Add tangled matlab scripts
This commit is contained in:
		@@ -1 +1 @@
 | 
			
		||||
../inkscape/figs
 | 
			
		||||
../inkscape
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 Before Width: | Height: | Size: 71 KiB After Width: | Height: | Size: 70 KiB  | 
@@ -14,7 +14,6 @@
 | 
			
		||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
 | 
			
		||||
 | 
			
		||||
#+PROPERTY: header-args:matlab  :session *MATLAB*
 | 
			
		||||
#+PROPERTY: header-args:matlab+ :tangle matlab/comp_filters_design.m
 | 
			
		||||
#+PROPERTY: header-args:matlab+ :comments org
 | 
			
		||||
#+PROPERTY: header-args:matlab+ :exports both
 | 
			
		||||
#+PROPERTY: header-args:matlab+ :results none
 | 
			
		||||
@@ -35,6 +34,9 @@
 | 
			
		||||
- Section [[sec:notations]]
 | 
			
		||||
 | 
			
		||||
* System Description and Analysis
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/s1_system_description.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:system_description>>
 | 
			
		||||
 | 
			
		||||
** Introduction                                                      :ignore:
 | 
			
		||||
@@ -47,7 +49,7 @@
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
  addpath('./matlab/');
 | 
			
		||||
  addpath('./src/');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -75,13 +77,11 @@ Based on the Figure [[fig:rotating_xy_platform]], the equations of motions are:
 | 
			
		||||
Where $\bm{G}_d$ is a $2 \times 2$ transfer function matrix.
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\frac{1}{k} \frac{1}{G_{dp}}
 | 
			
		||||
\bm{G}_d = \frac{1}{k} \frac{1}{G_{dp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{dz} & G_{dc} \\
 | 
			
		||||
  -G_{dc} & G_{dz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
@@ -391,6 +391,9 @@ They are compared in Figure [[fig:plant_compare_rotating_speed]].
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* Problem with pure Integral Force Feedback
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/s2_iff_pure_int.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:iff_pure_int>>
 | 
			
		||||
 | 
			
		||||
** Introduction                                                      :ignore:
 | 
			
		||||
@@ -406,7 +409,7 @@ They are compared in Figure [[fig:plant_compare_rotating_speed]].
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
  addpath('./matlab/');
 | 
			
		||||
  addpath('./src/');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -714,6 +717,9 @@ It is shown that for non-null rotating speed, one pole is bound to the right-hal
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* Integral Force Feedback with an High Pass Filter
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/s3_iff_hpf.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:iff_pseudo_int>>
 | 
			
		||||
 | 
			
		||||
** Introduction                                                      :ignore:
 | 
			
		||||
@@ -728,7 +734,7 @@ It is shown that for non-null rotating speed, one pole is bound to the right-hal
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
  addpath('./matlab/');
 | 
			
		||||
  addpath('./src/');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -983,7 +989,7 @@ In order to visualize the effect of $\omega_i$ on the attainable damping, the Ro
 | 
			
		||||
  for wi_i = 1:length(wis)
 | 
			
		||||
      set(gca,'ColorOrderIndex',wi_i);
 | 
			
		||||
      wi = wis(wi_i);
 | 
			
		||||
      L(wi_i) = plot(nan, nan, '.', 'DisplayName', sprintf('$\\Omega_i = %.2f \\omega_0$', wi./w0));
 | 
			
		||||
      L(wi_i) = plot(nan, nan, '.', 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wi./w0));
 | 
			
		||||
      for g = gains
 | 
			
		||||
          clpoles = pole(feedback(Giff, (g/(wi+s))*eye(2)));
 | 
			
		||||
          set(gca,'ColorOrderIndex',wi_i);
 | 
			
		||||
@@ -1030,8 +1036,8 @@ In order to visualize the effect of $\omega_i$ on the attainable damping, the Ro
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/root_locus_wi_modified_iff.png]]
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  gains = logspace(-2, 4, 100);
 | 
			
		||||
#+begin_src matlab :exports none :tangle no
 | 
			
		||||
  gains = logspace(-2, 4, 500);
 | 
			
		||||
 | 
			
		||||
  poles_iff_hpf = rootLocusPolesSorted(Giff, 1/(s + wi)*eye(2), gains, 'd_max', 1e-4);
 | 
			
		||||
 | 
			
		||||
@@ -1043,7 +1049,7 @@ In order to visualize the effect of $\omega_i$ on the attainable damping, the Ro
 | 
			
		||||
      wi = wis(wi_i);
 | 
			
		||||
 | 
			
		||||
      set(gca,'ColorOrderIndex',wi_i);
 | 
			
		||||
      L(wi_i) = plot(nan, nan, '.', 'DisplayName', sprintf('$\\Omega_i = %.2f \\omega_0$', wi./w0));
 | 
			
		||||
      L(wi_i) = plot(nan, nan, '.', 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wi./w0));
 | 
			
		||||
 | 
			
		||||
      poles = rootLocusPolesSorted(Giff, 1/(s + wi)*eye(2), gains, 'd_max', 1e-4);
 | 
			
		||||
      for p_i = 1:size(poles, 2)
 | 
			
		||||
@@ -1159,10 +1165,13 @@ To find the optimum, the gain that maximize the simultaneous damping of the mode
 | 
			
		||||
[[file:figs/mod_iff_damping_wi.png]]
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports none :results none
 | 
			
		||||
  exportFig('figs-inkscape/root_locus_wi_modified_iff.pdf', 'width', 'wide', 'height', 'normal', 'png', false, 'pdf', false, 'svg', true);
 | 
			
		||||
  exportFig('figs-inkscape/mod_iff_damping_wi.pdf', 'width', 'wide', 'height', 'normal', 'png', false, 'pdf', false, 'svg', true);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* IFF with a stiffness in parallel with the force sensor
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/s4_iff_kp.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:iff_parallel_stiffness>>
 | 
			
		||||
 | 
			
		||||
** Introduction                                                      :ignore:
 | 
			
		||||
@@ -1175,7 +1184,7 @@ To find the optimum, the gain that maximize the simultaneous damping of the mode
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
  addpath('./matlab/');
 | 
			
		||||
  addpath('./src/');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -1873,6 +1882,10 @@ Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such t
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* Direct Velocity Feedback
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/s5_dvf.m
 | 
			
		||||
:header-args:matlab+: :comments org :mkdirp yes
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:dvf>>
 | 
			
		||||
 | 
			
		||||
** Introduction                                                      :ignore:
 | 
			
		||||
@@ -1885,7 +1898,7 @@ Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such t
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
  addpath('./matlab/');
 | 
			
		||||
  addpath('./src/');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -2097,7 +2110,7 @@ It is shown that for rotating speed $\Omega < \omega_0$, the closed loop system
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/root_locus_dvf.png]]
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
#+begin_src matlab :exports none :tangle no
 | 
			
		||||
  gains = logspace(-2, 1, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
@@ -2137,6 +2150,9 @@ It is shown that for rotating speed $\Omega < \omega_0$, the closed loop system
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* Comparison
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/s6_act_damp_comparison.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:comparison>>
 | 
			
		||||
 | 
			
		||||
** Introduction                                                      :ignore:
 | 
			
		||||
@@ -2150,7 +2166,7 @@ It is shown that for rotating speed $\Omega < \omega_0$, the closed loop system
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
  addpath('./matlab/');
 | 
			
		||||
  addpath('./src/');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -2658,7 +2674,7 @@ The obtained damping ratio and control are shown below.
 | 
			
		||||
  figure;
 | 
			
		||||
  hold on;
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Ciff(1,1), freqs))), ...
 | 
			
		||||
       'DisplayName', 'IFF + LPF')
 | 
			
		||||
       'DisplayName', 'IFF + HPF')
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Ciff_kp(1,1), freqs))), ...
 | 
			
