Add figure to show the opt gain on the root locus
This commit is contained in:
parent
db90a1b00a
commit
6dbad502bd
BIN
inkscape/root_locus_opt_gain_iff_kp.pdf
Normal file
BIN
inkscape/root_locus_opt_gain_iff_kp.pdf
Normal file
Binary file not shown.
BIN
inkscape/root_locus_opt_gain_iff_kp.svg
Normal file
BIN
inkscape/root_locus_opt_gain_iff_kp.svg
Normal file
Binary file not shown.
After Width: | Height: | Size: 138 KiB |
@ -240,11 +240,10 @@ As the rotation speed increases, one of the two resonant frequency goes to lower
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
|
||||
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/campbell_diagram.pdf]]
|
||||
# #+name: fig:campbell_diagram
|
||||
# #+caption: Campbell Diagram
|
||||
# #+attr_latex: :scale 1
|
||||
# [[file:figs/campbell_diagram.pdf]]
|
||||
|
||||
# Bode Plots for different ratio wr/w0
|
||||
|
||||
@ -341,10 +340,12 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
* Integral Force Feedback with High Pass Filters
|
||||
** Modification of the Control Low
|
||||
|
||||
# Reference to Preumont where its done
|
||||
|
||||
|
||||
# Equation with the new control law
|
||||
|
||||
|
||||
# Explain why it is usually done and why it is done here: the problem is the high gain at low frequency => high pass filter
|
||||
|
||||
|
||||
@ -441,32 +442,58 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
# Large Stiffness decreases the attainable damping
|
||||
|
||||
# kp = 2mOmega to 5mOmega is ok
|
||||
|
||||
#+name: fig:root_locus_iff_kps
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kps.pdf]]
|
||||
|
||||
|
||||
# Example with kp = 5 m Omega
|
||||
|
||||
#+name: fig:root_locus_opt_gain_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_opt_gain_iff_kp.pdf]]
|
||||
|
||||
* Direct Velocity Feedback
|
||||
** Control Schematic
|
||||
|
||||
# Basic Idea of DVF
|
||||
|
||||
|
||||
# Equation with the control law
|
||||
|
||||
#+name: fig:system_dvf
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system_dvf.pdf]]
|
||||
|
||||
# Equivalent System is the same as Figure 1 (as increasing "c")
|
||||
|
||||
** Equations
|
||||
|
||||
# Write the equations
|
||||
|
||||
|
||||
# Show that the rotation have somehow less impact on the plant than for IFF
|
||||
|
||||
|
||||
# Eventually add a bode plot to show the effect of the rotation speed
|
||||
|
||||
|
||||
** Relative Direct Velocity Feedback
|
||||
|
||||
# Unconditionally stable
|
||||
|
||||
# Arbitrary Damping can be added to the poles
|
||||
|
||||
#+name: fig:root_locus_dvf
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_dvf.pdf]]
|
||||
|
||||
* Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages
|
||||
**
|
||||
|
||||
**
|
||||
|
||||
@ -475,6 +502,10 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_root_locus.pdf]]
|
||||
|
||||
|
||||
** Transmissibility and Compliance
|
||||
|
||||
|
||||
#+name: fig:comp_active_damping
|
||||
#+caption: Comparison of the three proposed Active Damping Techniques
|
||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
|
||||
|
BIN
paper/paper.pdf
BIN
paper/paper.pdf
Binary file not shown.
164
paper/paper.tex
164
paper/paper.tex
@ -1,4 +1,4 @@
|
||||
% Created 2020-06-23 mar. 19:34
|
||||
% Created 2020-06-24 mer. 15:36
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -23,6 +23,7 @@
|
||||
\usepackage{amsmath,amssymb,amsfonts, cases}
|
||||
\usepackage{algorithmic, graphicx, textcomp}
|
||||
\usepackage{xcolor, import, hyperref}
|
||||
\usepackage{subcaption}
|
||||
\usepackage[USenglish, english]{babel}
|
||||
\setcounter{footnote}{1}
|
||||
\input{config.tex}
|
||||
@ -52,18 +53,17 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:org977317c}
|
||||
\label{sec:orgbec19fa}
|
||||
\label{sec:introduction}
|
||||
Controller Poles are shown by black crosses (
|
||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
|
||||
).
|
||||
\cite{dehaeze18_sampl_stabil_for_tomog_exper}
|
||||
|
||||
\section{System Under Study}
|
||||
\label{sec:org042e800}
|
||||
\subsection{Rotating Positioning Platform}
|
||||
\label{sec:org489e4b9}
|
||||
Consider the rotating X-Y stage of Figure \ref{fig:rotating_xy_platform}.
|
||||
\section{Dynamics of Rotating Positioning Platforms}
|
||||
\label{sec:org81be86a}
|
||||
\subsection{Studied Rotating Positioning Platform}
|
||||
\label{sec:orgf8fad9b}
|
||||
Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
|
||||
\begin{itemize}
|
||||
\item \(k\): Actuator's Stiffness [N/m]
|
||||
@ -76,18 +76,11 @@ Consider the rotating X-Y stage of Figure \ref{fig:rotating_xy_platform}.
