Update paper text
This commit is contained in:
parent
eb0635f11f
commit
2cb68a4d5f
@ -72,6 +72,7 @@ Based on the Figure [[fig:rotating_xy_platform]], the equations of motions are:
|
||||
\bm{G}_d
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where $\bm{G}_d$ is a $2 \times 2$ transfer function matrix.
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
|
204
paper/paper.org
204
paper/paper.org
@ -1,4 +1,4 @@
|
||||
#+TITLE: Vibration control of a rotating Stewart platform
|
||||
#+TITLE: Active Damping of Rotating Positioning Platforms
|
||||
:DRAWER:
|
||||
#+LATEX_CLASS: ISMA_USD2020
|
||||
#+OPTIONS: toc:nil
|
||||
@ -53,20 +53,42 @@
|
||||
|
||||
* Introduction
|
||||
<<sec:introduction>>
|
||||
*** Establish the importance of the research topic :ignore:
|
||||
# Active Damping + Rotating Systems
|
||||
|
||||
*** Applications of active damping :ignore:
|
||||
# Link to previous paper / tomography
|
||||
|
||||
* Theory
|
||||
<<sec:theory>>
|
||||
cite:dehaeze18_sampl_stabil_for_tomog_exper
|
||||
|
||||
** Rotating Positioning Stage
|
||||
*** Current active damping techniques :ignore:
|
||||
# IFF, DVF
|
||||
|
||||
# Description of the system
|
||||
*** Describe a gap in the research :ignore:
|
||||
# No literature on rotating systems => gyroscopic effects
|
||||
|
||||
*** Describe the paper itself / the problem which is addressed :ignore:
|
||||
|
||||
*** Introduce Each part of the paper :ignore:
|
||||
|
||||
* System Under Study
|
||||
** Rotating Positioning Platform
|
||||
# Simplest system where gyroscopic forces can be studied
|
||||
Consider the rotating X-Y stage of Figure [[fig:rotating_xy_platform]].
|
||||
|
||||
# Present the system, parameters, assumptions
|
||||
|
||||
# Small displacements
|
||||
|
||||
# Constant rotating speed
|
||||
|
||||
# Explain the frames (inertial frame x,y, rotating frame u,v)
|
||||
|
||||
- $k$: Actuator's Stiffness [N/m]
|
||||
- $m$: Payload's mass [kg]
|
||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Resonance of the (non-rotating) mass-spring system [rad/s]
|
||||
- $\Omega = \dot{\theta}$: rotation speed [rad/s]
|
||||
|
||||
- $F_u$, $F_v$
|
||||
- $d_u$, $d_v$
|
||||
|
||||
#+name: fig:rotating_xy_platform
|
||||
#+caption: Figure caption
|
||||
@ -74,34 +96,96 @@
|
||||
[[file:figs/rotating_xy_platform.pdf]]
|
||||
|
||||
|
||||
#+name: fig:cedrat_xy25xs
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :width 0.5\linewidth
|
||||
[[file:figs/cedrat_xy25xs.jpg]]
|
||||
|
||||
** Equation of Motion
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $u$ and $v$.
|
||||
|
||||
Let's express the kinetic energy $T$ and the potential energy $V$ of the mass $m$ (neglecting the rotational energy):
|
||||
|
||||
Dissipation function $R$
|
||||
Kinetic energy $T$
|
||||
Potential energy $V$
|
||||
#+name: eq:energy_inertial_frame
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
T & = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{x}^2 + \dot{y}^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( x^2 + y^2 \right)
|
||||
T & = \frac{1}{2} m \left( \left( \dot{u} - \Omega v \right)^2 + \left( \dot{v} + \Omega u \right)^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{u}^2 + \dot{v}^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( u^2 + v^2 \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The Lagrangian is the kinetic energy minus the potential energy:
|
||||
#+name: eq:lagrangian_inertial_frame
|
||||
\begin{equation}
|
||||
L = T-V = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} k \left( x^2 + y^2 \right)
|
||||
L = T - V
|
||||
\end{equation}
|
||||
|
||||
The external forces applied to the mass are:
|
||||
From the Lagrange's equations of the second kind eqref:eq:lagrange_second_kind, the equation of motion eqref:eq:eom_mixed is obtained ($q_1 = u$, $q_2 = v$).
|
||||
\begin{equation}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\frac{d}{dt} \left( \frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial R}{\partial \dot{q}_i} - \frac{\partial V}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
|
||||
with $Q_i$ is the generalized force associated with the generalized variable $q_i$ ($F_u$ and $F_v$).