		||||
       'DisplayName', 'IFF + $k_p$')
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Cdvf(1,1), freqs))), ...
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										219
									
								
								matlab/matlab/s1_system_description.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										219
									
								
								matlab/matlab/s1_system_description.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,219 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
% Numerical Values
 | 
			
		||||
% Let's define initial values for the model.
 | 
			
		||||
 | 
			
		||||
k = 1;    % Actuator Stiffness [N/m]
 | 
			
		||||
c = 0.05; % Actuator Damping [N/(m/s)]
 | 
			
		||||
m = 1;    % Payload mass [kg]
 | 
			
		||||
 | 
			
		||||
xi = c/(2*sqrt(k*m));
 | 
			
		||||
w0 = sqrt(k/m); % [rad/s]
 | 
			
		||||
 | 
			
		||||
% Campbell Diagram
 | 
			
		||||
% The Campbell Diagram displays the evolution of the real and imaginary parts of the system as a function of the rotating speed.
 | 
			
		||||
 | 
			
		||||
% It is shown in Figure [[fig:campbell_diagram]], and one can see that the system becomes unstable for $\Omega > \omega_0$ (the real part of one of the poles becomes positive).
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Ws = linspace(0, 2, 51); % Vector of considered rotation speed [rad/s]
 | 
			
		||||
 | 
			
		||||
p_ws = zeros(4, length(Ws));
 | 
			
		||||
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    W = Ws(W_i);
 | 
			
		||||
 | 
			
		||||
    pole_G = pole(1/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2));
 | 
			
		||||
    [~, i_sort] = sort(imag(pole_G));
 | 
			
		||||
    p_ws(:, W_i) = pole_G(i_sort);
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
clear pole_G;
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(1,2,1);
 | 
			
		||||
hold on;
 | 
			
		||||
for p_i = 1:size(p_ws, 1)
 | 
			
		||||
    plot(Ws, real(p_ws(p_i, :)), 'k-')
 | 
			
		||||
end
 | 
			
		||||
plot(Ws, zeros(size(Ws)), 'k--')
 | 
			
		||||
hold off;
 | 
			
		||||
xlabel('Rotation Frequency [rad/s]'); ylabel('Real Part');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(1,2,2);
 | 
			
		||||
hold on;
 | 
			
		||||
for p_i = 1:size(p_ws, 1)
 | 
			
		||||
    plot(Ws,  imag(p_ws(p_i, :)), 'k-')
 | 
			
		||||
    plot(Ws, -imag(p_ws(p_i, :)), 'k-')
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
xlabel('Rotation Frequency [rad/s]'); ylabel('Imaginary Part');
 | 
			
		||||
 | 
			
		||||
% Simscape Model
 | 
			
		||||
% Define the rotating speed for the Simscape Model.
 | 
			
		||||
 | 
			
		||||
W = 0.1; % Rotation Speed [rad/s]
 | 
			
		||||
 | 
			
		||||
Kiff = tf(zeros(2));
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
kp = 0; % Parallel Stiffness [N/m]
 | 
			
		||||
cp = 0; % Parallel Damping [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
open('rotating_frame.slx');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The transfer function from $[F_u, F_v]$ to $[d_u, d_v]$ is identified from the Simscape model.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/K'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/G'], 3, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
G.InputName  = {'Fu', 'Fv'};
 | 
			
		||||
G.OutputName = {'du', 'dv'};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The same transfer function from $[F_u, F_v]$ to $[d_u, d_v]$ is written down from the analytical model.
 | 
			
		||||
 | 
			
		||||
Gth = (1/k)/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
      [(s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2), 2*W*s/(w0^2) ; ...
 | 
			
		||||
       -2*W*s/(w0^2), (s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Both transfer functions are compared in Figure [[fig:plant_simscape_analytical]] and are found to perfectly match.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
ax1 = subplot(2, 2, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(1,1), freqs))), '-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gth(1,1), freqs))), '--')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
 | 
			
		||||
title('$d_u/F_u$, $d_v/F_v$');
 | 
			
		||||
 | 
			
		||||
ax3 = subplot(2, 2, 3);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1,1), freqs))), '-')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gth(1,1), freqs))), '--')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 2, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(1,2), freqs))), '-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gth(1,2), freqs))), '--')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
 | 
			
		||||
title('$d_u/F_v$, $d_v/F_u$');
 | 
			
		||||
 | 
			
		||||
ax4 = subplot(2, 2, 4);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1,2), freqs))), '-', ...
 | 
			
		||||
     'DisplayName', 'Simscape')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gth(1,2), freqs))), '--', ...
 | 
			
		||||
     'DisplayName', 'Analytical')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2,ax3,ax4],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
linkaxes([ax1,ax2],'y');
 | 
			
		||||
 | 
			
		||||
% Effect of the rotation speed
 | 
			
		||||
% The transfer functions from $[F_u, F_v]$ to $[d_u, d_v]$ are identified for the following rotating speeds.
 | 
			
		||||
 | 
			
		||||
Ws = [0, 0.2, 0.7, 1.1]*w0; % Rotating Speeds [rad/s]
 | 
			
		||||
 | 
			
		||||
Gs = {zeros(2, 2, length(Ws))};
 | 
			
		||||
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    W = Ws(W_i);
 | 
			
		||||
 | 
			
		||||
    Gs(:, :, W_i) = {(1/k)/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
                     [(s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2), 2*W*s/(w0^2) ; ...
 | 
			
		||||
                      -2*W*s/(w0^2), (s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)]};
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% They are compared in Figure [[fig:plant_compare_rotating_speed]].
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
ax1 = subplot(2, 2, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    plot(freqs, abs(squeeze(freqresp(Gs{W_i}(1,1), freqs))), ...
 | 
			
		||||
         'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Ws(W_i)/w0))
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
title('$d_u/F_u$, $d_v/F_v$');
 | 
			
		||||
 | 
			
		||||
ax3 = subplot(2, 2, 3);
 | 
			
		||||
hold on;
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{W_i}(1,1), freqs))))
 | 
			
		||||
end
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 2, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    plot(freqs, abs(squeeze(freqresp(Gs{W_i}(2,1), freqs))))
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
 | 
			
		||||
title('$d_u/F_v$, $d_v/F_u$');
 | 
			
		||||
 | 
			
		||||
ax4 = subplot(2, 2, 4);
 | 
			
		||||
hold on;
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{W_i}(1,1), freqs))))
 | 
			
		||||
end
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2,ax3,ax4],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
linkaxes([ax1,ax2],'y');
 | 
			
		||||
							
								
								
									
										193
									
								
								matlab/matlab/s2_iff_pure_int.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										193
									
								
								matlab/matlab/s2_iff_pure_int.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,193 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
% Plant Parameters
 | 
			
		||||
% Let's define initial values for the model.
 | 
			
		||||
 | 
			
		||||
k = 1;    % Actuator Stiffness [N/m]
 | 
			
		||||
c = 0.05; % Actuator Damping [N/(m/s)]
 | 
			
		||||
m = 1;    % Payload mass [kg]
 | 
			
		||||
 | 
			
		||||
xi = c/(2*sqrt(k*m));
 | 
			
		||||
w0 = sqrt(k/m); % [rad/s]
 | 
			
		||||
 | 
			
		||||
kp = 0; % [N/m]
 | 
			
		||||
cp = 0; % [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
% Simscape Model
 | 
			
		||||
% The rotation speed is set to $\Omega = 0.1 \omega_0$.
 | 
			
		||||
 | 
			
		||||
W = 0.1*w0; % [rad/s]
 | 
			
		||||
 | 
			
		||||
Kiff = tf(zeros(2));
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
open('rotating_frame.slx');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% And the transfer function from $[F_u, F_v]$ to $[f_u, f_v]$ is identified using the Simscape model.
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/K'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/G'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Giff = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Giff.InputName  = {'Fu', 'Fv'};
 | 
			
