Clarify some equations (location of poles/zeros)
This commit is contained in:
		
							
								
								
									
										131
									
								
								paper/paper.org
									
									
									
									
									
								
							
							
						
						
									
										131
									
								
								paper/paper.org
									
									
									
									
									
								
							@@ -91,7 +91,7 @@ The Matlab code that was use to obtain the results are available in cite:dehaeze
 | 
			
		||||
To study how the rotation of positioning platforms does affect the use of force feedback, a simple model is developed.
 | 
			
		||||
 | 
			
		||||
# Simplest system where gyroscopic forces can be studied
 | 
			
		||||
It represents an X-Y positioning stage on top of a Rotating Stage and is schematically represented in Figure [[fig:system]].
 | 
			
		||||
It represents an X-Y positioning stage on top of a Rotating Stage and is schematically represented in Figure ref:fig:system.
 | 
			
		||||
 | 
			
		||||
# Explain the frames (inertial frame x,y, rotating frame u,v)
 | 
			
		||||
Two frames of reference are used:
 | 
			
		||||
@@ -117,7 +117,7 @@ The position of the payload is represented by $(d_u, d_v)$ expressed in the rota
 | 
			
		||||
[[file:figs/system.pdf]]
 | 
			
		||||
 | 
			
		||||
** Equations of Motion
 | 
			
		||||
To obtain of equation of motion for the system represented in Figure [[fig:system]], the Lagrangian equations are used:
 | 
			
		||||
To obtain of equation of motion for the system represented in Figure ref:fig:system, the Lagrangian equations are used:
 | 
			
		||||
#+name: eq:lagrangian_equations
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
 | 
			
		||||
@@ -149,13 +149,20 @@ The rotation of the XY positioning platform induces two Gyroscopic effects:
 | 
			
		||||
 | 
			
		||||
** Transfer Functions in the Laplace domain
 | 
			
		||||
To study the dynamics of the system, the differential equations of motions eqref:eq:eom_coupled are transformed in the Laplace domain and the transfer functions from $[F_u,\ F_v]$ to $[d_u,\ d_v]$ are obtained:
 | 
			
		||||
#+name: eq:oem_laplace_domain
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    d_u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
 | 
			
		||||
    d_v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
#+name: eq:Gd_mimo_tf
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
with $\bm{G}_d$ a $2 \times 2$ transfer function matrix
 | 
			
		||||
#+name: eq:Gd_m_k_c
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{G}_{d} =
 | 
			
		||||
  \begin{bmatrix}
 | 
			
		||||
    \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} & \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
 | 
			
		||||
    \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} & \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}
 | 
			
		||||
  \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
One can verify that without rotation ($\Omega = 0$) the system becomes equivalent as to two uncoupled one degree of freedom mass-spring-damper systems:
 | 
			
		||||
#+name: eq:oem_no_rotation
 | 
			
		||||
@@ -172,13 +179,9 @@ One can verify that without rotation ($\Omega = 0$) the system becomes equivalen
 | 
			
		||||
In order to make this study less dependent on the system parameters, the following change of variable is performed:
 | 
			
		||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Natural frequency of the mass-spring system in $\si{\radian/\s}$
 | 
			
		||||
- $\xi = \frac{c}{2 \sqrt{k m}}$: Damping ratio
 | 
			
		||||
 
 | 
			
		||||
#+name: eq:tf_d
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
#+name: eq:tf_d
 | 
			
		||||
The transfer function matrix eqref:eq:Gd_m_k_c becomes equal to
 | 
			
		||||
#+name: eq:Gd_w0_xi_k
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\bm{G}_{d} =
 | 
			
		||||
  \frac{1}{k}
 | 
			
		||||
@@ -189,56 +192,76 @@ In order to make this study less dependent on the system parameters, the followi
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
# Parameters
 | 
			
		||||
During the rest of this study, the following parameters are used for numerical analysis
 | 
			
		||||
- $\omega_0 = \SI{1}{\radian\per\second}$, $\xi = 0.025 = \SI{2.5}{\percent}$
 | 
			
		||||
- $k = \SI{1}{N/m}$, $m = \SI{1}{kg}$, $c = \SI{0.05}{\newton\per\meter\second}$
 | 
			
		||||
- $\omega_0 = \SI{1}{\radian\per\second}$, $\xi = 0.025$
 | 
			
		||||
 | 
			
		||||
# Say that these parameters are not realist but will be used to draw conclusions "relatively"
 | 
			
		||||
 | 
			
		||||
** System Dynamics and Campbell Diagram
 | 
			
		||||
# Bode Plots for different ratio wr/w0
 | 
			
		||||
 | 
			
		||||
The bode plot of $\bm{G}_d$ is shown in Figure [[fig:plant_compare_rotating_speed]].
 | 
			