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
F_{\text{ext}, x} &= F_u \cos{\theta} - F_v \sin{\theta}\\
|
||||
F_{\text{ext}, y} &= F_u \sin{\theta} + F_v \cos{\theta}
|
||||
m \ddot{u} + c \dot{u} + ( k - m \Omega ) u &= F_u + 2 m \Omega \dot{v} \\
|
||||
m \ddot{v} + c \dot{v} + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) v &= F_v \underbrace{-\,2 m \Omega \dot{u}}_{\text{Coriolis}}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
# Explain Gyroscopic effects
|
||||
|
||||
|
||||
|
||||
|
||||
# Laplace Domain
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
|
||||
v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
# Change of variables
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\bm{G}_d
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where $\bm{G}_d$ is a $2 \times 2$ transfer function matrix.
|
||||
|
||||
\begin{equation}
|
||||
\bm{G}_d = \frac{1}{k} \frac{1}{G_{dp}}
|
||||
\begin{bmatrix}
|
||||
G_{dz} & G_{dc} \\
|
||||
-G_{dc} & G_{dz}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{dp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{dz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
G_{dc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
|
||||
From the Lagrange's equations of the second kind eqref:eq:lagrange_second_kind, the equation of motion eqref:eq:eom_mixed is obtained.
|
||||
|
||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Natural frequency of the mass-spring system in $\si{\radian/\s}$
|
||||
- $\xi$ damping ratio
|
||||
|
||||
|
||||
|
||||
#+name: eq:lagrange_second_kind
|
||||
\begin{equation}
|
||||
@ -186,18 +270,104 @@ As the rotation speed increases, one of the two resonant frequency goes to lower
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/campbell_diagram.pdf]]
|
||||
|
||||
# Bode Plots for different ratio wr/w0
|
||||
|
||||
The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_compare_rotating_speed.pdf]]
|
||||
|
||||
** Integral Force Feedback
|
||||
* Integral Force Feedback
|
||||
** Control Schematic
|
||||
|
||||
** Equations
|
||||
|
||||
** Direct Velocity Feedback
|
||||
** Plant Dynamics
|
||||
|
||||
#+name: fig:root_locus_pure_iff
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_pure_iff.pdf]]
|
||||
|
||||
** Physical Interpretation
|
||||
|
||||
* Integral Force Feedback with Low Pass Filters
|
||||
|
||||
#+name: fig:loop_gain_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/loop_gain_modified_iff.pdf]]
|
||||
|
||||
#+name: fig:root_locus_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_modified_iff_bis.pdf]]
|
||||
|
||||
#+name: fig:root_locus_wi_modified_iff
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_wi_modified_iff.pdf]]
|
||||
|
||||
* Integral Force Feedback with Parallel Springs
|
||||
|
||||
#+name: fig:rotating_xy_platform_springs
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/rotating_xy_platform_springs.pdf]]
|
||||
|
||||
#+name: fig:plant_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_kp.pdf]]
|
||||
|
||||
#+name: fig:root_locus_iff_kps
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kps.pdf]]
|
||||
|
||||
#+name: fig:root_locus_iff_kp_bis
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kp_bis.pdf]]
|
||||
|
||||
#+name: fig:root_locus_opt_gain_iff_kp
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_opt_gain_iff_kp.pdf]]
|
||||
|
||||
#+name: fig:plant_iff_compare_rotating_speed
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
|
||||
|
||||
* Direct Velocity Feedback
|
||||
|
||||
#+name: fig:root_locus_dvf
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_dvf.pdf]]
|
||||
|
||||
* Comparison of the Proposed Active Damping Techniques
|
||||
|
||||
#+name: fig:comp_root_locus
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_root_locus.pdf]]
|
||||
|
||||
#+name: fig:comp_compliance
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_compliance.pdf]]
|
||||
|
||||
#+name: fig:comp_transmissibility
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_transmissibility.pdf]]
|
||||
|
||||
* Conclusion
|
||||
<<sec:conclusion>>
|
||||
|
BIN
paper/paper.pdf
BIN
paper/paper.pdf
Binary file not shown.
332
paper/paper.tex
332
paper/paper.tex
@ -1,4 +1,4 @@
|
||||
% Created 2020-06-08 lun. 11:40
|
||||
% Created 2020-06-22 lun. 13:27
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -31,15 +31,9 @@
|
||||
\affil[1] {Precision Mechatronics Laboratory\NewLineAffil University of Liege, Belgium \NewAffil}
|
||||
\affil[2] {BEAMS Department\NewLineAffil Free University of Brussels, Belgium \NewAffil}
|
||||
\affil[3] {European Synchrotron Radiation Facility \NewLineAffil Grenoble, France e-mail: \textbf{thomas.dehaeze@esrf.fr}}
|
||||
\bibliographystyle{IEEEtran}
|
||||
\date{}
|
||||
\title{Vibration control of a rotating Stewart platform}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Vibration control of a rotating Stewart platform},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 27.0.91 (Org mode 9.4)},
|
||||
pdflang={English}}
|
||||
\title{Active Damping of Rotating Positioning Platforms}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
@ -49,16 +43,23 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:org335669b}
|
||||
\label{sec:orgd20252d}
|
||||
\label{sec:introduction}
|
||||
\cite{dehaeze18_sampl_stabil_for_tomog_exper}
|
||||
|
||||
\section{System Under Study}
|
||||
\label{sec:orgacbe1ae}
|
||||
\subsection{Rotating Positioning Platform}
|
||||
\label{sec:org07e4fc8}
|
||||
Consider the rotating X-Y stage of Figure \ref{fig:rotating_xy_platform}.
