Change figure names
This commit is contained in:
parent
b2a5b5ee11
commit
181fa8a859
Binary file not shown.
Before Width: | Height: | Size: 218 KiB |
@ -93,7 +93,7 @@ Figure ref:fig:system represents the model schematically which is the simplest i
|
||||
#+name: fig:system
|
||||
#+caption: Schematic of the studied System
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/system.pdf]]
|
||||
[[file:figs/fig01.pdf]]
|
||||
|
||||
The rotating stage is supposed to be ideal, meaning it induces a perfect rotation $\theta(t) = \Omega t$ where $\Omega$ is the rotational speed in $\si{\radian\per\second}$.
|
||||
|
||||
@ -211,7 +211,7 @@ In the rest of this study, rotational speeds smaller than the undamped natural f
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.48\linewidth :align c
|
||||
| file:figs/campbell_diagram_real.pdf | file:figs/campbell_diagram_imag.pdf |
|
||||
| file:figs/fig02a.pdf | file:figs/fig02b.pdf |
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
|
||||
Looking at the transfer function matrix $\bm{G}_d$ in Eq. eqref:eq:Gd_w0_xi_k, one can see that the two diagonal (direct) terms are equal and the two off-diagonal (coupling) terms are opposite.
|
||||
@ -222,7 +222,7 @@ For $\Omega > \omega_0$, the low frequency pair of complex conjugate poles $p_{-
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Bode Plots for $\bm{G}_d$ for several rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.48\linewidth :align c
|
||||
| file:figs/plant_compare_rotating_speed_direct.pdf | file:figs/plant_compare_rotating_speed_coupling.pdf |
|
||||
| file:figs/fig03a.pdf | file:figs/fig03b.pdf |
|
||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms |
|
||||
|
||||
* Decentralized Integral Force Feedback
|
||||
@ -235,12 +235,12 @@ The control diagram is schematically shown in Figure ref:fig:control_diagram_iff
|
||||
#+name: fig:system_iff
|
||||
#+caption: System with added Force Sensor in series with the actuators
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/system_iff.pdf]]
|
||||
[[file:figs/fig04.pdf]]
|
||||
|
||||
#+name: fig:control_diagram_iff
|
||||
#+caption: Control Diagram for decentralized IFF
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/control_diagram_iff.pdf]]
|
||||
[[file:figs/fig05.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
@ -294,7 +294,7 @@ This can be explained as follows: a constant force $F_u$ induces a small displac
|
||||
#+name: fig:plant_iff_compare_rotating_speed
|
||||
#+caption: Bode plot of the dynamics from a force actuator to its collocated force sensor ($f_u/F_u$, $f_v/F_v$) for several rotational speeds $\Omega$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
|
||||
[[file:figs/fig06.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
@ -317,7 +317,7 @@ The direction of increasing gain is indicated by arrows $\tikz[baseline=-0.6ex]
|
||||
#+name: fig:root_locus_pure_iff
|
||||
#+caption: Root Locus: evolution of the closed-loop poles with increasing controller gains $g$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_pure_iff.pdf]]
|
||||
[[file:figs/fig07.pdf]]
|
||||
|
||||
Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost as soon as the rotational speed in non-null due to gyroscopic effects.
|
||||
This can be seen in the Root Locus plot (Figure ref:fig:root_locus_pure_iff) where the poles corresponding to the controller are bound to the right half plane implying closed-loop system instability.
