Start to rewrite all the equations
This commit is contained in:
		
							
								
								
									
										317
									
								
								paper/paper.org
									
									
									
									
									
								
							
							
						
						
									
										317
									
								
								paper/paper.org
									
									
									
									
									
								
							@@ -1,4 +1,4 @@
 | 
			
		||||
#+TITLE: Active Damping of Rotating Positioning Platforms
 | 
			
		||||
#+TITLE: Decentralized Active Damping of Rotating Positioning Platforms
 | 
			
		||||
:DRAWER:
 | 
			
		||||
#+LATEX_CLASS: ISMA_USD2020
 | 
			
		||||
#+OPTIONS: toc:nil
 | 
			
		||||
@@ -77,6 +77,9 @@ Controller Poles are shown by black crosses (
 | 
			
		||||
 | 
			
		||||
** Describe the paper itself / the problem which is addressed        :ignore:
 | 
			
		||||
 | 
			
		||||
Due to gyroscopic effects, the guaranteed robustness properties of Integral Force Feedback do not hold.
 | 
			
		||||
Either the control architecture can be slightly modfied or mechanical changes in the system can be performed.
 | 
			
		||||
 | 
			
		||||
** Introduce Each part of the paper                                  :ignore:
 | 
			
		||||
 | 
			
		||||
This paper has been published
 | 
			
		||||
@@ -84,6 +87,9 @@ The Matlab code that was use to obtain the results are available in cite:dehaeze
 | 
			
		||||
 | 
			
		||||
* Dynamics of Rotating Positioning Platforms
 | 
			
		||||
** Studied Rotating Positioning Platform
 | 
			
		||||
# Introduce the fact that we need a simple system representing the rotating aspect.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Simplest system where gyroscopic forces can be studied
 | 
			
		||||
Consider the rotating X-Y stage of Figure [[fig:system]].
 | 
			
		||||
 | 
			
		||||
@@ -112,64 +118,71 @@ Consider the rotating X-Y stage of Figure [[fig:system]].
 | 
			
		||||
# #+attr_latex: :width 0.5\linewidth
 | 
			
		||||
# [[file:figs/cedrat_xy25xs.jpg]]
 | 
			
		||||
 | 
			
		||||
** Equation of Motion
 | 
			
		||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $u$ and $v$ (describing the position of the mass in the rotating frame).
 | 
			
		||||
** Equations of Motion
 | 
			
		||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $[q_1\ q_2] = [d_u\ d_v]$ (describing the position of the mass in the rotating frame).
 | 
			
		||||
 | 
			
		||||
Let's express the kinetic energy $T$ and the potential energy $V$ of the mass $m$ (neglecting the rotational energy):
 | 
			
		||||
 | 
			
		||||
Dissipation function $R$
 | 
			
		||||
Kinetic energy $T$
 | 
			
		||||
Potential energy $V$
 | 
			
		||||
Let's express the kinetic energy $T$, the potential energy $V$ of the mass $m$ (neglecting the rotational energy) as well as the deceptive function $R$:
 | 
			
		||||
#+name: eq:energy_functions_lagrange
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    T & = \frac{1}{2} m \left( \left( \dot{u} - \Omega v \right)^2 + \left( \dot{v} + \Omega u \right)^2 \right) \\
 | 
			
		||||
    R & = \frac{1}{2} c \left( \dot{u}^2 + \dot{v}^2 \right) \\
 | 
			
		||||
    V & = \frac{1}{2} k \left( u^2 + v^2 \right)
 | 
			
		||||
    T & = \frac{1}{2} m \left( \left( \dot{d}_u - \Omega d_v \right)^2 + \left( \dot{d}_v + \Omega d_u \right)^2 \right) \\
 | 
			
		||||
    V & = \frac{1}{2} k \left( {d_u}^2 + {d_v}^2 \right) \\
 | 
			
		||||
    R & = \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The Lagrangian is the kinetic energy minus the potential energy:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
L = T - V
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
From the Lagrange's equations of the second kind, the equation of motion is obtained ($q_1 = u$, $q_2 = v$).
 | 
			