|
||||
|
||||
\section{Theory}
|
||||
\label{sec:org8b756e7}
|
||||
\label{sec:theory}
|
||||
|
||||
\subsection{Rotating Positioning Stage}
|
||||
\label{sec:orgbf4a596}
|
||||
\begin{itemize}
|
||||
\item \(k\): Actuator's Stiffness [N/m]
|
||||
\item \(m\): Payload's mass [kg]
|
||||
\item \(\Omega = \dot{\theta}\): rotation speed [rad/s]
|
||||
\item \(F_u\), \(F_v\)
|
||||
\item \(d_u\), \(d_v\)
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -67,39 +68,304 @@
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.5\linewidth]{figs/cedrat_xy25xs.jpg}
|
||||
\caption{\label{fig:cedrat_xy25xs}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equation of Motion}
|
||||
\label{sec:orgaa8880a}
|
||||
\label{sec:orgac1a52a}
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \(u\) and \(v\).
|
||||
|
||||
Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\):
|
||||
\begin{align}
|
||||
Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy):
|
||||
|
||||
Dissipation function \(R\)
|
||||
Kinetic energy \(T\)
|
||||
Potential energy \(V\)
|
||||
\begin{subequations}
|
||||
\label{eq:energy_inertial_frame}
|
||||
T & = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( x^2 + y^2 \right)
|
||||
\end{align}
|
||||
\begin{align}
|
||||
T & = \frac{1}{2} m \left( \left( \dot{u} - \Omega v \right)^2 + \left( \dot{v} + \Omega u \right)^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{u}^2 + \dot{v}^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( u^2 + v^2 \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The Lagrangian is the kinetic energy minus the potential energy.
|
||||
The Lagrangian is the kinetic energy minus the potential energy:
|
||||
\begin{equation}
|
||||
\label{eq:lagrangian_inertial_frame}
|
||||
L = T-V = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} k \left( x^2 + y^2 \right)
|
||||
L = T - V
|
||||
\end{equation}
|
||||
|
||||
From the Lagrange's equations of the second kind \eqref{eq:lagrange_second_kind}, the equation of motion \eqref{eq:eom_mixed} is obtained (\(q_1 = u\), \(q_2 = v\)).
|
||||
\begin{equation}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
|
||||
\subsection{Integral Force Feedback}
|
||||
\label{sec:org754b644}
|
||||
\begin{equation}
|
||||
\frac{d}{dt} \left( \frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial R}{\partial \dot{q}_i} - \frac{\partial V}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
|
||||
with \(Q_i\) is the generalized force associated with the generalized variable \(q_i\) (\(F_u\) and \(F_v\)).
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
m \ddot{u} + c \dot{u} + ( k - m \Omega ) u &= F_u + 2 m \Omega \dot{v} \\
|
||||
m \ddot{v} + c \dot{v} + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) v &= F_v \underbrace{-\,2 m \Omega \dot{u}}_{\text{Coriolis}}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
|
||||
v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\bm{G}_d
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where \(\bm{G}_d\) is a \(2 \times 2\) transfer function matrix.
