Clarify some equations (location of poles/zeros)
This commit is contained in:
parent
bf0e15bcef
commit
585f85cfc2
131
paper/paper.org
131
paper/paper.org
@ -91,7 +91,7 @@ The Matlab code that was use to obtain the results are available in cite:dehaeze
|
||||
To study how the rotation of positioning platforms does affect the use of force feedback, a simple model is developed.
|
||||
|
||||
# Simplest system where gyroscopic forces can be studied
|
||||
It represents an X-Y positioning stage on top of a Rotating Stage and is schematically represented in Figure [[fig:system]].
|
||||
It represents an X-Y positioning stage on top of a Rotating Stage and is schematically represented in Figure ref:fig:system.
|
||||
|
||||
# Explain the frames (inertial frame x,y, rotating frame u,v)
|
||||
Two frames of reference are used:
|
||||
@ -117,7 +117,7 @@ The position of the payload is represented by $(d_u, d_v)$ expressed in the rota
|
||||
[[file:figs/system.pdf]]
|
||||
|
||||
** Equations of Motion
|
||||
To obtain of equation of motion for the system represented in Figure [[fig:system]], the Lagrangian equations are used:
|
||||
To obtain of equation of motion for the system represented in Figure ref:fig:system, the Lagrangian equations are used:
|
||||
#+name: eq:lagrangian_equations
|
||||
\begin{equation}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
|
||||
@ -149,13 +149,20 @@ The rotation of the XY positioning platform induces two Gyroscopic effects:
|
||||
|
||||
** Transfer Functions in the Laplace domain
|
||||
To study the dynamics of the system, the differential equations of motions eqref:eq:eom_coupled are transformed in the Laplace domain and the transfer functions from $[F_u,\ F_v]$ to $[d_u,\ d_v]$ are obtained:
|
||||
#+name: eq:oem_laplace_domain
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
d_u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
|
||||
d_v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
#+name: eq:Gd_mimo_tf
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
with $\bm{G}_d$ a $2 \times 2$ transfer function matrix
|
||||
#+name: eq:Gd_m_k_c
|
||||
\begin{equation}
|
||||
\bm{G}_{d} =
|
||||
\begin{bmatrix}
|
||||
\frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} & \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
|
||||
\frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} & \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
One can verify that without rotation ($\Omega = 0$) the system becomes equivalent as to two uncoupled one degree of freedom mass-spring-damper systems:
|
||||
#+name: eq:oem_no_rotation
|
||||
@ -172,13 +179,9 @@ One can verify that without rotation ($\Omega = 0$) the system becomes equivalen
|
||||
In order to make this study less dependent on the system parameters, the following change of variable is performed:
|
||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Natural frequency of the mass-spring system in $\si{\radian/\s}$
|
||||
- $\xi = \frac{c}{2 \sqrt{k m}}$: Damping ratio
|
||||
|
||||
#+name: eq:tf_d
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
#+name: eq:tf_d
|
||||
The transfer function matrix eqref:eq:Gd_m_k_c becomes equal to
|
||||
#+name: eq:Gd_w0_xi_k
|
||||
\begin{equation}
|
||||
\bm{G}_{d} =
|
||||
\frac{1}{k}
|
||||
@ -189,56 +192,76 @@ In order to make this study less dependent on the system parameters, the followi
|
||||
\end{equation}
|
||||
|
||||
# Parameters
|
||||
During the rest of this study, the following parameters are used for numerical analysis
|
||||
- $\omega_0 = \SI{1}{\radian\per\second}$, $\xi = 0.025 = \SI{2.5}{\percent}$
|
||||
- $k = \SI{1}{N/m}$, $m = \SI{1}{kg}$, $c = \SI{0.05}{\newton\per\meter\second}$
|
||||
- $\omega_0 = \SI{1}{\radian\per\second}$, $\xi = 0.025$
|
||||
|
||||
# Say that these parameters are not realist but will be used to draw conclusions "relatively"
|
||||
|
||||
** System Dynamics and Campbell Diagram
|
||||
# Bode Plots for different ratio wr/w0
|
||||
|
||||
The bode plot of $\bm{G}_d$ is shown in Figure [[fig:plant_compare_rotating_speed]].