		||||
 | 
			
		||||
# Describe the dynamics
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_compare_rotating_speed
 | 
			
		||||
#+caption: Bode Plots for $\bm{G}_d$
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
 | 
			
		||||
| file:figs/plant_compare_rotating_speed_direct.pdf                             | file:figs/plant_compare_rotating_speed_coupling.pdf                               |
 | 
			
		||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Campbell Diagram
 | 
			
		||||
The poles are the roots of $G_{dp}$.
 | 
			
		||||
Two pairs of complex conjugate poles (supposing small damping $\xi \approx 0$):
 | 
			
		||||
The poles of $\bm{G}_d$ are the complex solutions $p$ of
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Supposing small damping ($\xi \ll 1$), two pairs of complex conjugate poles are obtained:
 | 
			
		||||
#+name: eq:pole_values
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    p_1 &= \pm j (\omega_0 - \Omega) \\
 | 
			
		||||
    p_2 &= \pm j (\omega_0 + \Omega)
 | 
			
		||||
    p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 + \Omega \right) \\
 | 
			
		||||
    p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 - \Omega \right)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
 | 
			
		||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
 | 
			
		||||
As the rotation speed increases, $p_{+}$ goes to higher frequencies and $p_{-}$ to lower frequencies.
 | 
			
		||||
 | 
			
		||||
# The system goes unstable at some frequency w0
 | 
			
		||||
When the rotational speed $\Omega$ reaches $\omega_0$, the real part of one pair of complex conjugate becomes position meaning is system is unstable.
 | 
			
		||||
 | 
			
		||||
The stiffness of the X-Y stage is too small to hold to rotating payload hence the instability.
 | 
			
		||||
 | 
			
		||||
When the rotational speed $\Omega$ reaches $\omega_0$, the real part $p_{-}$ is positive meaning the system becomes unstable.
 | 
			
		||||
The stiffness of the X-Y stage is too low to hold to rotating payload hence the instability.
 | 
			
		||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
 | 
			
		||||
 | 
			
		||||
This is graphically represented with the Campbell Diagram in Figure ref:fig:campbell_diagram.
 | 
			
		||||
 | 
			
		||||
#+name: fig:campbell_diagram
 | 
			
		||||
#+caption: Campbell Diagram : Evolution of the poles as a function of the rotational speed $\Omega$
 | 
			
		||||
#+caption: Campbell Diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed $\Omega$
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
 | 
			
		||||
| file:figs/campbell_diagram_real.pdf     | file:figs/campbell_diagram_imag.pdf          |
 | 
			
		||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
 | 
			
		||||
 | 
			
		||||
# Bode Plots for different ratio W/w0
 | 
			
		||||
Looking at the transfer function matrix $\bm{G}_d$ eqref:eq:Gd_w0_xi_k, one can see it has two distinct terms that can be studied separately:
 | 
			
		||||
- the direct (diagonal) terms
 | 
			
		||||
- the coupling (off-diagonal) terms
 | 
			
		||||
 | 
			
		||||
The bode plot of the direct and coupling terms are shown in Figure ref:fig:plant_compare_rotating_speed for several rotational speed $\Omega$.
 | 
			
		||||
 | 
			
		||||
# Describe the dynamics: without rotation
 | 
			
		||||
Without rotation, the dynamics of the direct terms is equivalent to the dynamics of a one degree of freedom mass spring damper system and the coupling terms are null.
 | 
			
		||||
As the rotational speed increases, the pair of complex conjugate poles is separated into two pairs of complex conjugate poles, one going to lower frequencies and the other to higher frequencies.
 | 
			
		||||
When the
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_compare_rotating_speed
 | 
			
		||||
#+caption: Bode Plots for $\bm{G}_d$ for several rotational speed $\Omega$
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
 | 
			
		||||
| file:figs/plant_compare_rotating_speed_direct.pdf                             | file:figs/plant_compare_rotating_speed_coupling.pdf                               |
 | 
			
		||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
 | 
			
		||||
 | 
			
		||||
In the rest of this study, $\Omega < \omega_0$
 | 
			
		||||
 | 
			
		||||
* Decentralized Integral Force Feedback
 | 
			
		||||
** System Schematic and Control Architecture
 | 
			
		||||
 | 
			
		||||
Force Sensors are added in series with the actuators as shown in Figure [[fig:system_iff]].
 | 
			