|
||||
@ -361,12 +361,12 @@ It is interesting to note that $g_{\text{max}}$ also corresponds to the gain whe
|
||||
#+name: fig:loop_gain_modified_iff
|
||||
#+caption: Modification of the loop gain with the added HFP, $g = 2$, $\omega_i = 0.1 \omega_0$ and $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/loop_gain_modified_iff.pdf]]
|
||||
[[file:figs/fig08.pdf]]
|
||||
|
||||
#+name: fig:root_locus_modified_iff
|
||||
#+caption: Modification of the Root Locus with the added HPF, $\omega_i = 0.1 \omega_0$ and $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_modified_iff.pdf]]
|
||||
[[file:figs/fig09.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
@ -380,7 +380,7 @@ It is shown that even though small $\omega_i$ seem to allow more damping to be a
|
||||
#+name: fig:root_locus_wi_modified_iff
|
||||
#+caption: Root Locus for several HPF cut-off frequencies $\omega_i$, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/root_locus_wi_modified_iff.pdf]]
|
||||
[[file:figs/fig10.pdf]]
|
||||
|
||||
In order to study this trade off, the attainable closed-loop damping ratio $\xi_{\text{cl}}$ is computed as a function of $\omega_i/\omega_0$.
|
||||
The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also displayed and compared with the gain $g_{\text{max}}$ at which the system becomes unstable (Figure ref:fig:mod_iff_damping_wi).
|
||||
@ -388,7 +388,7 @@ The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also disp
|
||||
#+name: fig:mod_iff_damping_wi
|
||||
#+caption: Attainable damping ratio $\xi_\text{cl}$ as a function of $\omega_i/\omega_0$. Corresponding control gain $g_\text{opt}$ and $g_\text{max}$ are also shown
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/mod_iff_damping_wi.pdf]]
|
||||
[[file:figs/fig11.pdf]]
|
||||
|
||||
Three regions can be observed:
|
||||
- $\omega_i/\omega_0 < 0.02$: the added damping is limited by the maximum allowed control gain $g_{\text{max}}$
|
||||
@ -408,13 +408,13 @@ An example of such system is shown in Figure ref:fig:cedrat_xy25xs.
|
||||
#+name: fig:system_parallel_springs
|
||||
#+caption: Studied system with additional springs in parallel with the actuators and force sensors
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/system_parallel_springs.pdf]]
|
||||
[[file:figs/fig12.pdf]]
|
||||
|
||||
|
||||
#+name: fig:cedrat_xy25xs
|
||||
#+caption: XY Piezoelectric Stage (XY25XS from Cedrat Technology)
|
||||
#+attr_latex: :width 0.8\linewidth
|
||||
[[file:figs/cedrat_xy25xs.png]]
|
||||
[[file:figs/fig13.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
@ -465,12 +465,12 @@ It is shown that if the added stiffness is higher than the maximum negative stif
|
||||
#+name: fig:plant_iff_kp
|
||||
#+caption: Bode plot of $f_u/F_u$ without parallel spring, with parallel springs with stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/plant_iff_kp.pdf]]
|
||||
[[file:figs/fig14.pdf]]
|
||||
|
||||
#+name: fig:root_locus_iff_kp
|
||||
#+caption: Root Locus for IFF without parallel spring, with parallel springs with stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/root_locus_iff_kp.pdf]]
|
||||
[[file:figs/fig15.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
@ -487,13 +487,13 @@ This is confirmed in Figure ref:fig:opt_damp_alpha where the attainable closed-l
|
||||
#+name: fig:root_locus_iff_kps
|
||||
#+caption: Comparison the Root Locus for three parallel stiffnessses $k_p$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kps.pdf]]
|
||||
[[file:figs/fig16.pdf]]
|
||||
|
||||
|
||||
#+name: fig:opt_damp_alpha
|
||||
#+caption: Optimal Damping Ratio $\xi_\text{opt}$ and the corresponding optimal gain $g_\text{opt}$ as a function of $\alpha$
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/opt_damp_alpha.pdf]]
|
||||
[[file:figs/fig17.pdf]]
|
||||
|
||||
* Comparison and Discussion
|
||||
<<sec:comparison>>
|
||||
@ -518,7 +518,7 @@ It is interesting to note that the maximum added damping is very similar for bot
|
||||
#+name: fig:comp_root_locus
|
||||
#+caption: Root Locus for the two proposed modifications of decentralized IFF, $\Omega = 0.1 \omega_0$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_root_locus.pdf]]
|
||||
[[file:figs/fig18.pdf]]
|
||||
|
||||
#+latex: \par
|
||||
|
||||
@ -542,13 +542,13 @@ It is also confirmed that these two techniques can significantly damp the suspen
|
||||
#+name: fig:comp_transmissibility
|
||||
#+caption: Comparison of the two proposed Active Damping Techniques - Transmissibility
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_transmissibility.pdf]]
|
||||
[[file:figs/fig19.pdf]]
|
||||
|
||||
|
||||
#+name: fig:comp_compliance
|
||||
#+caption: Comparison of the two proposed Active Damping Techniques - Compliance
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/comp_compliance.pdf]]
|
||||
[[file:figs/fig20.pdf]]
|
||||
|
||||
On can see in Figure ref:fig:comp_transmissibility that the problem of the degradation of the transmissibility at high frequency when using passive damping techniques is overcome by the use of IFF.