|
||||
|
||||
# Describe the dynamics
|
||||
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Bode Plots for $\bm{G}_d$
|
||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
|
||||
| file:figs/plant_compare_rotating_speed_direct.pdf | file:figs/plant_compare_rotating_speed_coupling.pdf |
|
||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
|
||||
|
||||
|
||||
# Campbell Diagram
|
||||
The poles are the roots of $G_{dp}$.
|
||||
Two pairs of complex conjugate poles (supposing small damping $\xi \approx 0$):
|
||||
The poles of $\bm{G}_d$ are the complex solutions $p$ of
|
||||
\begin{equation}
|
||||
\left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
|
||||
\end{equation}
|
||||
|
||||
Supposing small damping ($\xi \ll 1$), two pairs of complex conjugate poles are obtained:
|
||||
#+name: eq:pole_values
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
p_1 &= \pm j (\omega_0 - \Omega) \\
|
||||
p_2 &= \pm j (\omega_0 + \Omega)
|
||||
p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 + \Omega \right) \\
|
||||
p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 - \Omega \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
|
||||
As the rotation speed increases, $p_{+}$ goes to higher frequencies and $p_{-}$ to lower frequencies.
|
||||
|
||||
# The system goes unstable at some frequency w0
|
||||
When the rotational speed $\Omega$ reaches $\omega_0$, the real part of one pair of complex conjugate becomes position meaning is system is unstable.
|
||||
|
||||
The stiffness of the X-Y stage is too small to hold to rotating payload hence the instability.
|
||||
|
||||
When the rotational speed $\Omega$ reaches $\omega_0$, the real part $p_{-}$ is positive meaning the system becomes unstable.
|
||||
The stiffness of the X-Y stage is too low to hold to rotating payload hence the instability.
|
||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
|
||||
|
||||
This is graphically represented with the Campbell Diagram in Figure ref:fig:campbell_diagram.
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram : Evolution of the poles as a function of the rotational speed $\Omega$
|
||||
#+caption: Campbell Diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
|
||||
| file:figs/campbell_diagram_real.pdf | file:figs/campbell_diagram_imag.pdf |
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
|
||||
# Bode Plots for different ratio W/w0
|
||||
Looking at the transfer function matrix $\bm{G}_d$ eqref:eq:Gd_w0_xi_k, one can see it has two distinct terms that can be studied separately:
|
||||
- the direct (diagonal) terms
|
||||
- the coupling (off-diagonal) terms
|
||||
|
||||
The bode plot of the direct and coupling terms are shown in Figure ref:fig:plant_compare_rotating_speed for several rotational speed $\Omega$.
|
||||
|
||||
# Describe the dynamics: without rotation
|
||||
Without rotation, the dynamics of the direct terms is equivalent to the dynamics of a one degree of freedom mass spring damper system and the coupling terms are null.
|
||||
As the rotational speed increases, the pair of complex conjugate poles is separated into two pairs of complex conjugate poles, one going to lower frequencies and the other to higher frequencies.
|
||||
When the
|
||||
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Bode Plots for $\bm{G}_d$ for several rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.45\linewidth :align c
|
||||
| file:figs/plant_compare_rotating_speed_direct.pdf | file:figs/plant_compare_rotating_speed_coupling.pdf |
|
||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
|
||||
|
||||
In the rest of this study, $\Omega < \omega_0$
|
||||
|
||||
* Decentralized Integral Force Feedback
|
||||
** System Schematic and Control Architecture
|
||||
|
||||
Force Sensors are added in series with the actuators as shown in Figure [[fig:system_iff]].
|
||||
|
||||
# Reference to IFF control
|
||||
|
||||
# Explain what "decentralized" means
|
||||
|
||||
# => we consider the system has two SISO systems for the control
|
||||
|
||||
# Say that we will use the same controllers for the two directions
|
||||
|
||||
#+name: fig:system_iff
|
||||
#+caption: System with Force Sensors in Series with the Actuators. Decentralized Integral Force Feedback is used
|
||||
#+attr_latex: :scale 1
|
||||
@ -253,13 +276,13 @@ The forces measured by the force sensors are equal to:
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Re-injecting eqref:eq:tf_d into eqref:eq:measured_force yields:
|
||||
#+name: eq:tf_f
|
||||
Re-injecting eqref:eq:Gd_w0_xi_k into eqref:eq:measured_force yields:
|
||||
#+name: eq:Gf_mimo_tf
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where $\bm{G}_f$ is a $2 \times 2$ transfer function matrix.
