
axis square;
xlim([-0.04, 0.06]); ylim([0, 0.1]);
xlabel('Real Part'); ylabel('Imaginary Part');
% Effect of $k_p$ on the attainable damping
% However, having large values of $k_p$ may:
% - decrease the actuator force authority
% - decrease the attainable damping
% To study the second point, Root Locus plots for the following values of $k_p$ are shown in Figure [[fig:root_locus_iff_kps]].
kps = [2, 20, 40]*m*W^2;
% It is shown that large values of $k_p$ decreases the attainable damping.
figure;
gains = logspace(-2, 4, 500);
hold on;
for kp_i = 1:length(kps)
kp = kps(kp_i);
for alpha_i = 1:length(alphas)
kp = alphas(alpha_i);
k = 1 - alphas(alpha_i);
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Giff = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
(s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2 ];
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
set(gca,'ColorOrderIndex',kp_i);
plot(real(pole(Giff)), imag(pole(Giff)), 'x', ...
'DisplayName', sprintf('$k_p = %.1f m \\Omega^2$', kp/(m*W^2)));
set(gca,'ColorOrderIndex',kp_i);
plot(real(tzero(Giff)), imag(tzero(Giff)), 'o', ...
'HandleVisibility', 'off');
for g = gains
Kiffa = (g/s)*eye(2);
cl_poles = pole(feedback(Giff, Kiffa));
set(gca,'ColorOrderIndex',kp_i);
plot(real(cl_poles), imag(cl_poles), '.', ...
'HandleVisibility', 'off');
end
end
hold off;
axis square;
xlim([-1.2, 0.2]); ylim([0, 1.4]);
xlabel('Real Part'); ylabel('Imaginary Part');
legend('location', 'northwest');
% Optimal Gain
% Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such that maximum damping are added to the poles of the closed loop system.
kp = 5*m*W^2;
cp = 0.01;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Giff = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
(s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2 ];
opt_zeta = 0;
opt_gain = 0;
gains = logspace(-2, 4, 1000);
for g = gains
Kiff = (g/s)*eye(2);
[w, zeta] = damp(minreal(feedback(Giff, Kiff)));
if min(zeta) > opt_zeta && all(zeta > 0)
opt_zeta = min(zeta);
opt_gain = min(g);
Kiff = g/s*eye(2);
[w, zeta] = damp(minreal(feedback(Giff, Kiff)));
if min(zeta) > opt_zeta(alpha_i) && all(zeta > 0)
opt_zeta(alpha_i) = min(zeta);
opt_gain(alpha_i) = g;
end
end
end
toc
figure;
yyaxis left
plot(alphas, opt_zeta, '-o', 'DisplayName', '$\xi_{cl}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Attainable Damping Ratio $\xi$');
gains = logspace(-2, 4, 1000);
yyaxis right
hold on;
plot(real(pole(Giff)), imag(pole(Giff)), 'kx');
plot(real(tzero(Giff)), imag(tzero(Giff)), 'ko');
for g = gains
clpoles = pole(minreal(feedback(Giff, (g/s)*eye(2))));
plot(real(clpoles), imag(clpoles), 'k.');
plot(alphas, opt_gain, '-x', 'DisplayName', '$g_{opt}$');
set(gca, 'YScale', 'lin');
ylim([0,3]);
ylabel('Controller gain $g$');
xlabel('$\alpha$');
set(gca, 'XScale', 'log');
legend('location', 'northeast');
% Alternative using fminserach
alphas = logspace(-2, 0, 100);
opt_zeta = zeros(1, length(alphas)); % Optimal simultaneous damping
opt_gain = zeros(1, length(alphas)); % Corresponding optimal gain
Kiff = 1/s*eye(2);
for alpha_i = 1:length(alphas)
kp = alphas(alpha_i);
k = 1 - alphas(alpha_i);
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
Giff = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
(s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
fun = @(g)computeSimultaneousDamping(g, Giff, Kiff);
[g_opt, xi_opt] = fminsearch(fun, 2);
opt_zeta(alpha_i) = 1/xi_opt;
opt_gain(alpha_i) = g_opt;
end
% Optimal Gain
clpoles = pole(minreal(feedback(Giff, (opt_gain/s)*eye(2))));
set(gca,'ColorOrderIndex',1);
plot(real(clpoles), imag(clpoles), 'x');
for clpole = clpoles'
set(gca,'ColorOrderIndex',1);
plot([0, real(clpole)], [0, imag(clpole)], '-', 'LineWidth', 1);
end
hold off;
axis square;
xlim([-1.2, 0.2]); ylim([0, 1.4]);
xlabel('Real Part'); ylabel('Imaginary Part');