		||||
 | 
			
		||||
# Reference to IFF control
 | 
			
		||||
 | 
			
		||||
# Explain what "decentralized" means
 | 
			
		||||
 | 
			
		||||
# => we consider the system has two SISO systems for the control
 | 
			
		||||
 | 
			
		||||
# Say that we will use the same controllers for the two directions
 | 
			
		||||
 | 
			
		||||
#+name: fig:system_iff
 | 
			
		||||
#+caption: System with Force Sensors in Series with the Actuators. Decentralized Integral Force Feedback is used
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
@@ -253,13 +276,13 @@ The forces measured by the force sensors are equal to:
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Re-injecting eqref:eq:tf_d into eqref:eq:measured_force yields:
 | 
			
		||||
#+name: eq:tf_f
 | 
			
		||||
Re-injecting eqref:eq:Gd_w0_xi_k into eqref:eq:measured_force yields:
 | 
			
		||||
#+name: eq:Gf_mimo_tf
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
  \begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
Where $\bm{G}_f$ is a $2 \times 2$ transfer function matrix.
 | 
			
		||||
 | 
			
		||||
with $\bm{G}_f$ a $2 \times 2$ transfer function matrix
 | 
			
		||||
#+name: eq:Gf
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{G}_{f} = \begin{bmatrix}
 | 
			
		||||
  \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
 | 
			
		||||
@@ -271,18 +294,18 @@ Where $\bm{G}_f$ is a $2 \times 2$ transfer function matrix.
 | 
			
		||||
# The alternating poles and zeros properties of collocated IFF holds
 | 
			
		||||
# but additional real zeros are added
 | 
			
		||||
 | 
			
		||||
The zeros of the diagonal terms are the roots of $G_{fz}$ (supposing small damping):
 | 
			
		||||
The zeros of the diagonal terms of $\bm{G}_f$ are equal to (neglecting the damping)
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    z_1 &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \\
 | 
			
		||||
    z_2 &= \pm   \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} }
 | 
			
		||||
    z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:iff_zero_cc} \\
 | 
			
		||||
    z_r &= \pm   \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:iff_zero_real}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The frequency of the two complex conjugate zeros $z_1$ is between the frequency of the two pairs of complex conjugate poles $p_1$ and $p_2$.
 | 
			
		||||
The frequency of the two complex conjugate zeros $z_c$ eqref:eq:iff_zero_cc is between the frequency of the two pairs of complex conjugate poles $p_{-}$ and $p_{+}$ eqref:eq:pole_values.
 | 
			
		||||
This is the expected behavior of a collocated pair of actuator and sensor.
 | 
			
		||||
 | 
			
		||||
However, the two real zeros $z_2$ induces an increase of +2 of the slope without change of phase (Figure [[fig:plant_iff_compare_rotating_speed]]).
 | 
			
		||||
However, the two real zeros $z_c$ induces an increase of +2 of the slope without change of phase (Figure [[fig:plant_iff_compare_rotating_speed]]).
 | 
			
		||||
This represents non-minimum phase behavior.
 | 
			
		||||
 | 
			
		||||
# Explain physically why the real zeros
 | 
			
		||||
@@ -298,7 +321,7 @@ The low frequency gain, for $\Omega < \omega_0$, is no longer zero:
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
It increase with the rotational speed $\Omega$.
 | 
			
		||||
It increases with the rotational speed $\Omega$.
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_iff_compare_rotating_speed
 | 
			
		||||
#+caption: Bode plot of $\bm{G}_f$ for several rotational speeds $\Omega$
 | 
			
		||||
@@ -431,12 +454,14 @@ The overall stiffness $k$ stays constant:
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
# Equations: sensed force
 | 
			
		||||
#+name: eq:Gk_mimo_tf
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_k
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
#+name: eq:Gk
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\bm{G}_k =
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
@@ -454,10 +479,10 @@ The overall stiffness $k$ stays constant:
 | 
			
		||||
# For kp < negative stiffness => real zeros => non-minimum phase
 | 
			
		||||
# For kp > negative stiffness => complex conjugate zeros => minimum phase
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
  \begin{aligned}
 | 
			
		||||
    \alpha > \frac{\Omega^2}{{\omega_0}^2} \\
 | 
			
		||||
    \Leftrightarrow k_p > m \Omega^2
 | 
			
		||||
  \end{align}
 | 
			
		||||
  \end{aligned}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_iff_kp
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								paper/paper.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								paper/paper.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										347
									
								
								paper/paper.tex
									
									
									
									
									
								
							
							
						
						
									
										347
									
								
								paper/paper.tex
									
									
									
									
									