|
||||
|
||||
with $\bm{G}_f$ a $2 \times 2$ transfer function matrix
|
||||
#+name: eq:Gf
|
||||
\begin{equation}
|
||||
\bm{G}_{f} = \begin{bmatrix}
|
||||
\frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
@ -271,18 +294,18 @@ Where $\bm{G}_f$ is a $2 \times 2$ transfer function matrix.
|
||||
# The alternating poles and zeros properties of collocated IFF holds
|
||||
# but additional real zeros are added
|
||||
|
||||
The zeros of the diagonal terms are the roots of $G_{fz}$ (supposing small damping):
|
||||
The zeros of the diagonal terms of $\bm{G}_f$ are equal to (neglecting the damping)
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
z_1 &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \\
|
||||
z_2 &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} }
|
||||
z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:iff_zero_cc} \\
|
||||
z_r &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:iff_zero_real}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The frequency of the two complex conjugate zeros $z_1$ is between the frequency of the two pairs of complex conjugate poles $p_1$ and $p_2$.
|
||||
The frequency of the two complex conjugate zeros $z_c$ eqref:eq:iff_zero_cc is between the frequency of the two pairs of complex conjugate poles $p_{-}$ and $p_{+}$ eqref:eq:pole_values.
|
||||
This is the expected behavior of a collocated pair of actuator and sensor.
|
||||
|
||||
However, the two real zeros $z_2$ induces an increase of +2 of the slope without change of phase (Figure [[fig:plant_iff_compare_rotating_speed]]).
|
||||
However, the two real zeros $z_c$ induces an increase of +2 of the slope without change of phase (Figure [[fig:plant_iff_compare_rotating_speed]]).
|
||||
This represents non-minimum phase behavior.
|
||||
|
||||
# Explain physically why the real zeros
|
||||
@ -298,7 +321,7 @@ The low frequency gain, for $\Omega < \omega_0$, is no longer zero:
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
It increase with the rotational speed $\Omega$.
|
||||
It increases with the rotational speed $\Omega$.
|
||||
|
||||
#+name: fig:plant_iff_compare_rotating_speed
|
||||
#+caption: Bode plot of $\bm{G}_f$ for several rotational speeds $\Omega$
|
||||
@ -431,12 +454,14 @@ The overall stiffness $k$ stays constant:
|
||||
\end{equation}
|
||||
|
||||
# Equations: sensed force
|
||||
#+name: eq:Gk_mimo_tf
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\bm{G}_k
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
#+name: eq:Gk
|
||||
\begin{equation}
|
||||
\bm{G}_k =
|
||||
\begin{bmatrix}
|
||||
@ -454,10 +479,10 @@ The overall stiffness $k$ stays constant:
|
||||
# For kp < negative stiffness => real zeros => non-minimum phase
|
||||
# For kp > negative stiffness => complex conjugate zeros => minimum phase
|
||||
\begin{equation}
|
||||
\begin{align}
|
||||
\begin{aligned}
|
||||
\alpha > \frac{\Omega^2}{{\omega_0}^2} \\
|
||||
\Leftrightarrow k_p > m \Omega^2
|
||||
\end{align}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
#+name: fig:plant_iff_kp
|
||||
|
BIN
paper/paper.pdf
BIN
paper/paper.pdf
Binary file not shown.