		||||
The equations of motion are derived from the Lagrangian equation:
 | 
			
		||||
#+name: eq:lagrangian_equations
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
 | 
			
		||||
\end{equation}
 | 
			
		||||
with $Q_i$ is the generalized force associated with the generalized variable $q_i$ ($Q_1 = F_u$ and $Q_2 = F_v$).
 | 
			
		||||
 | 
			
		||||
with $L = T - V$ is the Lagrangian and $Q_i$ is the generalized force associated with the generalized variable $q_i$ ($Q_1 = F_u$ and $Q_2 = F_v$).
 | 
			
		||||
 | 
			
		||||
#+name: eq:eom_coupled
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    m \ddot{u} + c \dot{u} + ( k - m \Omega ) u &= F_u + 2 m \Omega \dot{v} \\
 | 
			
		||||
    m \ddot{v} + c \dot{v} + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) v &= F_v \underbrace{-\,2 m \Omega \dot{u}}_{\text{Coriolis}}
 | 
			
		||||
    m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega ) d_u &= F_u + 2 m \Omega \dot{d}_v \\
 | 
			
		||||
    m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
# Explain Gyroscopic effects
 | 
			
		||||
The Gyroscopic effects can be seen from the two following terms:
 | 
			
		||||
- Coriolis Forces: coupling
 | 
			
		||||
- Centrifugal forces: negative stiffness
 | 
			
		||||
 | 
			
		||||
Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system with mass $m$ and stiffness $k- m\dot{\theta}^2$.
 | 
			
		||||
Thus, the term $- m\dot{\theta}^2$ acts like a negative stiffness (due to *centrifugal forces*).
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
** Transfer Functions in the Laplace domain
 | 
			
		||||
 | 
			
		||||
# Laplace Domain
 | 
			
		||||
Using the Laplace transformation on the equations of motion eqref:eq:eom_coupled, the transfer functions from $[F_u,\ F_v]$ to $[d_u,\ d_v]$ are obtained:
 | 
			
		||||
#+name: eq:oem_laplace_domain
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
 | 
			
		||||
    v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
 | 
			
		||||
    d_u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
 | 
			
		||||
    d_v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Without rotation $\Omega = 0$ and the system corresponds to two uncoupled one degree of freedom mass-spring-damper systems:
 | 
			
		||||
#+name: eq:oem_no_rotation
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    d_u &= \frac{1}{m s^2 + cs + k} F_u \\
 | 
			
		||||
    d_v &= \frac{1}{m s^2 + cs + k} F_v
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
** Change of Variables / Parameters for the study
 | 
			
		||||
 | 
			
		||||
# Change of variables
 | 
			
		||||
In order this study is more independent on the system parameters, the following change of variable is performed:
 | 
			
		||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Natural frequency of the mass-spring system in $\si{\radian/\s}$
 | 
			
		||||
- $\xi = \frac{c}{2 \sqrt{k m}}$: Damping ratio
 | 
			
		||||
 | 
			
		||||
#+name: eq:tf_d
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_d
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
Where $\bm{G}_d$ is a $2 \times 2$ transfer function matrix.
 | 
			
		||||
 | 
			
		||||
@@ -189,69 +202,18 @@ With:
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Natural frequency of the mass-spring system in $\si{\radian/\s}$
 | 
			
		||||
- $\xi$ damping ratio
 | 
			
		||||
$G_{dp}$ describes to poles of the system, $G_{dz}$ the zeros of the diagonal terms and $G_{dc}$ the coupling.
 | 
			
		||||
 | 
			
		||||
# Parameters
 | 
			
		||||
- $k = \SI{1}{N/m}$, $m = \SI{1}{kg}$, $c = \SI{0.05}{\newton\per\meter\second}$
 | 
			