								
							@@ -1,4 +1,4 @@
 | 
			
		||||
% Created 2020-06-25 jeu. 17:24
 | 
			
		||||
% Created 2020-06-26 ven. 17:28
 | 
			
		||||
% Intended LaTeX compiler: pdflatex
 | 
			
		||||
\documentclass{ISMA_USD2020}
 | 
			
		||||
\usepackage[utf8]{inputenc}
 | 
			
		||||
@@ -36,10 +36,10 @@
 | 
			
		||||
\usepackage{tikz}
 | 
			
		||||
\usetikzlibrary{shapes.misc}
 | 
			
		||||
\date{}
 | 
			
		||||
\title{Decentralized Active Damping of Rotating Positioning Platforms}
 | 
			
		||||
\title{Active Damping of Rotating Positioning Platforms using Force Feedback}
 | 
			
		||||
\hypersetup{
 | 
			
		||||
 pdfauthor={},
 | 
			
		||||
 pdftitle={Decentralized Active Damping of Rotating Positioning Platforms},
 | 
			
		||||
 pdftitle={Active Damping of Rotating Positioning Platforms using Force Feedback},
 | 
			
		||||
 pdfkeywords={},
 | 
			
		||||
 pdfsubject={},
 | 
			
		||||
 pdfcreator={Emacs 27.0.91 (Org mode 9.4)}, 
 | 
			
		||||
@@ -53,7 +53,7 @@
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
\section{Introduction}
 | 
			
		||||
\label{sec:org7ff5c70}
 | 
			
		||||
\label{sec:org4effc95}
 | 
			
		||||
\label{sec:introduction}
 | 
			
		||||
Controller Poles are shown by black crosses (
 | 
			
		||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
 | 
			
		||||
@@ -64,19 +64,31 @@ This paper has been published
 | 
			
		||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
 | 
			
		||||
 | 
			
		||||
\section{Dynamics of Rotating Positioning Platforms}
 | 
			
		||||
\label{sec:org029ca48}
 | 
			
		||||
\subsection{Studied Rotating Positioning Platform}
 | 
			
		||||
\label{sec:org7eec6c5}
 | 
			
		||||
Consider the rotating X-Y stage of Figure \ref{fig:system}.
 | 
			
		||||
\label{sec:org5eef93b}
 | 
			
		||||
\subsection{Model of a Rotating Positioning Platform}
 | 
			
		||||
\label{sec:org905e0e5}
 | 
			
		||||
To study how the rotation of positioning platforms does affect the use of force feedback, a simple model is developed.
 | 
			
		||||
 | 
			
		||||
It represents an X-Y positioning stage on top of a Rotating Stage and is schematically represented in Figure \ref{fig:system}.
 | 
			
		||||
 | 
			
		||||
Two frames of reference are used:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item \(k\): Actuator's Stiffness [N/m]
 | 
			
		||||
\item \(m\): Payload's mass [kg]
 | 
			
		||||
\item \(\Omega = \dot{\theta}\): rotation speed [rad/s]
 | 
			
		||||
\item \(F_u\), \(F_v\)
 | 
			
		||||
\item \(d_u\), \(d_v\)
 | 
			
		||||
\item \((\vec{i}_x, \vec{i}_y, \vec{i}_z)\) is an inertial frame
 | 
			
		||||
\item \((\vec{i}_u, \vec{i}_v, \vec{i}_w)\) is a frame fixed on the Rotating Stage with its origin align with the rotation axis
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
The rotating stage is supposed to be ideal, meaning it is infinitely rigid and induces a rotation \(\theta(t) = \Omega t\) where \(\Omega\) is the rotational speed in \(\si{\radian\per\second}\).
 | 
			
		||||
 | 
			
		||||
The parallel X-Y positioning stage consists of two orthogonal actuators represented by the three following elements in parallel:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item A spring with a stiffness \(k\) in \(\si{\newton\per\meter}\)
 | 
			
		||||
\item A dashpot with a damping coefficient \(c\) in \(\si{\newton\per\meter\second}\)
 | 
			
		||||
\item An ideal force source \(F_u, F_v\) in \(\si{\newton}\)
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
The X-Y stage is supporting a payload with a payload with a mass \(m\) in \(\si{\kilo\gram}\).
 | 
			
		||||
The position of the payload is represented by \((d_u, d_v)\) expressed in the rotating frame \((\vec{i}_u, \vec{i}_v)\).
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/system.pdf}
 | 
			
		||||
@@ -84,26 +96,24 @@ Consider the rotating X-Y stage of Figure \ref{fig:system}.
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equations of Motion}
 | 
			
		||||
\label{sec:orgca181a2}
 | 
			
		||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \([q_1\ q_2] = [d_u\ d_v]\) (describing the position of the mass in the rotating frame).
 | 
			
		||||
 | 
			
		||||
Let's express the kinetic energy \(T\), the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy) as well as the deceptive function \(R\):
 | 
			
		||||
\label{sec:org08efe1c}
 | 
			
		||||
To obtain of equation of motion for the system represented in Figure \ref{fig:system}, the Lagrangian equations are used:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:lagrangian_equations}
 | 
			