347
paper/paper.tex
347
paper/paper.tex
@ -1,4 +1,4 @@
|
||||
% Created 2020-06-25 jeu. 17:24
|
||||
% Created 2020-06-26 ven. 17:28
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -36,10 +36,10 @@
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{shapes.misc}
|
||||
\date{}
|
||||
\title{Decentralized Active Damping of Rotating Positioning Platforms}
|
||||
\title{Active Damping of Rotating Positioning Platforms using Force Feedback}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Decentralized Active Damping of Rotating Positioning Platforms},
|
||||
pdftitle={Active Damping of Rotating Positioning Platforms using Force Feedback},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 27.0.91 (Org mode 9.4)},
|
||||
@ -53,7 +53,7 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:org7ff5c70}
|
||||
\label{sec:org4effc95}
|
||||
\label{sec:introduction}
|
||||
Controller Poles are shown by black crosses (
|
||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
|
||||
@ -64,19 +64,31 @@ This paper has been published
|
||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
|
||||
|
||||
\section{Dynamics of Rotating Positioning Platforms}
|
||||
\label{sec:org029ca48}
|
||||
\subsection{Studied Rotating Positioning Platform}
|
||||
\label{sec:org7eec6c5}
|
||||
Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
\label{sec:org5eef93b}
|
||||
\subsection{Model of a Rotating Positioning Platform}
|
||||
\label{sec:org905e0e5}
|
||||
To study how the rotation of positioning platforms does affect the use of force feedback, a simple model is developed.
|
||||
|
||||
It represents an X-Y positioning stage on top of a Rotating Stage and is schematically represented in Figure \ref{fig:system}.
|
||||
|
||||
Two frames of reference are used:
|
||||
\begin{itemize}
|
||||
\item \(k\): Actuator's Stiffness [N/m]
|
||||
\item \(m\): Payload's mass [kg]
|
||||
\item \(\Omega = \dot{\theta}\): rotation speed [rad/s]
|
||||
\item \(F_u\), \(F_v\)
|
||||
\item \(d_u\), \(d_v\)
|
||||
\item \((\vec{i}_x, \vec{i}_y, \vec{i}_z)\) is an inertial frame
|
||||
\item \((\vec{i}_u, \vec{i}_v, \vec{i}_w)\) is a frame fixed on the Rotating Stage with its origin align with the rotation axis
|
||||
\end{itemize}
|
||||
|
||||
The rotating stage is supposed to be ideal, meaning it is infinitely rigid and induces a rotation \(\theta(t) = \Omega t\) where \(\Omega\) is the rotational speed in \(\si{\radian\per\second}\).
|
||||
|
||||
The parallel X-Y positioning stage consists of two orthogonal actuators represented by the three following elements in parallel:
|
||||
\begin{itemize}
|
||||
\item A spring with a stiffness \(k\) in \(\si{\newton\per\meter}\)
|
||||
\item A dashpot with a damping coefficient \(c\) in \(\si{\newton\per\meter\second}\)
|
||||
\item An ideal force source \(F_u, F_v\) in \(\si{\newton}\)
|
||||
\end{itemize}
|
||||
|
||||
The X-Y stage is supporting a payload with a payload with a mass \(m\) in \(\si{\kilo\gram}\).
|
||||
The position of the payload is represented by \((d_u, d_v)\) expressed in the rotating frame \((\vec{i}_u, \vec{i}_v)\).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system.pdf}
|
||||
@ -84,26 +96,24 @@ Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations of Motion}
|
||||
\label{sec:orgca181a2}
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \([q_1\ q_2] = [d_u\ d_v]\) (describing the position of the mass in the rotating frame).
|
||||
|
||||
Let's express the kinetic energy \(T\), the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy) as well as the deceptive function \(R\):
|
||||
\label{sec:org08efe1c}
|
||||
To obtain of equation of motion for the system represented in Figure \ref{fig:system}, the Lagrangian equations are used:
|
||||
\begin{equation}
|
||||
\label{eq:lagrangian_equations}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
with \(L = T - V\) is the Lagrangian, \(D\) is the dissipation function, and \(Q_i\) is the generalized force associated with the generalized variable \([q_1\ q_2] = [d_u\ d_v]\):
|
||||
\begin{subequations}
|
||||
\label{eq:energy_functions_lagrange}
|
||||
\begin{align}
|
||||
T & = \frac{1}{2} m \left( \left( \dot{d}_u - \Omega d_v \right)^2 + \left( \dot{d}_v + \Omega d_u \right)^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( {d_u}^2 + {d_v}^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right)
|
||||
D & = \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right) \\
|
||||
Q_1 &= F_u, \quad Q_2 = F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The equations of motion are derived from the Lagrangian equation:
|
||||
\begin{equation}
|
||||
\label{eq:lagrangian_equations}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
with \(L = T - V\) is the Lagrangian and \(Q_i\) is the generalized force associated with the generalized variable \(q_i\) (\(Q_1 = F_u\) and \(Q_2 = F_v\)).