|
||||
|
||||
|
Binary file not shown.
@ -1,4 +1,4 @@
|
||||
% Created 2020-11-02 lun. 14:38
|
||||
% Created 2020-11-02 lun. 14:46
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[10pt]{iopart}
|
||||
|
||||
@ -50,7 +50,7 @@ The results reveal that, despite their different implementations, both modified
|
||||
\ioptwocol
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:orgcbd1527}
|
||||
\label{sec:org45302f3}
|
||||
\label{sec:introduction}
|
||||
There is an increasing need to reduce the undesirable vibration of many sensitive equipment.
|
||||
A common method to reduce vibration is to mount the sensitive equipment on a suspended platform which attenuates the vibrations above the frequency of the suspension modes.
|
||||
@ -70,14 +70,14 @@ Section \ref{sec:iff_kp} proposes to add springs in parallel with the force sens
|
||||
Section \ref{sec:comparison} compares both proposed modifications to the classical IFF in terms of damping authority and closed-loop system behavior.
|
||||
|
||||
\section{Dynamics of Rotating Platforms}
|
||||
\label{sec:org90939ec}
|
||||
\label{sec:org2c62ca5}
|
||||
\label{sec:dynamics}
|
||||
In order to study how the rotation does affect the use of IFF, a model of a suspended platform on top of a rotating stage is used.
|
||||
Figure \ref{fig:system} represents the model schematically which is the simplest in which gyroscopic forces can be studied.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/system.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig01.pdf}
|
||||
\caption{\label{fig:system}Schematic of the studied System}
|
||||
\end{figure}
|
||||
|
||||
@ -192,12 +192,12 @@ In the rest of this study, rotational speeds smaller than the undamped natural f
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.48\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig02a.pdf}
|
||||
\caption{\label{fig:campbell_diagram_real} Real Part}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[c]{0.48\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig02b.pdf}
|
||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
@ -212,12 +212,12 @@ For \(\Omega > \omega_0\), the low frequency pair of complex conjugate poles \(p
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.48\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_direct.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig03a.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_direct} Direct Terms}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[c]{0.48\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/plant_compare_rotating_speed_coupling.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig03b.pdf}
|
||||
\caption{\label{fig:plant_compare_rotating_speed_coupling} Coupling Terms}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
@ -226,7 +226,7 @@ For \(\Omega > \omega_0\), the low frequency pair of complex conjugate poles \(p
|
||||
\end{figure}
|
||||
|
||||
\section{Decentralized Integral Force Feedback}
|
||||
\label{sec:orgabd3121}
|
||||
\label{sec:orgaa40c6a}
|
||||
\label{sec:iff}
|
||||
In order to apply IFF to the system, force sensors are added in series with the two actuators (Figure \ref{fig:system_iff}).
|
||||
As this study focuses on decentralized control, two identical controllers \(K_F\) are used to feedback each of the sensed force to its associated actuator and no attempt is made to counteract the interactions in the system.