		||||
  \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
 | 
			
		||||
\end{equation}
 | 
			
		||||
with \(L = T - V\) is the Lagrangian, \(D\) is the dissipation function, and \(Q_i\) is the generalized force associated with the generalized variable \([q_1\ q_2] = [d_u\ d_v]\):
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:energy_functions_lagrange}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    T & = \frac{1}{2} m \left( \left( \dot{d}_u - \Omega d_v \right)^2 + \left( \dot{d}_v + \Omega d_u \right)^2 \right) \\
 | 
			
		||||
    V & = \frac{1}{2} k \left( {d_u}^2 + {d_v}^2 \right) \\
 | 
			
		||||
    R & = \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right)
 | 
			
		||||
    D & = \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right) \\
 | 
			
		||||
    Q_1 &= F_u, \quad Q_2 = F_v
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The equations of motion are derived from the Lagrangian equation:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:lagrangian_equations}
 | 
			
		||||
  \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
 | 
			
		||||
\end{equation}
 | 
			
		||||
with \(L = T - V\) is the Lagrangian and \(Q_i\) is the generalized force associated with the generalized variable \(q_i\) (\(Q_1 = F_u\) and \(Q_2 = F_v\)).
 | 
			
		||||
 | 
			
		||||
Substituting equations \eqref{eq:energy_functions_lagrange} into \eqref{eq:lagrangian_equations} gives the two coupled differential equations:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:eom_coupled}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
@@ -112,26 +122,31 @@ with \(L = T - V\) is the Lagrangian and \(Q_i\) is the generalized force associ
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The Gyroscopic effects can be seen from the two following terms:
 | 
			
		||||
The rotation of the XY positioning platform induces two Gyroscopic effects:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item Coriolis Forces: coupling
 | 
			
		||||
\item Centrifugal forces: negative stiffness
 | 
			
		||||
\item Coriolis Forces: that adds coupling between the two orthogonal controlled directions
 | 
			
		||||
\item Centrifugal forces: that can been seen as negative stiffness
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\subsection{Transfer Functions in the Laplace domain}
 | 
			
		||||
\label{sec:orge7e184a}
 | 
			
		||||
\label{sec:org6daa125}
 | 
			
		||||
To study the dynamics of the system, the differential equations of motions \eqref{eq:eom_coupled} are transformed in the Laplace domain and the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:Gd_mimo_tf}
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Using the Laplace transformation on the equations of motion \eqref{eq:eom_coupled}, the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:oem_laplace_domain}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    d_u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
 | 
			
		||||
    d_v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
with \(\bm{G}_d\) a \(2 \times 2\) transfer function matrix
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:Gd_m_k_c}
 | 
			
		||||
  \bm{G}_{d} =
 | 
			
		||||
  \begin{bmatrix}
 | 
			
		||||
    \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} & \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
 | 
			
		||||
    \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} & \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}
 | 
			
		||||
  \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Without rotation \(\Omega = 0\) and the system corresponds to two uncoupled one degree of freedom mass-spring-damper systems:
 | 
			
		||||
One can verify that without rotation (\(\Omega = 0\)) the system becomes equivalent as to two uncoupled one degree of freedom mass-spring-damper systems:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:oem_no_rotation}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
@@ -141,79 +156,56 @@ Without rotation \(\Omega = 0\) and the system corresponds to two uncoupled one
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
\subsection{Change of Variables / Parameters for the study}
 | 
			
		||||
\label{sec:org3cdb1ab}
 | 
			
		||||
\label{sec:orgda057f2}
 | 
			
		||||
 | 
			
		||||
In order this study is more independent on the system parameters, the following change of variable is performed:
 | 
			
		||||
In order to make this study less dependent on the system parameters, the following change of variable is performed:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Natural frequency of the mass-spring system in \(\si{\radian/\s}\)
 | 
			
		||||
\item \(\xi = \frac{c}{2 \sqrt{k m}}\): Damping ratio
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
The transfer function matrix \eqref{eq:Gd_m_k_c} becomes equal to
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:tf_d}
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\label{eq:Gd_w0_xi_k}
 | 
			
		||||
\bm{G}_{d} =
 | 
			
		||||
  \frac{1}{k}
 | 
			
		||||
  \begin{bmatrix}
 | 
			
		||||
    \frac{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
 | 
			
		||||
    \frac{- 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
 | 
			
		||||
  \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
Where \(\bm{G}_d\) is a \(2 \times 2\) transfer function matrix.
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\bm{G}_d = \frac{1}{k} \frac{1}{G_{dp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{dz} & G_{dc} \\
 | 
			
		||||
  -G_{dc} & G_{dz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    G_{dp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{dz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
 | 
			