|
||||
|
||||
Substituting equations \eqref{eq:energy_functions_lagrange} into \eqref{eq:lagrangian_equations} gives the two coupled differential equations:
|
||||
\begin{subequations}
|
||||
\label{eq:eom_coupled}
|
||||
\begin{align}
|
||||
@ -112,26 +122,31 @@ with \(L = T - V\) is the Lagrangian and \(Q_i\) is the generalized force associ
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The Gyroscopic effects can be seen from the two following terms:
|
||||
The rotation of the XY positioning platform induces two Gyroscopic effects:
|
||||
\begin{itemize}
|
||||
\item Coriolis Forces: coupling
|
||||
\item Centrifugal forces: negative stiffness
|
||||
\item Coriolis Forces: that adds coupling between the two orthogonal controlled directions
|
||||
\item Centrifugal forces: that can been seen as negative stiffness
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Transfer Functions in the Laplace domain}
|
||||
\label{sec:orge7e184a}
|
||||
\label{sec:org6daa125}
|
||||
To study the dynamics of the system, the differential equations of motions \eqref{eq:eom_coupled} are transformed in the Laplace domain and the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
|
||||
\begin{equation}
|
||||
\label{eq:Gd_mimo_tf}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Using the Laplace transformation on the equations of motion \eqref{eq:eom_coupled}, the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
|
||||
\begin{subequations}
|
||||
\label{eq:oem_laplace_domain}
|
||||
\begin{align}
|
||||
d_u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
|
||||
d_v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
with \(\bm{G}_d\) a \(2 \times 2\) transfer function matrix
|
||||
\begin{equation}
|
||||
\label{eq:Gd_m_k_c}
|
||||
\bm{G}_{d} =
|
||||
\begin{bmatrix}
|
||||
\frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} & \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\
|
||||
\frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} & \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
|
||||
Without rotation \(\Omega = 0\) and the system corresponds to two uncoupled one degree of freedom mass-spring-damper systems:
|
||||
One can verify that without rotation (\(\Omega = 0\)) the system becomes equivalent as to two uncoupled one degree of freedom mass-spring-damper systems:
|
||||
\begin{subequations}
|
||||
\label{eq:oem_no_rotation}
|
||||
\begin{align}
|
||||
@ -141,79 +156,56 @@ Without rotation \(\Omega = 0\) and the system corresponds to two uncoupled one
|
||||
\end{subequations}
|
||||
|
||||
\subsection{Change of Variables / Parameters for the study}
|
||||
\label{sec:org3cdb1ab}
|
||||
\label{sec:orgda057f2}
|
||||
|
||||
In order this study is more independent on the system parameters, the following change of variable is performed:
|
||||
In order to make this study less dependent on the system parameters, the following change of variable is performed:
|
||||
\begin{itemize}
|
||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Natural frequency of the mass-spring system in \(\si{\radian/\s}\)
|
||||
\item \(\xi = \frac{c}{2 \sqrt{k m}}\): Damping ratio
|
||||
\end{itemize}
|
||||
|
||||
The transfer function matrix \eqref{eq:Gd_m_k_c} becomes equal to
|
||||
\begin{equation}
|
||||
\label{eq:tf_d}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\label{eq:Gd_w0_xi_k}
|
||||
\bm{G}_{d} =
|
||||
\frac{1}{k}
|
||||
\begin{bmatrix}
|
||||
\frac{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{- 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2}}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
Where \(\bm{G}_d\) is a \(2 \times 2\) transfer function matrix.
|
||||
|
||||
\begin{equation}
|
||||
\bm{G}_d = \frac{1}{k} \frac{1}{G_{dp}}
|
||||
\begin{bmatrix}
|
||||
G_{dz} & G_{dc} \\
|
||||
-G_{dc} & G_{dz}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{dp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{dz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
G_{dc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\(G_{dp}\) describes to poles of the system, \(G_{dz}\) the zeros of the diagonal terms and \(G_{dc}\) the coupling.