		||||
Giff.OutputName = {'fu', 'fv'};
 | 
			
		||||
 | 
			
		||||
% Comparison of the Analytical Model and the Simscape Model
 | 
			
		||||
% The same transfer function from $[F_u, F_v]$ to $[f_u, f_v]$ is written down from the analytical model.
 | 
			
		||||
 | 
			
		||||
Giff_th = 1/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
          [(s^2/w0^2 - W^2/w0^2)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)) + (2*W*s/(w0^2))^2, - (2*xi*s/w0 + 1)*2*W*s/(w0^2) ; ...
 | 
			
		||||
           (2*xi*s/w0 + 1)*2*W*s/(w0^2), (s^2/w0^2 - W^2/w0^2)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))+ (2*W*s/(w0^2))^2];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The two are compared in Figure [[fig:plant_iff_comp_simscape_analytical]] and found to perfectly match.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
ax1 = subplot(2, 2, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs))), '-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff_th(1,1), freqs))), '--')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
 | 
			
		||||
title('$f_u/F_u$, $f_v/F_v$');
 | 
			
		||||
 | 
			
		||||
ax3 = subplot(2, 2, 3);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,1), freqs))), '-')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_th(1,1), freqs))), '--')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 2, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff(1,2), freqs))), '-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff_th(1,2), freqs))), '--')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
 | 
			
		||||
title('$f_u/F_v$, $f_v/F_u$');
 | 
			
		||||
 | 
			
		||||
ax4 = subplot(2, 2, 4);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,2), freqs))), '-', ...
 | 
			
		||||
     'DisplayName', 'Simscape')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_th(1,2), freqs))), '--', ...
 | 
			
		||||
     'DisplayName', 'Analytical')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
legend('location', 'northeast');
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2,ax3,ax4],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
linkaxes([ax1,ax2],'y');
 | 
			
		||||
 | 
			
		||||
% Effect of the rotation speed
 | 
			
		||||
% The transfer functions from $[F_u, F_v]$ to $[f_u, f_v]$ are identified for the following rotating speeds.
 | 
			
		||||
 | 
			
		||||
Ws = [0, 0.2, 0.7, 1.1]*w0; % Rotating Speeds [rad/s]
 | 
			
		||||
 | 
			
		||||
Gsiff = {zeros(2, 2, length(Ws))};
 | 
			
		||||
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    W = Ws(W_i);
 | 
			
		||||
 | 
			
		||||
    Gsiff(:, :, W_i) = {1/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
                      [(s^2/w0^2 - W^2/w0^2)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)) + (2*W*s/(w0^2))^2, - (2*xi*s/w0 + 1)*2*W*s/(w0^2) ; ...
 | 
			
		||||
                       (2*xi*s/w0 + 1)*2*W*s/(w0^2), (s^2/w0^2 - W^2/w0^2)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))+ (2*W*s/(w0^2))^2]};
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The obtained transfer functions are shown in Figure [[fig:plant_iff_compare_rotating_speed]].
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(2, 1, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    plot(freqs, abs(squeeze(freqresp(Gsiff{W_i}(1,1), freqs))), ...
 | 
			
		||||
         'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Ws(W_i)/w0))
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 1, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    plot(freqs, 180/pi*angle(squeeze(freqresp(Gsiff{W_i}(1,1), freqs))))
 | 
			
		||||
end
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
 | 
			
		||||
% Decentralized Integral Force Feedback
 | 
			
		||||
% The decentralized IFF controller consists of pure integrators:
 | 
			
		||||
% \begin{equation}
 | 
			
		||||
%   \bm{K}_{\text{IFF}}(s) = \frac{g}{s} \begin{bmatrix}
 | 
			
		||||
%     1 & 0 \\
 | 
			
		||||
%     0 & 1
 | 
			
		||||
%   \end{bmatrix}
 | 
			
		||||
% \end{equation}
 | 
			
		||||
 | 
			
		||||
% The Root Locus (evolution of the poles of the closed loop system in the complex plane as a function of $g$) is shown in Figure [[fig:root_locus_pure_iff]].
 | 
			
		||||
% It is shown that for non-null rotating speed, one pole is bound to the right-half plane, and thus the closed loop system is unstable.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 4, 100);
 | 
			
		||||
 | 
			
		||||
hold on;
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    set(gca,'ColorOrderIndex',W_i);
 | 
			
		||||
    plot(real(pole(Gsiff{W_i})),  imag(pole(Gsiff{W_i})), 'x', ...
 | 
			
		||||
         'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Ws(W_i)/w0));
 | 
			
		||||
    set(gca,'ColorOrderIndex',W_i);
 | 
			
		||||
    plot(real(tzero(Gsiff{W_i})),  imag(tzero(Gsiff{W_i})), 'o', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
    for g = gains
 | 
			
		||||
        set(gca,'ColorOrderIndex',W_i);
 | 
			
		||||
        cl_poles = pole(feedback(Gsiff{W_i}, g/s*eye(2)));
 | 
			
		||||
        plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-2, 0.5]); ylim([0, 2.5]);
 | 
			
		||||
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
legend('location', 'northwest');
 | 
			
		||||
							
								
								
									
										251
									
								
								matlab/matlab/s3_iff_hpf.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										251
									
								
								matlab/matlab/s3_iff_hpf.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,251 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
% Plant Parameters
 | 
			
		||||
% Let's define initial values for the model.
 | 
			
		||||
 | 
			
		||||
k = 1;    % Actuator Stiffness [N/m]
 | 
			
		||||
c = 0.05; % Actuator Damping [N/(m/s)]
 | 
			
		||||
m = 1;    % Payload mass [kg]
 | 
			
		||||
 | 
			
		||||
xi = c/(2*sqrt(k*m));
 | 
			
		||||
w0 = sqrt(k/m); % [rad/s]
 | 
			
		||||
 | 
			
		||||
kp = 0; % [N/m]
 | 
			
		||||
cp = 0; % [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
% Modified Integral Force Feedback Controller
 | 
			
		||||
% Let's modify the initial Integral Force Feedback Controller ; instead of using pure integrators, pseudo integrators (i.e. low pass filters) are used:
 | 
			
		||||
% \begin{equation}
 | 
			
		||||
%   K_{\text{IFF}}(s) = g\frac{1}{\omega_i + s} \begin{bmatrix}
 | 
			
		||||
%   1 & 0 \\
 | 
			
		||||
%   0 & 1
 | 
			
		||||
% \end{bmatrix}
 | 
			
		||||
% \end{equation}
 | 
			
		||||
% where $\omega_i$ characterize down to which frequency the signal is integrated.
 | 
			
		||||
 | 
			
		||||
% Let's arbitrary choose the following control parameters:
 | 
			
		||||
 | 
			
		||||
g = 2;
 | 
			
		||||
wi = 0.1*w0;
 | 
			
		||||
 | 
			
		||||
Kiff = (g/(wi+s))*eye(2);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% And the following rotating speed.
 | 
			
		||||
 | 
			
		||||
W = 0.1*w0;
 | 
			
		||||
 | 
			
		||||
Giff = 1/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
        [(s^2/w0^2 - W^2/w0^2)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)) + (2*W*s/(w0^2))^2, - (2*xi*s/w0 + 1)*2*W*s/(w0^2) ; ...
 | 
			
		||||
         (2*xi*s/w0 + 1)*2*W*s/(w0^2), (s^2/w0^2 - W^2/w0^2)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))+ (2*W*s/(w0^2))^2];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The obtained Loop Gain is shown in Figure [[fig:loop_gain_modified_iff]].
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(2, 1, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff(1,1)*(g/s), freqs))))
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff(1,1)*Kiff(1,1), freqs))))
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Loop Gain');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 1, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,1)*(g/s), freqs))), ...
 | 
			