		||||
    G_{dc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
\(G_{dp}\) describes to poles of the system, \(G_{dz}\) the zeros of the diagonal terms and \(G_{dc}\) the coupling.
 | 
			
		||||
 | 
			
		||||
During the rest of this study, the following parameters are used for numerical analysis
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item \(\omega_0 = \SI{1}{\radian\per\second}\), \(\xi = 0.025 = \SI{2.5}{\percent}\)
 | 
			
		||||
\item \(k = \SI{1}{N/m}\), \(m = \SI{1}{kg}\), \(c = \SI{0.05}{\newton\per\meter\second}\)
 | 
			
		||||
\item \(\omega_0 = \SI{1}{\radian\per\second}\), \(\xi = 0.025\)
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\subsection{System Dynamics and Campbell Diagram}
 | 
			
		||||
\label{sec:org42dee20}
 | 
			
		||||
The bode plot of \(\bm{G}_d\) is shown in Figure \ref{fig:plant_compare_rotating_speed}.
 | 
			
		||||
\label{sec:org9c94a4d}
 | 
			
		||||
The poles of \(\bm{G}_d\) are the complex solutions \(p\) of
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\begin{subfigure}[c]{0.45\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_direct.pdf}
 | 
			
		||||
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms \(d_u/F_u\), \(d_v/F_v\)}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\begin{subfigure}[c]{0.45\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_coupling.pdf}
 | 
			
		||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms \(d_v/F_u\), \(d_u/F_v\)}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\caption{\label{fig:plant_compare_rotating_speed}Bode Plots for \(\bm{G}_d\)}
 | 
			
		||||
\centering
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
The poles are the roots of \(G_{dp}\).
 | 
			
		||||
Two pairs of complex conjugate poles (supposing small damping \(\xi \approx 0\)):
 | 
			
		||||
Supposing small damping (\(\xi \ll 1\)), two pairs of complex conjugate poles are obtained:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:pole_values}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    p_1 &= \pm j (\omega_0 - \Omega) \\
 | 
			
		||||
    p_2 &= \pm j (\omega_0 + \Omega)
 | 
			
		||||
    p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 + \Omega \right) \\
 | 
			
		||||
    p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 - \Omega \right)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
 | 
			
		||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
 | 
			
		||||
 | 
			
		||||
When the rotational speed \(\Omega\) reaches \(\omega_0\), the real part of one pair of complex conjugate becomes position meaning is system is unstable.
 | 
			
		||||
 | 
			
		||||
The stiffness of the X-Y stage is too small to hold to rotating payload hence the instability.
 | 
			
		||||
As the rotation speed increases, \(p_{+}\) goes to higher frequencies and \(p_{-}\) to lower frequencies.
 | 
			
		||||
 | 
			
		||||
When the rotational speed \(\Omega\) reaches \(\omega_0\), the real part \(p_{-}\) is positive meaning the system becomes unstable.
 | 
			
		||||
The stiffness of the X-Y stage is too low to hold to rotating payload hence the instability.
 | 
			
		||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
 | 
			
		||||
 | 
			
		||||
This is graphically represented with the Campbell Diagram in Figure \ref{fig:campbell_diagram}.
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\begin{subfigure}[c]{0.4\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
 | 
			
		||||
@@ -223,15 +215,41 @@ Stiff positioning platforms should be used if high rotational speeds or heavy pa
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
 | 
			
		||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the poles as a function of the rotational speed \(\Omega\)}
 | 
			
		||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed \(\Omega\)}
 | 
			
		||||
\centering
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Decentralized Integral Force Feedback}
 | 
			
		||||
\label{sec:orgda38ad7}
 | 
			
		||||
\subsection{System Schematic and Control Architecture}
 | 
			
		||||
\label{sec:orgf08eb9d}
 | 
			
		||||
Looking at the transfer function matrix \(\bm{G}_d\) \eqref{eq:Gd_w0_xi_k}, one can see it has two distinct terms that can be studied separately:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item the direct (diagonal) terms
 | 
			
		||||
\item the coupling (off-diagonal) terms
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
The bode plot of the direct and coupling terms are shown in Figure \ref{fig:plant_compare_rotating_speed} for several rotational speed \(\Omega\).
 | 
			
		||||
 | 
			
		||||
Without rotation, the dynamics of the direct terms is equivalent to the dynamics of a one degree of freedom mass spring damper system and the coupling terms are null.
 | 
			
		||||
As the rotational speed increases, the pair of complex conjugate poles is separated into two pairs of complex conjugate poles, one going to lower frequencies and the other to higher frequencies.
 | 
			
		||||
When the
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\begin{subfigure}[c]{0.45\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_direct.pdf}
 | 
			