|
||||
|
||||
During the rest of this study, the following parameters are used for numerical analysis
|
||||
\begin{itemize}
|
||||
\item \(\omega_0 = \SI{1}{\radian\per\second}\), \(\xi = 0.025 = \SI{2.5}{\percent}\)
|
||||
\item \(k = \SI{1}{N/m}\), \(m = \SI{1}{kg}\), \(c = \SI{0.05}{\newton\per\meter\second}\)
|
||||
\item \(\omega_0 = \SI{1}{\radian\per\second}\), \(\xi = 0.025\)
|
||||
\end{itemize}
|
||||
|
||||
\subsection{System Dynamics and Campbell Diagram}
|
||||
\label{sec:org42dee20}
|
||||
The bode plot of \(\bm{G}_d\) is shown in Figure \ref{fig:plant_compare_rotating_speed}.
|
||||
\label{sec:org9c94a4d}
|
||||
The poles of \(\bm{G}_d\) are the complex solutions \(p\) of
|
||||
\begin{equation}
|
||||
\left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
|
||||
\end{equation}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_direct.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms \(d_u/F_u\), \(d_v/F_v\)}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_coupling.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms \(d_v/F_u\), \(d_u/F_v\)}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:plant_compare_rotating_speed}Bode Plots for \(\bm{G}_d\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
|
||||
The poles are the roots of \(G_{dp}\).
|
||||
Two pairs of complex conjugate poles (supposing small damping \(\xi \approx 0\)):
|
||||
Supposing small damping (\(\xi \ll 1\)), two pairs of complex conjugate poles are obtained:
|
||||
\begin{subequations}
|
||||
\label{eq:pole_values}
|
||||
\begin{align}
|
||||
p_1 &= \pm j (\omega_0 - \Omega) \\
|
||||
p_2 &= \pm j (\omega_0 + \Omega)
|
||||
p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 + \Omega \right) \\
|
||||
p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 - \Omega \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
|
||||
|
||||
When the rotational speed \(\Omega\) reaches \(\omega_0\), the real part of one pair of complex conjugate becomes position meaning is system is unstable.
|
||||
|
||||
The stiffness of the X-Y stage is too small to hold to rotating payload hence the instability.
|
||||
As the rotation speed increases, \(p_{+}\) goes to higher frequencies and \(p_{-}\) to lower frequencies.
|
||||
|
||||
When the rotational speed \(\Omega\) reaches \(\omega_0\), the real part \(p_{-}\) is positive meaning the system becomes unstable.
|
||||
The stiffness of the X-Y stage is too low to hold to rotating payload hence the instability.
|
||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
|
||||
|
||||
This is graphically represented with the Campbell Diagram in Figure \ref{fig:campbell_diagram}.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
|
||||
@ -223,15 +215,41 @@ Stiff positioning platforms should be used if high rotational speeds or heavy pa
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
|
||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the poles as a function of the rotational speed \(\Omega\)}
|
||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed \(\Omega\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
\section{Decentralized Integral Force Feedback}
|
||||
\label{sec:orgda38ad7}
|
||||
\subsection{System Schematic and Control Architecture}
|
||||
\label{sec:orgf08eb9d}
|
||||
Looking at the transfer function matrix \(\bm{G}_d\) \eqref{eq:Gd_w0_xi_k}, one can see it has two distinct terms that can be studied separately:
|
||||
\begin{itemize}
|
||||
\item the direct (diagonal) terms
|
||||
\item the coupling (off-diagonal) terms
|
||||
\end{itemize}
|
||||
|
||||
The bode plot of the direct and coupling terms are shown in Figure \ref{fig:plant_compare_rotating_speed} for several rotational speed \(\Omega\).
|
||||
|
||||
Without rotation, the dynamics of the direct terms is equivalent to the dynamics of a one degree of freedom mass spring damper system and the coupling terms are null.
|
||||
As the rotational speed increases, the pair of complex conjugate poles is separated into two pairs of complex conjugate poles, one going to lower frequencies and the other to higher frequencies.