		||||
     'DisplayName', 'IFF')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,1)*Kiff(1,1), freqs))), ...
 | 
			
		||||
     'DisplayName', 'IFF + HPF')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
 | 
			
		||||
% Root Locus
 | 
			
		||||
% As shown in the Root Locus plot (Figure [[fig:root_locus_modified_iff]]), for some value of the gain, the system remains stable.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 4, 100);
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(1, 2, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
% Pure Integrator
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'x', 'DisplayName', 'IFF');
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'o', 'HandleVisibility', 'off');
 | 
			
		||||
for g = gains
 | 
			
		||||
    clpoles = pole(feedback(Giff, (g/s)*eye(2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',1);
 | 
			
		||||
    plot(real(clpoles), imag(clpoles), '.', 'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
% Modified IFF
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'x', 'DisplayName', 'IFF + HPF');
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'o', 'HandleVisibility', 'off');
 | 
			
		||||
for g = gains
 | 
			
		||||
    clpoles = pole(feedback(Giff, (g/(wi+s))*eye(2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',2);
 | 
			
		||||
    plot(real(clpoles), imag(clpoles), '.', 'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-2, 0.5]); ylim([-1.25, 1.25]);
 | 
			
		||||
legend('location', 'northwest');
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(1, 2, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
% Pure Integrator
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'x');
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'o');
 | 
			
		||||
for g = gains
 | 
			
		||||
    clpoles = pole(feedback(Giff, (g/s)*eye(2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',1);
 | 
			
		||||
    plot(real(clpoles), imag(clpoles), '.');
 | 
			
		||||
end
 | 
			
		||||
% Modified IFF
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'x');
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'o');
 | 
			
		||||
for g = gains
 | 
			
		||||
    clpoles = pole(feedback(Giff, (g/(wi+s))*eye(2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',2);
 | 
			
		||||
    plot(real(clpoles), imag(clpoles), '.');
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-0.2, 0.1]); ylim([-0.15, 0.15]);
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
 | 
			
		||||
% What is the optimal $\omega_i$ and $g$?
 | 
			
		||||
% In order to visualize the effect of $\omega_i$ on the attainable damping, the Root Locus is displayed in Figure [[fig:root_locus_wi_modified_iff]] for the following $\omega_i$:
 | 
			
		||||
 | 
			
		||||
wis = [0.01, 0.1, 0.5, 1]*w0; % [rad/s]
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 4, 100);
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(1, 2, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
for wi_i = 1:length(wis)
 | 
			
		||||
    set(gca,'ColorOrderIndex',wi_i);
 | 
			
		||||
    wi = wis(wi_i);
 | 
			
		||||
    L(wi_i) = plot(nan, nan, '.', 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wi./w0));
 | 
			
		||||
    for g = gains
 | 
			
		||||
        clpoles = pole(feedback(Giff, (g/(wi+s))*eye(2)));
 | 
			
		||||
        set(gca,'ColorOrderIndex',wi_i);
 | 
			
		||||
        plot(real(clpoles), imag(clpoles), '.');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'kx');
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'ko');
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-2.3, 0.1]); ylim([-1.2, 1.2]);
 | 
			
		||||
xticks([-2:1:2]); yticks([-2:1:2]);
 | 
			
		||||
legend(L, 'location', 'northwest');
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
 | 
			
		||||
clear L
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(1, 2, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
for wi_i = 1:length(wis)
 | 
			
		||||
    set(gca,'ColorOrderIndex', wi_i);
 | 
			
		||||
    wi = wis(wi_i);
 | 
			
		||||
    for g = gains
 | 
			
		||||
        clpoles = pole(feedback(Giff, (g/(wi+s))*eye(2)));
 | 
			
		||||
        set(gca,'ColorOrderIndex', wi_i);
 | 
			
		||||
        plot(real(clpoles), imag(clpoles), '.');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'kx');
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'ko');
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-0.2, 0.1]); ylim([-0.15, 0.15]);
 | 
			
		||||
xticks([-0.2:0.1:0.1]); yticks([-0.2:0.1:0.2]);
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% For the controller
 | 
			
		||||
% \begin{equation}
 | 
			
		||||
%   K_{\text{IFF}}(s) = g\frac{1}{\omega_i + s} \begin{bmatrix}
 | 
			
		||||
%   1 & 0 \\
 | 
			
		||||
%   0 & 1
 | 
			
		||||
% \end{bmatrix}
 | 
			
		||||
% \end{equation}
 | 
			
		||||
% The gain at which the system becomes unstable is
 | 
			
		||||
% \begin{equation}
 | 
			
		||||
%   g_\text{max} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right) \label{eq:iff_gmax}
 | 
			
		||||
% \end{equation}
 | 
			
		||||
 | 
			
		||||
% While it seems that small $\omega_i$ do allow more damping to be added to the system (Figure [[fig:root_locus_wi_modified_iff]]), the control gains may be limited to small values due to eqref:eq:iff_gmax thus reducing the attainable damping.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% There must be an optimum for $\omega_i$.
 | 
			
		||||
% To find the optimum, the gain that maximize the simultaneous damping of the mode is identified for a wide range of $\omega_i$ (Figure [[fig:mod_iff_damping_wi]]).
 | 
			
		||||
 | 
			
		||||
wis = logspace(-2, 1, 31)*w0; % [rad/s]
 | 
			
		||||
 | 
			
		||||
opt_zeta = zeros(1, length(wis)); % Optimal simultaneous damping
 | 
			
		||||
opt_gain = zeros(1, length(wis)); % Corresponding optimal gain
 | 
			
		||||
 | 
			
		||||
for wi_i = 1:length(wis)
 | 
			
		||||
    wi = wis(wi_i);
 | 
			
		||||
    gains = linspace(0, (w0^2/W^2 - 1)*wi, 100);
 | 
			
		||||
 | 
			
		||||
    for g = gains
 | 
			
		||||
        Kiff = (g/(wi+s))*eye(2);
 | 
			
		||||
 | 
			
		||||
        [w, zeta] = damp(minreal(feedback(Giff, Kiff)));
 | 
			
		||||
 | 
			
		||||
        if min(zeta) > opt_zeta(wi_i) && all(zeta > 0)
 | 
			
		||||
            opt_zeta(wi_i) = min(zeta);
 | 
			
		||||
            opt_gain(wi_i) = g;
 | 
			
		||||
        end
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
yyaxis left
 | 
			
		||||
plot(wis, opt_zeta, '-o', 'DisplayName', '$\xi_{cl}$');
 | 
			
		||||
set(gca, 'YScale', 'lin');
 | 
			
		||||
ylim([0,1]);
 | 
			
		||||
ylabel('Attainable Damping Ratio $\xi$');
 | 
			
		||||
 | 
			
		||||
yyaxis right
 | 
			
		||||
hold on;
 | 
			
		||||
plot(wis, opt_gain, '-x', 'DisplayName', '$g_{opt}$');
 | 
			
		||||
plot(wis, wis*((w0/W)^2 - 1), '--', 'DisplayName', '$g_{max}$');
 | 
			
		||||
set(gca, 'YScale', 'lin');
 | 
			
		||||
ylim([0,10]);
 | 
			
		||||
ylabel('Controller gain $g$');
 | 
			
		||||
 | 
			
		||||
xlabel('$\omega_i/\omega_0$');
 | 
			
		||||
set(gca, 'XScale', 'log');
 | 
			
		||||
legend('location', 'northeast');
 | 
			
		||||
							
								
								