		||||
- $\omega_0 = \SI{1}{\radian\per\second}$, $\xi = 0.025$
 | 
			
		||||
 | 
			
		||||
** Constant Rotational Speed
 | 
			
		||||
To simplify, let's consider a constant rotational speed $\dot{\theta} = \Omega$ and thus $\ddot{\theta} = 0$.
 | 
			
		||||
 | 
			
		||||
#+NAME: eq:coupledplant
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\
 | 
			
		||||
  -2 m \omega_0 s          & ms^2 + (k-m{\omega_0}^2) \\
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
# Explain each term
 | 
			
		||||
 | 
			
		||||
#+NAME: eq:coupled_plant
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\frac{\frac{1}{k}}{\left( \frac{s^2}{{\omega_0}^2} + (1 - \frac{{\Omega}^2}{{\omega_0}^2}) \right)^2 + \left( 2 \frac{{\Omega} s}{{\omega_0}^2} \right)^2}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  \frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} & 2 \frac{\Omega s}{{\omega_0}^2} \\
 | 
			
		||||
  -2 \frac{\Omega s}{{\omega_0}^2}          & \frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to one degree of freedom mass spring system.
 | 
			
		||||
#+NAME: eq:coupled_plant_no_rot
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\frac{\frac{1}{k}}{\frac{s^2}{{\omega_0}^2} + 1}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  1 & 0 \\
 | 
			
		||||
  0 & 1
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
# Campbell Diagram
 | 
			
		||||
 | 
			
		||||
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
 | 
			
		||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure [[fig:campbell_diagram]]).
 | 
			
		||||
 | 
			
		||||
#+name: fig:campbell_diagram
 | 
			
		||||
#+caption: Campbell Diagram : Evolution of the poles as a function of the rotational speed $\Omega$
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
 | 
			
		||||
| file:figs/campbell_diagram_real.pdf     | file:figs/campbell_diagram_imag.pdf          |
 | 
			
		||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# #+name: fig:campbell_diagram
 | 
			
		||||
# #+caption: Campbell Diagram
 | 
			
		||||
# #+attr_latex: :scale 1
 | 
			
		||||
# [[file:figs/campbell_diagram.pdf]]
 | 
			
		||||
 | 
			
		||||
** System Dynamics and Campbell Diagram
 | 
			
		||||
# Bode Plots for different ratio wr/w0
 | 
			
		||||
 | 
			
		||||
The magnitude of the coupling terms are increasing with the rotation speed.
 | 
			
		||||
The bode plot of $\bm{G}_d$ is shown in Figure [[fig:plant_compare_rotating_speed]].
 | 
			
		||||
 | 
			
		||||
# Describe the dynamics
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_compare_rotating_speed
 | 
			
		||||
#+caption: Bode Plots for $\bm{G}_d$
 | 
			
		||||
@@ -259,12 +221,34 @@ The magnitude of the coupling terms are increasing with the rotation speed.
 | 
			
		||||
| file:figs/plant_compare_rotating_speed_direct.pdf                             | file:figs/plant_compare_rotating_speed_coupling.pdf                               |
 | 
			
		||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
 | 
			
		||||
 | 
			
		||||
# #+name: fig:plant_compare_rotating_speed
 | 
			
		||||
# #+caption: Caption
 | 
			
		||||
# #+attr_latex: :scale 1
 | 
			
		||||
# [[file:figs/plant_compare_rotating_speed.pdf]]
 | 
			
		||||
 | 
			
		||||
* Integral Force Feedback
 | 
			
		||||
# Campbell Diagram
 | 
			
		||||
The poles are the roots of $G_{dp}$.
 | 
			
		||||
Two pairs of complex conjugate poles (supposing small damping $\xi \approx 0$):
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    p_1 &= \pm j (\omega_0 - \Omega) \\
 | 
			
		||||
    p_2 &= \pm j (\omega_0 + \Omega)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
 | 
			
		||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
 | 
			
		||||
 | 
			
		||||
# The system goes unstable at some frequency w0
 | 
			
		||||
When the rotational speed $\Omega$ reaches $\omega_0$, the real part of one pair of complex conjugate becomes position meaning is system is unstable.
 | 
			