|
||||
When the
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_direct.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms \(d_u/F_u\), \(d_v/F_v\)}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_coupling.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms \(d_v/F_u\), \(d_u/F_v\)}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:plant_compare_rotating_speed}Bode Plots for \(\bm{G}_d\) for several rotational speed \(\Omega\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
In the rest of this study, \(\Omega < \omega_0\)
|
||||
|
||||
\section{Decentralized Integral Force Feedback}
|
||||
\label{sec:org729cd5f}
|
||||
\subsection{System Schematic and Control Architecture}
|
||||
\label{sec:org87ee3ad}
|
||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -241,7 +259,7 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
|
||||
\end{figure}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:orgf2f22c2}
|
||||
\label{sec:orge10a341}
|
||||
The forces measured by the force sensors are equal to:
|
||||
\begin{equation}
|
||||
\label{eq:measured_force}
|
||||
@ -250,40 +268,32 @@ The forces measured by the force sensors are equal to:
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Re-injecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
|
||||
Re-injecting \eqref{eq:Gd_w0_xi_k} into \eqref{eq:measured_force} yields:
|
||||
\begin{equation}
|
||||
\label{eq:tf_f}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\label{eq:Gf_mimo_tf}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where \(\bm{G}_f\) is a \(2 \times 2\) transfer function matrix.
|
||||
|
||||
with \(\bm{G}_f\) a \(2 \times 2\) transfer function matrix
|
||||
\begin{equation}
|
||||
\bm{G}_f =
|
||||
\frac{1}{G_{fp}}
|
||||
\begin{bmatrix}
|
||||
G_{fz} & -G_{fc} \\
|
||||
G_{fc} & G_{fz}
|
||||
\label{eq:Gf}
|
||||
\bm{G}_{f} = \begin{bmatrix}
|
||||
\frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{\left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
with:
|
||||
\begin{align}
|
||||
G_{fp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{fz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
|
||||
The zeros of the diagonal terms are the roots of \(G_{fz}\) (supposing small damping):
|
||||
The zeros of the diagonal terms of \(\bm{G}_f\) are equal to (neglecting the damping)
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
z_1 &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \\
|
||||
z_2 &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} }
|
||||
z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:iff_zero_cc} \\
|
||||
z_r &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:iff_zero_real}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The frequency of the two complex conjugate zeros \(z_1\) is between the frequency of the two pairs of complex conjugate poles \(p_1\) and \(p_2\).
|
||||
The frequency of the two complex conjugate zeros \(z_c\) \eqref{eq:iff_zero_cc} is between the frequency of the two pairs of complex conjugate poles \(p_{-}\) and \(p_{+}\) \eqref{eq:pole_values}.
|
||||
This is the expected behavior of a collocated pair of actuator and sensor.
|
||||
|
||||
However, the two real zeros \(z_2\) induces an increase of +2 of the slope without change of phase (Figure \ref{fig:plant_iff_compare_rotating_speed}).
|
||||
However, the two real zeros \(z_c\) induces an increase of +2 of the slope without change of phase (Figure \ref{fig:plant_iff_compare_rotating_speed}).
|
||||
This represents non-minimum phase behavior.
|
||||
|
||||
|
||||
@ -296,7 +306,7 @@ The low frequency gain, for \(\Omega < \omega_0\), is no longer zero:
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
It increase with the rotational speed \(\Omega\).
|
||||
It increases with the rotational speed \(\Omega\).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -305,10 +315,10 @@ It increase with the rotational speed \(\Omega\).
|
||||
\end{figure}
|
||||
|
||||
\subsection{Decentralized Integral Force Feedback}
|
||||
\label{sec:orge1a14b4}
|
||||
\label{sec:org1d15108}
|
||||
|
||||
\begin{equation}
|
||||
\bm{K}_F(s) = g \cdot \frac{1}{s}
|
||||
K_F(s) = g \cdot \frac{1}{s}
|
||||
\end{equation}
|
||||
|
||||
Also, as one zero has a positive real part, the \textbf{IFF control is no more unconditionally stable}.