									
										389
									
								
								matlab/matlab/s4_iff_kp.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										389
									
								
								matlab/matlab/s4_iff_kp.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,389 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
% Plant Parameters
 | 
			
		||||
% Let's define initial values for the model.
 | 
			
		||||
 | 
			
		||||
k = 1;    % Actuator Stiffness [N/m]
 | 
			
		||||
c = 0.05; % Actuator Damping [N/(m/s)]
 | 
			
		||||
m = 1;    % Payload mass [kg]
 | 
			
		||||
 | 
			
		||||
xi = c/(2*sqrt(k*m));
 | 
			
		||||
w0 = sqrt(k/m); % [rad/s]
 | 
			
		||||
 | 
			
		||||
kp = 0; % [N/m]
 | 
			
		||||
cp = 0; % [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
% Comparison of the Analytical Model and the Simscape Model
 | 
			
		||||
% The same transfer function from $[F_u, F_v]$ to $[f_u, f_v]$ is written down from the analytical model.
 | 
			
		||||
 | 
			
		||||
W = 0.1*w0; % [rad/s]
 | 
			
		||||
 | 
			
		||||
kp = 1.5*m*W^2;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
Kiff = tf(zeros(2));
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
open('rotating_frame.slx');
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/K'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/G'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Giff = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Giff.InputName  = {'Fu', 'Fv'};
 | 
			
		||||
Giff.OutputName = {'fu', 'fv'};
 | 
			
		||||
 | 
			
		||||
w0p = sqrt((k + kp)/m);
 | 
			
		||||
xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
 | 
			
		||||
Giff_th = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
 | 
			
		||||
                   (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
 | 
			
		||||
                   (2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2 ];
 | 
			
		||||
Giff_th.InputName  = {'Fu', 'Fv'};
 | 
			
		||||
Giff_th.OutputName = {'fu', 'fv'};
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
ax1 = subplot(2, 2, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs))), '-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff_th(1,1), freqs))), '--')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
 | 
			
		||||
title('$f_u/F_u$, $f_v/F_v$');
 | 
			
		||||
 | 
			
		||||
ax3 = subplot(2, 2, 3);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,1), freqs))), '-')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_th(1,1), freqs))), '--')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 2, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff(1,2), freqs))), '-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff_th(1,2), freqs))), '--')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
 | 
			
		||||
title('$f_u/F_v$, $f_v/F_u$');
 | 
			
		||||
 | 
			
		||||
ax4 = subplot(2, 2, 4);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,2), freqs))), '-', ...
 | 
			
		||||
     'DisplayName', 'Simscape')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_th(1,2), freqs))), '--', ...
 | 
			
		||||
     'DisplayName', 'Analytical')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
legend('location', 'northeast');
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2,ax3,ax4],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
linkaxes([ax1,ax2],'y');
 | 
			
		||||
 | 
			
		||||
% Effect of the parallel stiffness on the IFF plant
 | 
			
		||||
% The rotation speed is set to $\Omega = 0.1 \omega_0$.
 | 
			
		||||
 | 
			
		||||
W = 0.1*w0; % [rad/s]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% And the IFF plant (transfer function from $[F_u, F_v]$ to $[f_u, f_v]$) is identified in three different cases:
 | 
			
		||||
% - without parallel stiffness
 | 
			
		||||
% - with a small parallel stiffness $k_p < m \Omega^2$
 | 
			
		||||
% - with a large parallel stiffness $k_p > m \Omega^2$
 | 
			
		||||
 | 
			
		||||
% The results are shown in Figure [[fig:plant_iff_kp]].
 | 
			
		||||
 | 
			
		||||
% One can see that for $k_p > m \Omega^2$, the systems shows alternating complex conjugate poles and zeros.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
kp = 0;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
w0p = sqrt((k + kp)/m);
 | 
			
		||||
xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
 | 
			
		||||
Giff = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
 | 
			
		||||
    (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
 | 
			
		||||
    (2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
 | 
			
		||||
 | 
			
		||||
kp = 0.5*m*W^2;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
w0p = sqrt((k + kp)/m);
 | 
			
		||||
xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
 | 
			
		||||
Giff_s = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
 | 
			
		||||
    (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
 | 
			
		||||
    (2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
 | 
			
		||||
 | 
			
		||||
kp = 1.5*m*W^2;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
w0p = sqrt((k + kp)/m);
 | 
			
		||||
xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
 | 
			
		||||
Giff_l = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
 | 
			
		||||
    (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
 | 
			
		||||
    (2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2];
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(2, 1, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff(1,1),   freqs))), 'k-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff_s(1,1), freqs))), 'k--')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Giff_l(1,1), freqs))), 'k:')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 1, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,1),   freqs))), 'k-', ...
 | 
			
		||||
     'DisplayName', '$k_p = 0$')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_s(1,1), freqs))), 'k--', ...
 | 
			
		||||
     'DisplayName', '$k_p < m\Omega^2$')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff_l(1,1), freqs))), 'k:', ...
 | 
			
		||||
     'DisplayName', '$k_p > m\Omega^2$')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
 | 
			
		||||
% IFF when adding a spring in parallel
 | 
			
		||||
% In Figure [[fig:root_locus_iff_kp]] is displayed the Root Locus in the three considered cases with
 | 
			
		||||
% \begin{equation}
 | 
			
		||||
%   K_{\text{IFF}} = \frac{g}{s} \begin{bmatrix}
 | 
			
		||||
%   1 & 0 \\
 | 
			
		||||
%   0 & 1
 | 
			
		||||
% \end{bmatrix}
 | 
			
		||||
% \end{equation}
 | 
			
		||||
 | 
			
		||||
% One can see that for $k_p > m \Omega^2$, the root locus stays in the left half of the complex plane and thus the control system is unconditionally stable.
 | 
			
		||||
 | 
			
		||||
% Thus, decentralized IFF controller with pure integrators can be used if:
 | 
			
		||||
% \begin{equation}
 | 
			
		||||
%   k_{p} > m \Omega^2
 | 
			
		||||
% \end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 2, 100);
 | 
			
		||||
 | 
			
		||||
subplot(1,2,1);
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'x', ...
 | 
			
		||||
     'DisplayName', '$k_p = 0$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'o', ...
 | 
			
		||||
     'HandleVisibility', 'off');
 | 
			
		||||
for g = gains
 | 
			
		||||
    cl_poles = pole(feedback(Giff, (g/s)*eye(2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',1);
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(pole(Giff_s)),  imag(pole(Giff_s)), 'x', ...
 | 
			
		||||
     'DisplayName', '$k_p < m\Omega^2$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(tzero(Giff_s)),  imag(tzero(Giff_s)), 'o', ...
 | 
			
		||||
     'HandleVisibility', 'off');
 | 
			
		||||
for g = gains
 | 
			
		||||
    cl_poles = pole(feedback(Giff_s, (g/s)*eye(2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',2);
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
set(gca,'ColorOrderIndex',3);
 | 
			
		||||
plot(real(pole(Giff_l)),  imag(pole(Giff_l)), 'x', ...
 | 
			
		||||
     'DisplayName', '$k_p > m\Omega^2$');
 | 
			
		||||
set(gca,'ColorOrderIndex',3);
 | 
			
		||||
plot(real(tzero(Giff_l)),  imag(tzero(Giff_l)), 'o', ...
 | 
			
		||||
     'HandleVisibility', 'off');
 | 
			
		||||
for g = gains
 | 
			
		||||
    set(gca,'ColorOrderIndex',3);
 | 
			
		||||
    cl_poles = pole(feedback(Giff_l, (g/s)*eye(2)));
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-1, 0.2]); ylim([0, 1.2]);
 | 
			
		||||
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
legend('location', 'northwest');
 | 
			
		||||
 | 
			
		||||
subplot(1,2,2);
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'x');
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'o');
 | 
			
		||||
for g = gains
 | 
			
		||||
    cl_poles = pole(feedback(Giff, (g/s)*eye(2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',1);
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(pole(Giff_s)),  imag(pole(Giff_s)), 'x');
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(tzero(Giff_s)),  imag(tzero(Giff_s)), 'o');
 | 
			
		||||
for g = gains
 | 
			
		||||
    cl_poles = pole(feedback(Giff_s, (g/s)*eye(2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',2);
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
set(gca,'ColorOrderIndex',3);
 | 
			