|
||||
|
||||
\begin{equation}
|
||||
\bm{G}_d = \frac{1}{k} \frac{1}{G_{dp}}
|
||||
\begin{bmatrix}
|
||||
G_{dz} & G_{dc} \\
|
||||
-G_{dc} & G_{dz}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{dp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{dz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
G_{dc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
|
||||
\subsection{Direct Velocity Feedback}
|
||||
\label{sec:org9cbf82a}
|
||||
|
||||
\begin{itemize}
|
||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Natural frequency of the mass-spring system in \(\si{\radian/\s}\)
|
||||
\item \(\xi\) damping ratio
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:lagrange_second_kind}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_j} \right) = \frac{\partial L}{\partial q_j}
|
||||
\end{equation}
|
||||
|
||||
\begin{subequations}
|
||||
\label{eq:eom_mixed}
|
||||
\begin{align}
|
||||
m\ddot{x} + kx = F_u \cos{\theta} - F_v \sin{\theta}\\
|
||||
m\ddot{y} + ky = F_u \sin{\theta} + F_v \cos{\theta}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
Performing the change coordinates from \((x, y)\) to \((d_x, d_y, \theta)\):
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
x & = d_u \cos{\theta} - d_v \sin{\theta}\\
|
||||
y & = d_u \sin{\theta} + d_v \cos{\theta}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
Gives
|
||||
\begin{subequations}
|
||||
\label{eq:oem_coupled}
|
||||
\begin{align}
|
||||
m \ddot{d_u} + (k - m\dot{\theta}^2) d_u &= F_u + 2 m\dot{d_v}\dot{\theta} + m d_v\ddot{\theta} \label{eq:du_coupled} \\
|
||||
m \ddot{d_v} + (k \underbrace{-\ m\dot{\theta}^2}_{\text{Centrif.}}) d_v &= F_v \underbrace{-\ 2 m\dot{d_u}\dot{\theta}}_{\text{Coriolis}} \underbrace{-\ m d_u\ddot{\theta}}_{\text{Euler}} \label{eq:dv_coupled}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
We obtain two differential equations that are coupled through:
|
||||
\begin{itemize}
|
||||
\item \textbf{Euler forces}: \(m d_v \ddot{\theta}\)
|
||||
\item \textbf{Coriolis forces}: \(2 m \dot{d_v} \dot{\theta}\)
|
||||
\end{itemize}
|
||||
|
||||
Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system with mass \(m\) and stiffness \(k- m\dot{\theta}^2\).
|
||||
Thus, the term \(- m\dot{\theta}^2\) acts like a negative stiffness (due to \textbf{centrifugal forces}).
|
||||
|
||||
\subsection{Constant Rotating Speed}
|
||||
\label{sec:org47aaeee}
|
||||
To simplify, let's consider a constant rotating speed \(\dot{\theta} = \Omega\) and thus \(\ddot{\theta} = 0\).
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:coupledplant}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}
|
||||
\begin{bmatrix}
|
||||
ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\
|
||||
-2 m \omega_0 s & ms^2 + (k-m{\omega_0}^2) \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:coupled_plant}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{\frac{1}{k}}{\left( \frac{s^2}{{\omega_0}^2} + (1 - \frac{{\Omega}^2}{{\omega_0}^2}) \right)^2 + \left( 2 \frac{{\Omega} s}{{\omega_0}^2} \right)^2}
|
||||
\begin{bmatrix}
|
||||
\frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} & 2 \frac{\Omega s}{{\omega_0}^2} \\
|
||||
-2 \frac{\Omega s}{{\omega_0}^2} & \frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to one degree of freedom mass spring system.
|
||||
\begin{equation}
|
||||
\label{eq:coupled_plant_no_rot}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{\frac{1}{k}}{\frac{s^2}{{\omega_0}^2} + 1}
|
||||
\begin{bmatrix}
|
||||
1 & 0 \\
|
||||
0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure \ref{fig:campbell_diagram}).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/campbell_diagram.pdf}
|
||||
\caption{\label{fig:campbell_diagram}Campbell Diagram}
|
||||
\end{figure}
|
||||
|
||||
The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_compare_rotating_speed.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed}Caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback}
|
||||
\label{sec:org78c2eab}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:org6a00238}
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:org5480f1b}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:orgbb0952e}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_pure_iff.pdf}
|
||||
\caption{\label{fig:root_locus_pure_iff}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Physical Interpretation}
|
||||
\label{sec:orgdb25e2c}
|
||||
|
||||
\section{Integral Force Feedback with Low Pass Filters}
|
||||
\label{sec:org2985d35}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
|
||||
\caption{\label{fig:loop_gain_modified_iff}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff_bis.pdf}
|
||||
\caption{\label{fig:root_locus_modified_iff}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_wi_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_wi_modified_iff}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:orga4142a5}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/rotating_xy_platform_springs.pdf}
|
||||
\caption{\label{fig:rotating_xy_platform_springs}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_kp.pdf}
|
||||
\caption{\label{fig:plant_iff_kp}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kps.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kps}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kp_bis.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kp_bis}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_opt_gain_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_opt_gain_iff_kp}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_compare_rotating_speed.pdf}
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Direct Velocity Feedback}
|
||||
\label{sec:org6a1be4f}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_dvf.pdf}
|
||||
\caption{\label{fig:root_locus_dvf}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison of the Proposed Active Damping Techniques}
|
||||
\label{sec:orga9658c0}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_root_locus.pdf}
|
||||
\caption{\label{fig:comp_root_locus}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_compliance.pdf}
|
||||
\caption{\label{fig:comp_compliance}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_transmissibility.pdf}
|
||||
\caption{\label{fig:comp_transmissibility}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:org8d24de3}
|
||||
\label{sec:orgcdf948f}
|
||||
\label{sec:conclusion}
|
||||
|
||||
|
||||
\section{Acknowledgment}
|
||||
\label{sec:orgb252937}
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:org6c21e13}
|
||||
|
||||
|
||||
\bibliography{ref}
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user