|
||||
@ -325,16 +335,16 @@ At low frequency, the gain is very large and thus no force is transmitted betwee
|
||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filters}
|
||||
\label{sec:org7f551f8}
|
||||
\label{sec:org95ed1b6}
|
||||
\subsection{Modification of the Control Low}
|
||||
\label{sec:org4c39c6d}
|
||||
\label{sec:orgfadc2c2}
|
||||
\begin{equation}
|
||||
\bm{K}_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
|
||||
\subsection{Feedback Analysis}
|
||||
\label{sec:org2673698}
|
||||
\label{sec:org6ef2134}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
|
||||
@ -352,7 +362,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Cut-Off Frequency}
|
||||
\label{sec:org7d8a789}
|
||||
\label{sec:org23e0758}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -367,9 +377,9 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:org9bc19d0}
|
||||
\label{sec:org6947a77}
|
||||
\subsection{Stiffness in Parallel with the Force Sensor}
|
||||
\label{sec:orgdfd59fa}
|
||||
\label{sec:org9a80ee7}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system_parallel_springs.pdf}
|
||||
@ -377,7 +387,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:org70fc8fa}
|
||||
\label{sec:org14f5b78}
|
||||
|
||||
We define an adimensional parameter \(\alpha\), \(0 \le \alpha < 1\), that describes the proportion of the stiffness in parallel with the actuator and force sensor:
|
||||
\begin{subequations}
|
||||
@ -393,36 +403,28 @@ The overall stiffness \(k\) stays constant:
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:Gk_mimo_tf}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\bm{G}_k
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\frac{1}{G_{kp}}
|
||||
\label{eq:Gk}
|
||||
\bm{G}_k =
|
||||
\begin{bmatrix}
|
||||
G_{kz} & -G_{kc} \\
|
||||
G_{kc} & G_{kz}
|
||||
\frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\
|
||||
\frac{\left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} & \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{kp} &= \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
|
||||
G_{kz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
|
||||
G_{kc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
|
||||
\label{sec:orge20adc9}
|
||||
\label{sec:org4b26266}
|
||||
\begin{equation}
|
||||
\begin{align}
|
||||
\begin{aligned}
|
||||
\alpha > \frac{\Omega^2}{{\omega_0}^2} \\
|
||||
\Leftrightarrow k_p > m \Omega^2
|
||||
\end{align}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -438,7 +440,7 @@ With:
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Parallel Stiffness}
|
||||
\label{sec:orgb14b5c2}
|
||||
\label{sec:orgfd42bdb}
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kps.pdf}
|
||||
@ -453,62 +455,15 @@ With:
|
||||
\end{figure}
|
||||
|
||||
|
||||
\section{Direct Velocity Feedback}
|
||||
\label{sec:org7628683}
|
||||
\subsection{System Schematic and Control Architecture}
|
||||
\label{sec:org6953bc7}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system_dvf.pdf}
|
||||
\caption{\label{fig:system_dvf}System with relative velocity sensors and with decentralized controllers \(K_V\)}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:orgfab42cd}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\bm{G}_v
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\frac{1}{k} \frac{1}{G_{vp}}
|
||||
\begin{bmatrix}
|
||||
G_{vz} & G_{vc} \\
|
||||
-G_{vc} & G_{vz}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{vz} &= s \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) \\
|
||||
G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
|
||||
\subsection{Relative Direct Velocity Feedback}
|
||||
\label{sec:org5cf0d6b}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_dvf.pdf}
|
||||
\caption{\label{fig:root_locus_dvf}Root Locus for Decentralized Direct Velocity Feedback for several rotational speeds \(\Omega\)}
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
|
||||
\label{sec:orga2b60a8}
|
||||
\label{sec:org67dd4e8}
|
||||
\subsection{Physical Comparison}
|
||||
\label{sec:orgb69316c}
|
||||
\label{sec:orgf742b29}
|
||||
|
||||
|
||||
|
||||
\subsection{Attainable Damping}
|
||||
\label{sec:org5c23e13}
|
||||
\label{sec:orgdb615c3}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -518,7 +473,7 @@ With:
|
||||
|
||||
|
||||
\subsection{Transmissibility and Compliance}
|
||||
\label{sec:org723fb63}
|
||||
\label{sec:org59532ce}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -535,11 +490,11 @@ With:
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:orgd52b568}
|
||||
\label{sec:orgde4f24d}
|
||||
\label{sec:conclusion}
|
||||
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:orge4d73e9}
|
||||
\label{sec:org3284e1c}
|
||||
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user