		||||
plot(real(pole(Giff_l)),  imag(pole(Giff_l)), 'x');
 | 
			
		||||
set(gca,'ColorOrderIndex',3);
 | 
			
		||||
plot(real(tzero(Giff_l)),  imag(tzero(Giff_l)), 'o');
 | 
			
		||||
for g = gains
 | 
			
		||||
    set(gca,'ColorOrderIndex',3);
 | 
			
		||||
    cl_poles = pole(feedback(Giff_l, (g/s)*eye(2)));
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.');
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-0.04, 0.06]); ylim([0, 0.1]);
 | 
			
		||||
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
 | 
			
		||||
% Effect of $k_p$ on the attainable damping
 | 
			
		||||
% However, having large values of $k_p$ may:
 | 
			
		||||
% - decrease the actuator force authority
 | 
			
		||||
% - decrease the attainable damping
 | 
			
		||||
 | 
			
		||||
% To study the second point, Root Locus plots for the following values of $k_p$ are shown in Figure [[fig:root_locus_iff_kps]].
 | 
			
		||||
 | 
			
		||||
kps = [2, 20, 40]*m*W^2;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% It is shown that large values of $k_p$ decreases the attainable damping.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 4, 500);
 | 
			
		||||
 | 
			
		||||
hold on;
 | 
			
		||||
for kp_i = 1:length(kps)
 | 
			
		||||
    kp = kps(kp_i);
 | 
			
		||||
 | 
			
		||||
    w0p = sqrt((k + kp)/m);
 | 
			
		||||
    xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
 | 
			
		||||
    Giff = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
 | 
			
		||||
        (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
 | 
			
		||||
        (2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2 ];
 | 
			
		||||
 | 
			
		||||
    set(gca,'ColorOrderIndex',kp_i);
 | 
			
		||||
    plot(real(pole(Giff)),  imag(pole(Giff)), 'x', ...
 | 
			
		||||
         'DisplayName', sprintf('$k_p = %.1f m \\Omega^2$', kp/(m*W^2)));
 | 
			
		||||
    set(gca,'ColorOrderIndex',kp_i);
 | 
			
		||||
    plot(real(tzero(Giff)),  imag(tzero(Giff)), 'o', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
    for g = gains
 | 
			
		||||
        Kiffa = (g/s)*eye(2);
 | 
			
		||||
        cl_poles = pole(feedback(Giff, Kiffa));
 | 
			
		||||
        set(gca,'ColorOrderIndex',kp_i);
 | 
			
		||||
        plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-1.2, 0.2]); ylim([0, 1.4]);
 | 
			
		||||
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
legend('location', 'northwest');
 | 
			
		||||
 | 
			
		||||
% Optimal Gain
 | 
			
		||||
% Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such that maximum damping are added to the poles of the closed loop system.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
kp = 5*m*W^2;
 | 
			
		||||
cp = 0.01;
 | 
			
		||||
 | 
			
		||||
w0p = sqrt((k + kp)/m);
 | 
			
		||||
xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
 | 
			
		||||
Giff = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
 | 
			
		||||
    (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
 | 
			
		||||
    (2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2 ];
 | 
			
		||||
 | 
			
		||||
opt_zeta = 0;
 | 
			
		||||
opt_gain = 0;
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 4, 1000);
 | 
			
		||||
 | 
			
		||||
for g = gains
 | 
			
		||||
    Kiff = (g/s)*eye(2);
 | 
			
		||||
 | 
			
		||||
    [w, zeta] = damp(minreal(feedback(Giff, Kiff)));
 | 
			
		||||
 | 
			
		||||
    if min(zeta) > opt_zeta && all(zeta > 0)
 | 
			
		||||
        opt_zeta = min(zeta);
 | 
			
		||||
        opt_gain = min(g);
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 4, 1000);
 | 
			
		||||
 | 
			
		||||
hold on;
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'kx');
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'ko');
 | 
			
		||||
for g = gains
 | 
			
		||||
    clpoles = pole(minreal(feedback(Giff, (g/s)*eye(2))));
 | 
			
		||||
    plot(real(clpoles), imag(clpoles), 'k.');
 | 
			
		||||
end
 | 
			
		||||
% Optimal Gain
 | 
			
		||||
clpoles = pole(minreal(feedback(Giff, (opt_gain/s)*eye(2))));
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(clpoles), imag(clpoles), 'x');
 | 
			
		||||
for clpole = clpoles'
 | 
			
		||||
  set(gca,'ColorOrderIndex',1);
 | 
			
		||||
  plot([0, real(clpole)], [0, imag(clpole)], '-', 'LineWidth', 1);
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-1.2, 0.2]); ylim([0, 1.4]);
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
							
								
								
									
										159
									
								
								matlab/matlab/s5_dvf.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										159
									
								
								matlab/matlab/s5_dvf.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,159 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
% Plant Parameters
 | 
			
		||||
% Let's define initial values for the model.
 | 
			
		||||
 | 
			
		||||
k = 1;    % Actuator Stiffness [N/m]
 | 
			
		||||
c = 0.05; % Actuator Damping [N/(m/s)]
 | 
			
		||||
m = 1;    % Payload mass [kg]
 | 
			
		||||
 | 
			
		||||
xi = c/(2*sqrt(k*m));
 | 
			
		||||
w0 = sqrt(k/m); % [rad/s]
 | 
			
		||||
 | 
			
		||||
kp = 0; % [N/m]
 | 
			
		||||
cp = 0; % [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
% Comparison of the Analytical Model and the Simscape Model
 | 
			
		||||
% The rotating speed is set to $\Omega = 0.1 \omega_0$.
 | 
			
		||||
 | 
			
		||||
W = 0.1*w0;
 | 
			
		||||
 | 
			
		||||
Kiff = tf(zeros(2));
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
open('rotating_frame.slx');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% And the transfer function from $[F_u, F_v]$ to $[v_u, v_v]$ is identified using the Simscape model.
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/K'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/G'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Gdvf = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Gdvf.InputName  = {'Fu', 'Fv'};
 | 
			
		||||
Gdvf.OutputName = {'Vu', 'Vv'};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The same transfer function from $[F_u, F_v]$ to $[v_u, v_v]$ is written down from the analytical model.
 | 
			
		||||
 | 
			
		||||
Gdvf_th = (s/k)/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
          [(s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2), 2*W*s/(w0^2) ; ...
 | 
			
		||||
           -2*W*s/(w0^2), (s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)];
 | 
			
		||||
 | 
			
		||||
Gdvf_th.InputName  = {'Fu', 'Fv'};
 | 
			
		||||
Gdvf_th.OutputName = {'vu', 'vv'};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The two are compared in Figure [[fig:plant_iff_comp_simscape_analytical]] and found to perfectly match.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
ax1 = subplot(2, 2, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs))), '-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gdvf_th(1,1), freqs))), '--')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [$\frac{m/s}{N}$]');
 | 
			
		||||
title('$v_u/F_u$, $v_v/F_v$');
 | 
			
		||||
 | 
			
		||||
ax3 = subplot(2, 2, 3);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(1,1), freqs))), '-')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf_th(1,1), freqs))), '--')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 2, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gdvf(1,2), freqs))), '-')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gdvf_th(1,2), freqs))), '--')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [$\frac{m/s}{N}$]');
 | 
			
		||||
title('$v_u/F_v$, $v_v/F_u$');
 | 
			
		||||
 | 
			
		||||
ax4 = subplot(2, 2, 4);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(1,2), freqs))), '-')
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf_th(1,2), freqs))), '--')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks(-180:90:180);
 | 
			
		||||
ylim([-180 180]);
 | 
			
		||||
hold off;
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2,ax3,ax4],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'y');
 | 
			