|
||||
@ -234,13 +234,13 @@ The control diagram is schematically shown in Figure \ref{fig:control_diagram_if
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/system_iff.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig04.pdf}
|
||||
\caption{\label{fig:system_iff}System with added Force Sensor in series with the actuators}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/control_diagram_iff.pdf}
|
||||
\includegraphics[scale=1]{figs/fig05.pdf}
|
||||
\caption{\label{fig:control_diagram_iff}Control Diagram for decentralized IFF}
|
||||
\end{figure}
|
||||
|
||||
@ -293,7 +293,7 @@ This can be explained as follows: a constant force \(F_u\) induces a small displ
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/plant_iff_compare_rotating_speed.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig06.pdf}
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of the dynamics from a force actuator to its collocated force sensor (\(f_u/F_u\), \(f_v/F_v\)) for several rotational speeds \(\Omega\)}
|
||||
\end{figure}
|
||||
|
||||
@ -315,7 +315,7 @@ The direction of increasing gain is indicated by arrows \(\tikz[baseline=-0.6ex]
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_pure_iff.pdf}
|
||||
\includegraphics[scale=1]{figs/fig07.pdf}
|
||||
\caption{\label{fig:root_locus_pure_iff}Root Locus: evolution of the closed-loop poles with increasing controller gains \(g\)}
|
||||
\end{figure}
|
||||
|
||||
@ -329,7 +329,7 @@ In order to apply decentralized IFF on rotating platforms, two solutions are pro
|
||||
The first one consists of slightly modifying the control law (Section \ref{sec:iff_hpf}) while the second one consists of adding springs in parallel with the force sensors (Section \ref{sec:iff_kp}).
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filter}
|
||||
\label{sec:orgb936693}
|
||||
\label{sec:orgcc80b31}
|
||||
\label{sec:iff_hpf}
|
||||
As was explained in the previous section, the instability comes in part from the high gain at low frequency caused by the pure integrators.
|
||||
|
||||
@ -358,13 +358,13 @@ It is interesting to note that \(g_{\text{max}}\) also corresponds to the gain w
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/loop_gain_modified_iff.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig08.pdf}
|
||||
\caption{\label{fig:loop_gain_modified_iff}Modification of the loop gain with the added HFP, \(g = 2\), \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
|
||||
\includegraphics[scale=1]{figs/fig09.pdf}
|
||||
\caption{\label{fig:root_locus_modified_iff}Modification of the Root Locus with the added HPF, \(\omega_i = 0.1 \omega_0\) and \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
@ -377,7 +377,7 @@ It is shown that even though small \(\omega_i\) seem to allow more damping to be
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_wi_modified_iff.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig10.pdf}
|
||||
\caption{\label{fig:root_locus_wi_modified_iff}Root Locus for several HPF cut-off frequencies \(\omega_i\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
@ -386,7 +386,7 @@ The gain \(g_{\text{opt}}\) at which this maximum damping is obtained is also di
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/mod_iff_damping_wi.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig11.pdf}
|
||||
\caption{\label{fig:mod_iff_damping_wi}Attainable damping ratio \(\xi_\text{cl}\) as a function of \(\omega_i/\omega_0\). Corresponding control gain \(g_\text{opt}\) and \(g_\text{max}\) are also shown}
|
||||
\end{figure}
|
||||
|
||||
@ -398,7 +398,7 @@ Three regions can be observed:
|
||||
\end{itemize}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:org9c04fb0}
|
||||
\label{sec:org7af993d}
|
||||
\label{sec:iff_kp}
|
||||
In this section additional springs in parallel with the force sensors are added to counteract the negative stiffness induced by the rotation.
|
||||
Such springs are schematically shown in Figure \ref{fig:system_parallel_springs} where \(k_a\) is the stiffness of the actuator and \(k_p\) the stiffness in parallel with the actuator and force sensor.