		||||
 | 
			
		||||
The stiffness of the X-Y stage is too small to hold to rotating payload hence the instability.
 | 
			
		||||
 | 
			
		||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
 | 
			
		||||
 | 
			
		||||
#+name: fig:campbell_diagram
 | 
			
		||||
#+caption: Campbell Diagram : Evolution of the poles as a function of the rotational speed $\Omega$
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
 | 
			
		||||
| file:figs/campbell_diagram_real.pdf     | file:figs/campbell_diagram_imag.pdf          |
 | 
			
		||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
 | 
			
		||||
 | 
			
		||||
* Decentralized Integral Force Feedback
 | 
			
		||||
** Control Schematic
 | 
			
		||||
 | 
			
		||||
Force Sensors are added in series with the actuators as shown in Figure [[fig:system_iff]].
 | 
			
		||||
@@ -276,53 +260,85 @@ Force Sensors are added in series with the actuators as shown in Figure [[fig:sy
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/system_iff.pdf]]
 | 
			
		||||
 | 
			
		||||
** Equations
 | 
			
		||||
The sensed forces are equal to:
 | 
			
		||||
** Plant Dynamics
 | 
			
		||||
The forces measured by the force sensors are equal to:
 | 
			
		||||
#+name: eq:measured_force
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
 | 
			
		||||
  \begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
  \begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Which then gives:
 | 
			
		||||
Re-injecting eqref:eq:tf_d into eqref:eq:measured_force yields:
 | 
			
		||||
#+name: eq:tf_f
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
\bm{G}_{f}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
Where $\bm{G}_f$ is a $2 \times 2$ transfer function matrix.
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
\bm{G}_f =
 | 
			
		||||
\frac{1}{G_{fp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  G_{fz} & -G_{fc} \\
 | 
			
		||||
  G_{fc} &  G_{fz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
with:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{fp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{fz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
** Plant Dynamics
 | 
			
		||||
# Explain the two real zeros => change of gain but not of phase
 | 
			
		||||
# The alternating poles and zeros properties of collocated IFF holds
 | 
			
		||||
# but additional real zeros are added
 | 
			
		||||
 | 
			
		||||
The zeros of the diagonal terms are the roots of $G_{fz}$ (supposing small damping):
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    z_1 &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \\
 | 
			
		||||
    z_2 &= \pm   \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} }
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The frequency of the two complex conjugate zeros $z_1$ is between the frequency of the two pairs of complex conjugate poles $p_1$ and $p_2$.
 | 
			
		||||
This is the expected behavior of a collocated pair of actuator and sensor.
 | 
			
		||||
 | 
			
		||||
However, the two real zeros $z_2$ induces an increase of +2 of the slope without change of phase (Figure [[fig:plant_iff_compare_rotating_speed]]).
 | 
			
		||||
This represents non-minimum phase behavior.
 | 
			
		||||
 | 
			
		||||
# Explain physically why the real zeros
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Show that the low frequency gain is no longer zero
 | 
			
		||||
The low frequency gain, for $\Omega < \omega_0$, is no longer zero:
 | 
			
		||||
#+name: low_freq_gain_iff_plan
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{G}_{f0} = \lim_{\omega \to 0} \left| \bm{G}_f (j\omega) \right| = \begin{bmatrix}
 | 
			
		||||
  \frac{- \Omega^2}{{\omega_0}^2 - \Omega^2} & 0 \\
 | 
			
		||||
  0  & \frac{- \Omega^2}{{\omega_0}^2 - \Omega^2}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
It increase with the rotational speed $\Omega$.
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_iff_compare_rotating_speed
 | 
			
		||||
#+caption: Bode plot of $\bm{G}_f$ for several rotational speeds $\Omega$
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
 | 
			