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system.pdf}
|
||||
\caption{\label{fig:rotating_xy_platform}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.5\linewidth]{figs/cedrat_xy25xs.jpg}
|
||||
\caption{\label{fig:cedrat_xy25xs}Figure caption}
|
||||
\caption{\label{fig:system}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equation of Motion}
|
||||
\label{sec:orgb1836d5}
|
||||
\label{sec:org926ba54}
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \(u\) and \(v\).
|
||||
|
||||
Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy):
|
||||
@ -132,7 +125,7 @@ Thus, the term \(- m\dot{\theta}^2\) acts like a negative stiffness (due to \tex
|
||||
|
||||
|
||||
\subsection{Transfer Functions in the Laplace domain}
|
||||
\label{sec:orgb1002ed}
|
||||
\label{sec:org298e237}
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
@ -171,7 +164,7 @@ With:
|
||||
|
||||
|
||||
\subsection{Constant Rotating Speed}
|
||||
\label{sec:orga4faf60}
|
||||
\label{sec:org8d2eda6}
|
||||
To simplify, let's consider a constant rotating speed \(\dot{\theta} = \Omega\) and thus \(\ddot{\theta} = 0\).
|
||||
|
||||
\begin{equation}
|
||||
@ -212,23 +205,38 @@ When the rotation speed in not null, the resonance frequency is duplicated into
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure \ref{fig:campbell_diagram}).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/campbell_diagram.pdf}
|
||||
\begin{subfigure}[c]{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
|
||||
\caption{\label{fig:campbell_diagram_real} Real Part}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[c]{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
|
||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:campbell_diagram}Campbell Diagram}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
|
||||
The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_direct.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms \(d_u/F_u\), \(d_v/F_v\)}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_coupling.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms \(d_v/F_u\), \(d_u/F_v\)}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:plant_compare_rotating_speed}Dynamics}
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_compare_rotating_speed.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed}Caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback}
|
||||
\label{sec:orgaf500b0}
|
||||
\label{sec:org2e8c85f}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:orgbd9f859}
|
||||
\label{sec:org50b6359}
|
||||
|
||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
|
||||
|
||||
@ -239,7 +247,7 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:org48206d5}
|
||||
\label{sec:org99c13a7}
|
||||
The sensed forces are equal to:
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
@ -270,9 +278,17 @@ Which then gives:
|
||||
G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:orgec8431d}
|
||||
\label{sec:org1e476e3}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_compare_rotating_speed.pdf}
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Integral Force Feedback}
|
||||
\label{sec:orga5d8887}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -280,19 +296,17 @@ Which then gives:
|
||||
\caption{\label{fig:root_locus_pure_iff}Root Locus}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Physical Interpretation}
|
||||
\label{sec:org159680e}
|
||||
|
||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
|
||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filters}
|
||||
\label{sec:org694707d}
|
||||
\label{sec:org569b7db}
|
||||
\subsection{Modification of the Control Low}
|
||||
\label{sec:org931fb10}
|
||||
\label{sec:org4d0c1ca}
|
||||
|
||||
\subsection{Close Loop Analysis}
|
||||
\label{sec:org9de0aa7}
|
||||
|
||||
\subsection{Feedback Analysis}
|
||||
\label{sec:org1f34d25}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -302,20 +316,19 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff_ter.pdf}
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_modified_iff}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Cut-Off Frequency}
|
||||
\label{sec:org9808de1}
|
||||
\label{sec:org04a5aa4}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_wi_modified_iff_bis.pdf}
|
||||
\includegraphics[scale=1]{figs/root_locus_wi_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_wi_modified_iff}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/mod_iff_damping_wi.pdf}
|
||||
@ -323,31 +336,40 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:orgd4915d5}
|
||||
\label{sec:org03c54a4}
|
||||
\subsection{Stiffness in Parallel with the Force Sensor}
|
||||
\label{sec:orgc2d9221}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/rotating_xy_platform_springs.pdf}
|
||||
\caption{\label{fig:rotating_xy_platform_springs}Figure caption}
|
||||
\includegraphics[scale=1]{figs/system_parallel_springs.pdf}
|
||||
\caption{\label{fig:system_parallel_springs}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
|
||||
\label{sec:org8097ba5}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_kp.pdf}
|
||||
\caption{\label{fig:plant_iff_kp}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kp}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Parallel Stiffness}
|
||||
\label{sec:org1f2e167}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kps.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kps}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kp_ter.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kp_bis}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -355,14 +377,23 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\caption{\label{fig:root_locus_opt_gain_iff_kp}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Direct Velocity Feedback}
|
||||
\label{sec:orgda2e325}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:org0e84009}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_compare_rotating_speed.pdf}
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Figure caption}
|
||||
\includegraphics[scale=1]{figs/system_dvf.pdf}
|
||||
\caption{\label{fig:system_dvf}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Direct Velocity Feedback}
|
||||
\label{sec:orgb0a5870}
|
||||
\subsection{Equations}
|
||||
\label{sec:org7cc244c}
|
||||
|
||||
|
||||
\subsection{Relative Direct Velocity Feedback}
|
||||
\label{sec:org668d842}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -370,8 +401,11 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\caption{\label{fig:root_locus_dvf}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison of the Proposed Active Damping Techniques}
|
||||
\label{sec:org6097c1d}
|
||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
|
||||
\label{sec:orgade0126}
|
||||
**
|
||||
|
||||
**
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -379,25 +413,31 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\caption{\label{fig:comp_root_locus}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_compliance.pdf}
|
||||
\caption{\label{fig:comp_compliance}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Transmissibility and Compliance}
|
||||
\label{sec:org59b0db2}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/comp_compliance.pdf}
|
||||
\caption{\label{fig:comp_compliance} Transmissibility}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/comp_transmissibility.pdf}
|
||||
\caption{\label{fig:comp_transmissibility} Compliance}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:comp_active_damping}Comparison of the three proposed Active Damping Techniques}
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_transmissibility.pdf}
|
||||
\caption{\label{fig:comp_transmissibility}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:org1624a6b}
|
||||
\label{sec:org4b70853}
|
||||
\label{sec:conclusion}
|
||||
|
||||
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:org1b29790}
|
||||
\label{sec:org7708a14}
|
||||
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user