		||||
 | 
			
		||||
% Root Locus
 | 
			
		||||
% The Decentralized Direct Velocity Feedback controller consist of a pure gain on the diagonal:
 | 
			
		||||
% \begin{equation}
 | 
			
		||||
%   K_{\text{DVF}}(s) = g \begin{bmatrix}
 | 
			
		||||
%   1 & 0 \\
 | 
			
		||||
%   0 & 1
 | 
			
		||||
% \end{bmatrix}
 | 
			
		||||
% \end{equation}
 | 
			
		||||
 | 
			
		||||
% The corresponding Root Locus plots for the following rotating speeds are shown in Figure [[fig:root_locus_dvf]].
 | 
			
		||||
 | 
			
		||||
Ws = [0, 0.2, 0.7, 1.1]*w0; % Rotating Speeds [rad/s]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% It is shown that for rotating speed $\Omega < \omega_0$, the closed loop system is unconditionally stable and arbitrary damping can be added to the poles.
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 1, 100);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
hold on;
 | 
			
		||||
for W_i = 1:length(Ws)
 | 
			
		||||
    W = Ws(W_i);
 | 
			
		||||
 | 
			
		||||
    Gdvf = (s/k)/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
           [(s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2), 2*W*s/(w0^2) ; ...
 | 
			
		||||
            -2*W*s/(w0^2), (s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)];
 | 
			
		||||
 | 
			
		||||
    set(gca,'ColorOrderIndex',W_i);
 | 
			
		||||
    plot(real(pole(Gdvf)),  imag(pole(Gdvf)), 'x', ...
 | 
			
		||||
         'DisplayName', sprintf('$\\Omega = %.2f \\omega_0 $', W/w0));
 | 
			
		||||
 | 
			
		||||
    set(gca,'ColorOrderIndex',W_i);
 | 
			
		||||
    plot(real(tzero(Gdvf)),  imag(tzero(Gdvf)), 'o', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
 | 
			
		||||
    for g = gains
 | 
			
		||||
        set(gca,'ColorOrderIndex',W_i);
 | 
			
		||||
        cl_poles = pole(feedback(Gdvf, g*eye(2)));
 | 
			
		||||
 | 
			
		||||
        plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-2, 0.5]); ylim([0, 2.5]);
 | 
			
		||||
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
legend('location', 'northwest');
 | 
			
		||||
							
								
								
									
										364
									
								
								matlab/matlab/s6_act_damp_comparison.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										364
									
								
								matlab/matlab/s6_act_damp_comparison.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,364 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
% Plant Parameters
 | 
			
		||||
% Let's define initial values for the model.
 | 
			
		||||
 | 
			
		||||
k = 1;    % Actuator Stiffness [N/m]
 | 
			
		||||
c = 0.05; % Actuator Damping [N/(m/s)]
 | 
			
		||||
m = 1;    % Payload mass [kg]
 | 
			
		||||
 | 
			
		||||
xi = c/(2*sqrt(k*m));
 | 
			
		||||
w0 = sqrt(k/m); % [rad/s]
 | 
			
		||||
 | 
			
		||||
kp = 0; % [N/m]
 | 
			
		||||
cp = 0; % [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The rotating speed is set to $\Omega = 0.1 \omega_0$.
 | 
			
		||||
 | 
			
		||||
W = 0.1*w0;
 | 
			
		||||
 | 
			
		||||
% Root Locus
 | 
			
		||||
% IFF with High Pass Filter
 | 
			
		||||
 | 
			
		||||
wi = 0.1*w0; % [rad/s]
 | 
			
		||||
 | 
			
		||||
Giff = 1/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
        [(s^2/w0^2 - W^2/w0^2)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)) + (2*W*s/(w0^2))^2, - (2*xi*s/w0 + 1)*2*W*s/(w0^2) ; ...
 | 
			
		||||
         (2*xi*s/w0 + 1)*2*W*s/(w0^2), (s^2/w0^2 - W^2/w0^2)*((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))+ (2*W*s/(w0^2))^2];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% IFF With parallel Stiffness
 | 
			
		||||
 | 
			
		||||
kp = 5*m*W^2;
 | 
			
		||||
k = k - kp;
 | 
			
		||||
 | 
			
		||||
w0p = sqrt((k + kp)/m);
 | 
			
		||||
xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
 | 
			
		||||
Giff_kp = 1/( (s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2)^2 + (2*(s/w0p)*(W/w0p))^2 ) * [ ...
 | 
			
		||||
                   (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2, -(2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p));
 | 
			
		||||
                   (2*xip*s/w0p + k/(k + kp))*(2*(s/w0p)*(W/w0p)), (s^2/w0p^2 + kp/(k + kp) - W^2/w0p^2)*(s^2/w0p^2 + 2*xip*s/w0p + 1 - W^2/w0p^2) + (2*(s/w0p)*(W/w0p))^2 ];
 | 
			
		||||
 | 
			
		||||
k = k + kp;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% DVF
 | 
			
		||||
 | 
			
		||||
Gdvf = (s/k)/(((s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2))^2 + (2*W*s/(w0^2))^2) * ...
 | 
			
		||||
       [(s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2), 2*W*s/(w0^2) ; ...
 | 
			
		||||
        -2*W*s/(w0^2), (s^2)/(w0^2) + 2*xi*s/w0 + 1 - (W^2)/(w0^2)];
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
gains = logspace(-2, 2, 100);
 | 
			
		||||
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(pole(Giff)),  imag(pole(Giff)), 'x', ...
 | 
			
		||||
     'DisplayName', 'IFF + LFP');
 | 
			
		||||
set(gca,'ColorOrderIndex',1);
 | 
			
		||||
plot(real(tzero(Giff)),  imag(tzero(Giff)), 'o', ...
 | 
			
		||||
     'HandleVisibility', 'off');
 | 
			
		||||
for g = gains
 | 
			
		||||
    Kiff = (g/(wi + s))*eye(2);
 | 
			
		||||
    cl_poles = pole(feedback(Giff, Kiff));
 | 
			
		||||
    set(gca,'ColorOrderIndex',1);
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(pole(Giff_kp)),  imag(pole(Giff_kp)), 'x', ...
 | 
			
		||||
     'DisplayName', 'IFF + $k_p$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2);
 | 
			
		||||
plot(real(tzero(Giff_kp)),  imag(tzero(Giff_kp)), 'o', ...
 | 
			
		||||
     'HandleVisibility', 'off');
 | 
			
		||||
for g = gains
 | 
			
		||||
    Kiffa = (g/s)*eye(2);
 | 
			
		||||
    cl_poles = pole(feedback(Giff_kp, Kiffa));
 | 
			
		||||
    set(gca,'ColorOrderIndex',2);
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
set(gca,'ColorOrderIndex',3);
 | 
			
		||||
plot(real(pole(Gdvf)),  imag(pole(Gdvf)), 'x', ...
 | 
			
		||||
     'DisplayName', 'DVF');
 | 
			
		||||
set(gca,'ColorOrderIndex',3);
 | 
			
		||||
plot(real(tzero(Gdvf)),  imag(tzero(Gdvf)), 'o', ...
 | 
			
		||||
     'HandleVisibility', 'off');
 | 
			
		||||
for g = gains
 | 
			
		||||
    Kdvf = g*eye(2);
 | 
			
		||||
    cl_poles = pole(feedback(Gdvf, Kdvf));
 | 
			
		||||
    set(gca,'ColorOrderIndex',3);
 | 
			
		||||
    plot(real(cl_poles), imag(cl_poles), '.', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
axis square;
 | 
			
		||||
xlim([-1.2, 0.05]); ylim([0, 1.25]);
 | 
			
		||||
 | 
			
		||||
xlabel('Real Part'); ylabel('Imaginary Part');
 | 
			
		||||
legend('location', 'northwest');
 | 
			
		||||
 | 
			
		||||
% Controllers - Optimal Gains
 | 
			
		||||
% In order to compare to three considered Active Damping techniques, gains that yield maximum damping of all the modes are computed for each case.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
%% IFF with pseudo integrators
 | 
			