		||||
 | 
			
		||||
# Show that the low frequency gain is no longer zero
 | 
			
		||||
** Decentralized Integral Force Feedback
 | 
			
		||||
 | 
			
		||||
# Write the analytical value of the low frequency gain
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_F(s) = g \cdot \frac{1}{s}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
# Explain the two real zeros => change of gain but not of phase
 | 
			
		||||
 | 
			
		||||
# Explain physically why
 | 
			
		||||
 | 
			
		||||
** Integral Force Feedback
 | 
			
		||||
# Problem of zero with a positive real part
 | 
			
		||||
Also, as one zero has a positive real part, the *IFF control is no more unconditionally stable*.
 | 
			
		||||
This is due to the fact that the zeros of the plant are the poles of the closed loop system with an infinite gain.
 | 
			
		||||
Thus, for some finite IFF gain, one pole will have a positive real part and the system will be unstable.
 | 
			
		||||
 | 
			
		||||
# General explanation for the Root Locus Plot
 | 
			
		||||
 | 
			
		||||
@@ -335,6 +351,9 @@ Which then gives:
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_pure_iff.pdf]]
 | 
			
		||||
 | 
			
		||||
# IFF is usually known for its guaranteed stability (add reference)
 | 
			
		||||
# This is not the case anymore due to gyroscopic effects
 | 
			
		||||
 | 
			
		||||
# Physical Interpretation
 | 
			
		||||
 | 
			
		||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
 | 
			
		||||
@@ -350,12 +369,16 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Equation with the new control law
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Explain why it is usually done and why it is done here: the problem is the high gain at low frequency => high pass filter
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
** Feedback Analysis
 | 
			
		||||
# Explain what do we mean for Loop Gain (loop gain for the decentralized loop)
 | 
			
		||||
 | 
			
		||||
# Explain that now the low frequency loop gain does not reach a gain more than 1 (if g not so high)
 | 
			
		||||
 | 
			
		||||
@@ -365,7 +388,10 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
[[file:figs/loop_gain_modified_iff.pdf]]
 | 
			
		||||
 | 
			
		||||
# Not the system can be stable for small values of g
 | 
			
		||||
# Actually, the system becomes unstable for g > ...
 | 
			
		||||
# Actually, the system becomes unstable for g > ... => it has been verified
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  g_\text{max} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right) \label{eq:iff_gmax}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_modified_iff
 | 
			
		||||
#+caption: Root Locus for IFF with and without the HPF
 | 
			
		||||
@@ -414,16 +440,50 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
# Maybe add the fact that this is equivalent to amplified piezo for instance
 | 
			
		||||
 | 
			
		||||
** Plant Dynamics
 | 
			
		||||
 | 
			
		||||
# Equations: sensed force
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_k
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
\frac{1}{G_{kp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{kz} & -G_{kc} \\
 | 
			
		||||
   G_{kc} &  G_{kz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{kp} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
 | 
			
		||||
  G_{kz} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
 | 
			
		||||
  G_{kc} &= \left( 2 \xi^\prime \frac{s}{\omega_0^\prime} + \frac{k}{k + k_p} \right) \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
# New parameters
 | 
			
		||||
where:
 | 
			
		||||
- $\omega_0^\prime = \frac{k + k_p}{m}$
 | 
			
		||||
- $\xi^\prime = \frac{c}{2 \sqrt{(k + k_p) m}}$
 | 
			
		||||
 | 
			
		||||
** Effect of the Parallel Stiffness on the Plant Dynamics
 | 
			
		||||
 | 
			
		||||
# Negative Stiffness due to rotation => the stiffness should be larger than that
 | 
			
		||||
 | 
			
		||||
# TODO: Verify that
 | 
			
		||||
# For kp < negative stiffness => real zeros
 | 
			
		||||
# For kp > negative stiffness => complex conjugate zeros
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} > 0
 | 
			
		||||
\end{equation}
 | 
			
		||||
Which is equivalent to
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  k_p > m \Omega^2
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_iff_kp
 | 
			
		||||
#+caption: Bode Plot of $f_u/F_u$ without parallel spring, with parallel springs with stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$
 | 
			