		||||
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms \(d_u/F_u\), \(d_v/F_v\)}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\begin{subfigure}[c]{0.45\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_coupling.pdf}
 | 
			
		||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms \(d_v/F_u\), \(d_u/F_v\)}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\caption{\label{fig:plant_compare_rotating_speed}Bode Plots for \(\bm{G}_d\) for several rotational speed \(\Omega\)}
 | 
			
		||||
\centering
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
In the rest of this study, \(\Omega < \omega_0\)
 | 
			
		||||
 | 
			
		||||
\section{Decentralized Integral Force Feedback}
 | 
			
		||||
\label{sec:org729cd5f}
 | 
			
		||||
\subsection{System Schematic and Control Architecture}
 | 
			
		||||
\label{sec:org87ee3ad}
 | 
			
		||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
@@ -241,7 +259,7 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Plant Dynamics}
 | 
			
		||||
\label{sec:orgf2f22c2}
 | 
			
		||||
\label{sec:orge10a341}
 | 
			
		||||
The forces measured by the force sensors are equal to:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:measured_force}
 | 
			
		||||
@@ -250,40 +268,32 @@ The forces measured by the force sensors are equal to:
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Re-injecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
 | 
			
		||||
Re-injecting \eqref{eq:Gd_w0_xi_k} into \eqref{eq:measured_force} yields:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:tf_f}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\label{eq:Gf_mimo_tf}
 | 
			
		||||
  \begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
Where \(\bm{G}_f\) is a \(2 \times 2\) transfer function matrix.
 | 
			
		||||
 | 
			
		||||
with \(\bm{G}_f\) a \(2 \times 2\) transfer function matrix
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\bm{G}_f =
 | 
			
		||||
\frac{1}{G_{fp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  G_{fz} & -G_{fc} \\
 | 
			
		||||
  G_{fc} &  G_{fz}
 | 
			
		||||
\label{eq:Gf}
 | 
			
		||||
  \bm{G}_{f} = \begin{bmatrix}
 | 
			
		||||
  \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
 | 
			
		||||
  \frac{\left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
with:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{fp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{fz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
The zeros of the diagonal terms are the roots of \(G_{fz}\) (supposing small damping):
 | 
			
		||||
The zeros of the diagonal terms of \(\bm{G}_f\) are equal to (neglecting the damping)
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    z_1 &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \\
 | 
			
		||||
    z_2 &= \pm   \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} }
 | 
			
		||||
    z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:iff_zero_cc} \\
 | 
			
		||||
    z_r &= \pm   \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:iff_zero_real}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The frequency of the two complex conjugate zeros \(z_1\) is between the frequency of the two pairs of complex conjugate poles \(p_1\) and \(p_2\).
 | 
			
		||||
The frequency of the two complex conjugate zeros \(z_c\) \eqref{eq:iff_zero_cc} is between the frequency of the two pairs of complex conjugate poles \(p_{-}\) and \(p_{+}\) \eqref{eq:pole_values}.
 | 
			
		||||
This is the expected behavior of a collocated pair of actuator and sensor.
 | 
			
		||||
 | 
			
		||||
However, the two real zeros \(z_2\) induces an increase of +2 of the slope without change of phase (Figure \ref{fig:plant_iff_compare_rotating_speed}).
 | 
			
		||||
However, the two real zeros \(z_c\) induces an increase of +2 of the slope without change of phase (Figure \ref{fig:plant_iff_compare_rotating_speed}).
 | 
			
		||||
This represents non-minimum phase behavior.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -296,7 +306,7 @@ The low frequency gain, for \(\Omega < \omega_0\), is no longer zero:
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
It increase with the rotational speed \(\Omega\).
 | 
			
		||||
It increases with the rotational speed \(\Omega\).
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -305,10 +315,10 @@ It increase with the rotational speed \(\Omega\).
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Decentralized Integral Force Feedback}
 | 
			
		||||
\label{sec:orge1a14b4}
 | 
			
		||||
\label{sec:org1d15108}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_F(s) = g \cdot \frac{1}{s}
 | 
			
		||||
  K_F(s) = g \cdot \frac{1}{s}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Also, as one zero has a positive real part, the \textbf{IFF control is no more unconditionally stable}.
 | 
			
		||||
@@ -325,16 +335,16 @@ At low frequency, the gain is very large and thus no force is transmitted betwee
 | 
			
		||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback with High Pass Filters}
 | 
			
		||||
\label{sec:org7f551f8}
 | 
			
		||||
\label{sec:org95ed1b6}
 | 
			
		||||
\subsection{Modification of the Control Low}
 | 
			
		||||
\label{sec:org4c39c6d}
 | 
			
		||||
\label{sec:orgfadc2c2}
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
 | 
			
		||||
  K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Feedback Analysis}
 | 
			