		||||
gains = linspace(0, (w0^2/W^2 - 1)*wi, 100);
 | 
			
		||||
opt_zeta_iff = 0;
 | 
			
		||||
opt_gain_iff = 0;
 | 
			
		||||
 | 
			
		||||
for g = gains
 | 
			
		||||
    Kiff = (g/(wi+s))*eye(2);
 | 
			
		||||
 | 
			
		||||
    [w, zeta] = damp(minreal(feedback(Giff, Kiff)));
 | 
			
		||||
 | 
			
		||||
    if min(zeta) > opt_zeta_iff && all(zeta > 0)
 | 
			
		||||
      opt_zeta_iff = min(zeta);
 | 
			
		||||
      opt_gain_iff = g;
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
%% IFF with Parallel Stiffness
 | 
			
		||||
gains = logspace(-2, 4, 100);
 | 
			
		||||
opt_zeta_kp = 0;
 | 
			
		||||
opt_gain_kp = 0;
 | 
			
		||||
 | 
			
		||||
for g = gains
 | 
			
		||||
    Kiff = g/s*eye(2);
 | 
			
		||||
 | 
			
		||||
    [w, zeta] = damp(minreal(feedback(Giff_kp, Kiff)));
 | 
			
		||||
 | 
			
		||||
    if min(zeta) > opt_zeta_kp && all(zeta > 0)
 | 
			
		||||
      opt_zeta_kp = min(zeta);
 | 
			
		||||
      opt_gain_kp = g;
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
%% Direct Velocity Feedback
 | 
			
		||||
gains = logspace(0, 2, 100);
 | 
			
		||||
opt_zeta_dvf = 0;
 | 
			
		||||
opt_gain_dvf = 0;
 | 
			
		||||
 | 
			
		||||
for g = gains
 | 
			
		||||
    Kdvf = g*eye(2);
 | 
			
		||||
 | 
			
		||||
    [w, zeta] = damp(minreal(feedback(Gdvf, Kdvf)));
 | 
			
		||||
 | 
			
		||||
    if min(zeta) > opt_zeta_dvf && all(zeta > 0) && min(zeta) < 0.85
 | 
			
		||||
      opt_zeta_dvf = min(zeta);
 | 
			
		||||
      opt_gain_dvf = g;
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
% Transmissibility
 | 
			
		||||
% <<sec:comp_transmissibilty>>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
open('rotating_frame.slx');
 | 
			
		||||
 | 
			
		||||
% Open Loop                                                       :ignore:
 | 
			
		||||
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
Kiff = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
kp = 0;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/dw'], 1, 'input');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Meas'], 1, 'output');  io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Tol = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Tol.InputName  = {'Dwx', 'Dwy'};
 | 
			
		||||
Tol.OutputName = {'Dx', 'Dy'};
 | 
			
		||||
 | 
			
		||||
% Pseudo Integrator IFF                                           :ignore:
 | 
			
		||||
 | 
			
		||||
kp = 0;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
Kiff = opt_gain_iff/(wi + s)*tf(eye(2));
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/dw'], 1, 'input');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Meas'], 1, 'output');  io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Tiff = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Tiff.InputName  = {'Dwx', 'Dwy'};
 | 
			
		||||
Tiff.OutputName = {'Dx', 'Dy'};
 | 
			
		||||
 | 
			
		||||
% IFF With parallel Stiffness                                     :ignore:
 | 
			
		||||
 | 
			
		||||
kp = 5*m*W^2;
 | 
			
		||||
cp = 0.01;
 | 
			
		||||
 | 
			
		||||
Kiff = opt_gain_kp/s*tf(eye(2));
 | 
			
		||||
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/dw'], 1, 'input');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Meas'], 1, 'output');  io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Tiff_kp = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Tiff_kp.InputName  = {'Dwx', 'Dwy'};
 | 
			
		||||
Tiff_kp.OutputName = {'Dx', 'Dy'};
 | 
			
		||||
 | 
			
		||||
% DVF                                                             :ignore:
 | 
			
		||||
 | 
			
		||||
kp = 0;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
Kiff = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
Kdvf = opt_gain_kp*tf(eye(2));
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/dw'], 1, 'input');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Meas'], 1, 'output');  io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Tdvf = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Tdvf.InputName  = {'Dwx', 'Dwy'};
 | 
			
		||||
Tdvf.OutputName = {'Dx', 'Dy'};
 | 
			
		||||
 | 
			
		||||
% Transmissibility                                                :ignore:
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Tiff(1,1), freqs))), ...
 | 
			
		||||
     'DisplayName', 'IFF + HPF')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Tiff_kp(1,1), freqs))), ...
 | 
			
		||||
     'DisplayName', 'IFF + $k_p$')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Tdvf(1,1), freqs))), ...
 | 
			
		||||
     'DisplayName', 'DVF')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Tol(1,1), freqs))), 'k-', ...
 | 
			
		||||
     'DisplayName', 'Open-Loop')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Transmissibility [m/m]');
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
% Open Loop                                                       :ignore:
 | 
			
		||||
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
Kiff = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
kp = 0;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'rotating_frame';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/fd'], 1, 'input');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Meas'], 1, 'output');  io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Col = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Col.InputName  = {'Fdx', 'Fdy'};
 | 
			
		||||
Col.OutputName = {'Dx', 'Dy'};
 | 
			
		||||
 | 
			
		||||
% Pseudo Integrator IFF                                           :ignore:
 | 
			
		||||
 | 
			
		||||
kp = 0;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
Kiff = opt_gain_iff/(wi + s)*tf(eye(2));
 | 
			
		||||
 | 
			
		||||
Ciff = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Ciff.InputName  = {'Fdx', 'Fdy'};
 | 
			
		||||
Ciff.OutputName = {'Dx', 'Dy'};
 | 
			
		||||
 | 
			
		||||
% IFF With parallel Stiffness                                     :ignore:
 | 
			
		||||
 | 
			
		||||
kp = 5*m*W^2;
 | 
			
		||||
cp = 0.01;
 | 
			
		||||
 | 
			
		||||
Kiff = opt_gain_kp/s*tf(eye(2));
 | 
			
		||||
 | 
			
		||||
Kdvf = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
Ciff_kp = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Ciff_kp.InputName  = {'Fdx', 'Fdy'};
 | 
			
		||||
Ciff_kp.OutputName = {'Dx', 'Dy'};
 | 
			
		||||
 | 
			
		||||
% DVF                                                             :ignore:
 | 
			
		||||
 | 
			
		||||
kp = 0;
 | 
			
		||||
cp = 0;
 | 
			
		||||
 | 
			
		||||
Kiff = tf(zeros(2));
 | 
			
		||||
 | 
			
		||||
Kdvf = opt_gain_kp*tf(eye(2));
 | 
			
		||||
 | 
			
		||||
Cdvf = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
Cdvf.InputName  = {'Fdx', 'Fdy'};
 | 
			
		||||
Cdvf.OutputName = {'Dx', 'Dy'};
 | 
			
		||||
 | 
			
		||||
% Compliance                                                      :ignore:
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 1, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Ciff(1,1), freqs))), ...
 | 
			
		||||
     'DisplayName', 'IFF + HPF')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Ciff_kp(1,1), freqs))), ...
 | 
			
		||||
     'DisplayName', 'IFF + $k_p$')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Cdvf(1,1), freqs))), ...
 | 
			
		||||
     'DisplayName', 'DVF')
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Col(1,1), freqs))), 'k-', ...
 | 
			
		||||
     'DisplayName', 'Open-Loop')
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [rad/s]'); ylabel('Compliance [m/N]');
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
		Reference in New Issue
	
	Block a user