		||||
@@ -432,6 +492,8 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
# Location of the zeros as a function of kp
 | 
			
		||||
 | 
			
		||||
# Try to show that we don't have anymore real zeros that was making the system non-minimum phase
 | 
			
		||||
 | 
			
		||||
# Show that it is the case on the root locus
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_iff_kp
 | 
			
		||||
@@ -445,6 +507,10 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
# Explain that we have k = ka + kp constant in order to have the same resonance
 | 
			
		||||
 | 
			
		||||
# Attainable damping generally proportional to the distance between the poles and zeros (add reference, probably preumont)
 | 
			
		||||
# The zero is the poles of the system without the force sensors => w =
 | 
			
		||||
# Thus, small kp is wanted: kp close to m Omega^2 should give the optimal damping but is not acceptable for robustness reasons
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Large Stiffness decreases the attainable damping
 | 
			
		||||
 | 
			
		||||
@@ -482,6 +548,27 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
# Write the equations
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_v
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
\frac{s}{k} \frac{1}{G_{vp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{vz} & G_{vc} \\
 | 
			
		||||
  -G_{vc} & G_{vz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{vz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
 | 
			
		||||
  G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
# Show that the rotation have somehow less impact on the plant than for IFF
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								paper/paper.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								paper/paper.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										324
									
								
								paper/paper.tex
									
									
									
									
									
								
							
							
						
						
									
										324
									
								
								paper/paper.tex
									
									
									
									
									
								
							@@ -1,4 +1,4 @@
 | 
			
		||||
% Created 2020-06-24 mer. 16:28
 | 
			
		||||
% Created 2020-06-25 jeu. 10:07
 | 
			
		||||
% Intended LaTeX compiler: pdflatex
 | 
			
		||||
\documentclass{ISMA_USD2020}
 | 
			
		||||
\usepackage[utf8]{inputenc}
 | 
			
		||||
@@ -36,7 +36,14 @@
 | 
			
		||||
\usepackage{tikz}
 | 
			
		||||
\usetikzlibrary{shapes.misc}
 | 
			
		||||
\date{}
 | 
			
		||||
\title{Active Damping of Rotating Positioning Platforms}
 | 
			
		||||
\title{Decentralized Active Damping of Rotating Positioning Platforms}
 | 
			
		||||
\hypersetup{
 | 
			
		||||
 pdfauthor={},
 | 
			
		||||
 pdftitle={Decentralized Active Damping of Rotating Positioning Platforms},
 | 
			
		||||
 pdfkeywords={},
 | 
			
		||||
 pdfsubject={},
 | 
			
		||||
 pdfcreator={Emacs 27.0.91 (Org mode 9.4)}, 
 | 
			
		||||
 pdflang={English}}
 | 
			
		||||
\begin{document}
 | 
			
		||||
 | 
			
		||||
\maketitle
 | 
			
		||||
@@ -46,7 +53,7 @@
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
\section{Introduction}
 | 
			
		||||
\label{sec:org3cbd2ff}
 | 
			
		||||
\label{sec:org5780a8f}
 | 
			
		||||
\label{sec:introduction}
 | 
			
		||||
Controller Poles are shown by black crosses (
 | 
			
		||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
 | 
			
		||||
@@ -55,9 +62,9 @@ This paper has been published
 | 
			
		||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
 | 
			
		||||
 | 
			
		||||
\section{Dynamics of Rotating Positioning Platforms}
 | 
			
		||||
\label{sec:org3cf58d1}
 | 
			
		||||
\label{sec:orga8db619}
 | 
			
		||||
\subsection{Studied Rotating Positioning Platform}
 | 
			
		||||
\label{sec:orgf321431}
 | 
			
		||||
\label{sec:org70ddefe}
 | 
			
		||||
Consider the rotating X-Y stage of Figure \ref{fig:system}.
 | 
			
		||||
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
@@ -74,66 +81,75 @@ Consider the rotating X-Y stage of Figure \ref{fig:system}.
 | 
			