		||||
\label{sec:org2673698}
 | 
			
		||||
\label{sec:org6ef2134}
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
 | 
			
		||||
@@ -352,7 +362,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Optimal Cut-Off Frequency}
 | 
			
		||||
\label{sec:org7d8a789}
 | 
			
		||||
\label{sec:org23e0758}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -367,9 +377,9 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback with Parallel Springs}
 | 
			
		||||
\label{sec:org9bc19d0}
 | 
			
		||||
\label{sec:org6947a77}
 | 
			
		||||
\subsection{Stiffness in Parallel with the Force Sensor}
 | 
			
		||||
\label{sec:orgdfd59fa}
 | 
			
		||||
\label{sec:org9a80ee7}
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/system_parallel_springs.pdf}
 | 
			
		||||
@@ -377,7 +387,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Plant Dynamics}
 | 
			
		||||
\label{sec:org70fc8fa}
 | 
			
		||||
\label{sec:org14f5b78}
 | 
			
		||||
 | 
			
		||||
We define an adimensional parameter \(\alpha\), \(0 \le \alpha < 1\), that describes the proportion of the stiffness in parallel with the actuator and force sensor:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
@@ -393,36 +403,28 @@ The overall stiffness \(k\) stays constant:
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:Gk_mimo_tf}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_k
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
\frac{1}{G_{kp}}
 | 
			
		||||
\label{eq:Gk}
 | 
			
		||||
\bm{G}_k =
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{kz} & -G_{kc} \\
 | 
			
		||||
   G_{kc} &  G_{kz}
 | 
			
		||||
  \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
 | 
			
		||||
  \frac{\left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    G_{kp} &= \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{kz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{kc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
 | 
			
		||||
\label{sec:orge20adc9}
 | 
			
		||||
\label{sec:org4b26266}
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
  \begin{aligned}
 | 
			
		||||
    \alpha > \frac{\Omega^2}{{\omega_0}^2} \\
 | 
			
		||||
    \Leftrightarrow k_p > m \Omega^2
 | 
			
		||||
  \end{align}
 | 
			
		||||
  \end{aligned}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
@@ -438,7 +440,7 @@ With:
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Optimal Parallel Stiffness}
 | 
			
		||||
\label{sec:orgb14b5c2}
 | 
			
		||||
\label{sec:orgfd42bdb}
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\begin{subfigure}[c]{0.49\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kps.pdf}
 | 
			
		||||
@@ -453,62 +455,15 @@ With:
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\section{Direct Velocity Feedback}
 | 
			
		||||
\label{sec:org7628683}
 | 
			
		||||
\subsection{System Schematic and Control Architecture}
 | 
			
		||||
\label{sec:org6953bc7}
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/system_dvf.pdf}
 | 
			
		||||
\caption{\label{fig:system_dvf}System with relative velocity sensors and with decentralized controllers \(K_V\)}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equations}
 | 
			
		||||
\label{sec:orgfab42cd}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_v
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
\frac{1}{k} \frac{1}{G_{vp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{vz} & G_{vc} \\
 | 
			
		||||
  -G_{vc} & G_{vz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{vz} &= s \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) \\
 | 
			
		||||
    G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Relative Direct Velocity Feedback}
 | 
			
		||||
\label{sec:org5cf0d6b}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_dvf.pdf}
 | 
			
		||||
\caption{\label{fig:root_locus_dvf}Root Locus for Decentralized Direct Velocity Feedback for several rotational speeds \(\Omega\)}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
 | 
			
		||||
\label{sec:orga2b60a8}
 | 
			
		||||
\label{sec:org67dd4e8}
 | 
			
		||||
\subsection{Physical Comparison}
 | 
			
		||||
\label{sec:orgb69316c}
 | 
			
		||||
\label{sec:orgf742b29}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Attainable Damping}
 | 
			
		||||
\label{sec:org5c23e13}
 | 
			
		||||
\label{sec:orgdb615c3}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -518,7 +473,7 @@ With:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Transmissibility and Compliance}
 | 
			
		||||
\label{sec:org723fb63}
 | 
			
		||||
\label{sec:org59532ce}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
@@ -535,11 +490,11 @@ With:
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Conclusion}
 | 
			
		||||
\label{sec:orgd52b568}
 | 
			
		||||
\label{sec:orgde4f24d}
 | 
			
		||||
\label{sec:conclusion}
 | 
			
		||||
 | 
			
		||||
\section*{Acknowledgment}
 | 
			
		||||
\label{sec:orge4d73e9}
 | 
			
		||||
\label{sec:org3284e1c}
 | 
			
		||||
 | 
			
		||||
\bibliography{ref.bib}
 | 
			
		||||
\end{document}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user