|
||||
@ -409,14 +409,14 @@ An example of such system is shown in Figure \ref{fig:cedrat_xy25xs}.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/system_parallel_springs.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig12.pdf}
|
||||
\caption{\label{fig:system_parallel_springs}Studied system with additional springs in parallel with the actuators and force sensors}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{figs/cedrat_xy25xs.png}
|
||||
\includegraphics[width=0.8\linewidth]{figs/fig13.pdf}
|
||||
\caption{\label{fig:cedrat_xy25xs}XY Piezoelectric Stage (XY25XS from Cedrat Technology)}
|
||||
\end{figure}
|
||||
|
||||
@ -466,13 +466,13 @@ It is shown that if the added stiffness is higher than the maximum negative stif
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/plant_iff_kp.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig14.pdf}
|
||||
\caption{\label{fig:plant_iff_kp}Bode plot of \(f_u/F_u\) without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kp.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig15.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
@ -488,19 +488,19 @@ This is confirmed in Figure \ref{fig:opt_damp_alpha} where the attainable closed
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kps.pdf}
|
||||
\includegraphics[scale=1]{figs/fig16.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kps}Comparison the Root Locus for three parallel stiffnessses \(k_p\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{figs/opt_damp_alpha.pdf}
|
||||
\includegraphics[width=\linewidth]{figs/fig17.pdf}
|
||||
\caption{\label{fig:opt_damp_alpha}Optimal Damping Ratio \(\xi_\text{opt}\) and the corresponding optimal gain \(g_\text{opt}\) as a function of \(\alpha\)}
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison and Discussion}
|
||||
\label{sec:org6e6cf51}
|
||||
\label{sec:orgc3da302}
|
||||
\label{sec:comparison}
|
||||
Two modifications to adapt the IFF control strategy to rotating platforms have been proposed in Sections \ref{sec:iff_hpf} and \ref{sec:iff_kp}.
|
||||
These two methods are now compared in terms of added damping, closed-loop compliance and transmissibility.
|
||||
@ -519,7 +519,7 @@ It is interesting to note that the maximum added damping is very similar for bot
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_root_locus.pdf}
|
||||
\includegraphics[scale=1]{figs/fig18.pdf}
|
||||
\caption{\label{fig:comp_root_locus}Root Locus for the two proposed modifications of decentralized IFF, \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
@ -542,14 +542,14 @@ It is also confirmed that these two techniques can significantly damp the suspen
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_transmissibility.pdf}
|
||||
\includegraphics[scale=1]{figs/fig19.pdf}
|
||||
\caption{\label{fig:comp_transmissibility}Comparison of the two proposed Active Damping Techniques - Transmissibility}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_compliance.pdf}
|
||||
\includegraphics[scale=1]{figs/fig20.pdf}
|
||||
\caption{\label{fig:comp_compliance}Comparison of the two proposed Active Damping Techniques - Compliance}
|
||||
\end{figure}
|
||||
|
||||
@ -558,7 +558,7 @@ On can see in Figure \ref{fig:comp_transmissibility} that the problem of the deg
|
||||
The addition of the HPF or the use of the parallel stiffness permit to limit the degradation of the compliance as compared with classical IFF (Figure \ref{fig:comp_compliance}).
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:org0fc9335}
|
||||
\label{sec:org3e5d606}
|
||||
\label{sec:conclusion}
|
||||
|
||||
Due to gyroscopic effects, decentralized IFF with pure integrators was shown to be unstable when applied to rotating platforms.
|
||||
@ -579,11 +579,11 @@ Future work will focus on the experimental validation of the proposed active dam
|
||||
The Matlab code that was used for this study is available under a MIT License and archived in Zenodo \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
|
||||
|
||||
\section*{Acknowledgments}
|
||||
\label{sec:org45730f8}
|
||||
\label{sec:org2fdf2e5}
|
||||
This research benefited from a FRIA grant from the French Community of Belgium.
|
||||
|
||||
\section*{References}
|
||||
\label{sec:org676de81}
|
||||
\label{sec:org684d4d0}
|
||||
\bibliographystyle{iopart-num}
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user