		||||
\caption{\label{fig:system}Schematic of the studied System}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equations of Motion}
 | 
			
		||||
\label{sec:org647b64d}
 | 
			
		||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \([q_1\ q_2] = [d_u\ d_v]\) (describing the position of the mass in the rotating frame).
 | 
			
		||||
 | 
			
		||||
\subsection{Equation of Motion}
 | 
			
		||||
\label{sec:org9612ace}
 | 
			
		||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \(u\) and \(v\) (describing the position of the mass in the rotating frame).
 | 
			
		||||
 | 
			
		||||
Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy):
 | 
			
		||||
 | 
			
		||||
Dissipation function \(R\)
 | 
			
		||||
Kinetic energy \(T\)
 | 
			
		||||
Potential energy \(V\)
 | 
			
		||||
Let's express the kinetic energy \(T\), the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy) as well as the deceptive function \(R\):
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:energy_functions_lagrange}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    T & = \frac{1}{2} m \left( \left( \dot{u} - \Omega v \right)^2 + \left( \dot{v} + \Omega u \right)^2 \right) \\
 | 
			
		||||
    R & = \frac{1}{2} c \left( \dot{u}^2 + \dot{v}^2 \right) \\
 | 
			
		||||
    V & = \frac{1}{2} k \left( u^2 + v^2 \right)
 | 
			
		||||
    T & = \frac{1}{2} m \left( \left( \dot{d}_u - \Omega d_v \right)^2 + \left( \dot{d}_v + \Omega d_u \right)^2 \right) \\
 | 
			
		||||
    V & = \frac{1}{2} k \left( {d_u}^2 + {d_v}^2 \right) \\
 | 
			
		||||
    R & = \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The Lagrangian is the kinetic energy minus the potential energy:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
L = T - V
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
From the Lagrange's equations of the second kind, the equation of motion is obtained (\(q_1 = u\), \(q_2 = v\)).
 | 
			
		||||
The equations of motion are derived from the Lagrangian equation:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:lagrangian_equations}
 | 
			
		||||
  \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
 | 
			
		||||
\end{equation}
 | 
			
		||||
with \(Q_i\) is the generalized force associated with the generalized variable \(q_i\) (\(Q_1 = F_u\) and \(Q_2 = F_v\)).
 | 
			
		||||
 | 
			
		||||
with \(L = T - V\) is the Lagrangian and \(Q_i\) is the generalized force associated with the generalized variable \(q_i\) (\(Q_1 = F_u\) and \(Q_2 = F_v\)).
 | 
			
		||||
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:eom_coupled}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    m \ddot{u} + c \dot{u} + ( k - m \Omega ) u &= F_u + 2 m \Omega \dot{v} \\
 | 
			
		||||
    m \ddot{v} + c \dot{v} + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) v &= F_v \underbrace{-\,2 m \Omega \dot{u}}_{\text{Coriolis}}
 | 
			
		||||
    m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega ) d_u &= F_u + 2 m \Omega \dot{d}_v \\
 | 
			
		||||
    m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The Gyroscopic effects can be seen from the two following terms:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item Coriolis Forces: coupling
 | 
			
		||||
\item Centrifugal forces: negative stiffness
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system with mass \(m\) and stiffness \(k- m\dot{\theta}^2\).
 | 
			
		||||
Thus, the term \(- m\dot{\theta}^2\) acts like a negative stiffness (due to \textbf{centrifugal forces}).
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Transfer Functions in the Laplace domain}
 | 
			
		||||
\label{sec:org1590670}
 | 
			
		||||
\label{sec:org55c9228}
 | 
			
		||||
 | 
			
		||||
Using the Laplace transformation on the equations of motion \eqref{eq:eom_coupled}, the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:oem_laplace_domain}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
 | 
			
		||||
    v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
 | 
			
		||||
    d_u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
 | 
			
		||||
    d_v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u +  \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Without rotation \(\Omega = 0\) and the system corresponds to two uncoupled one degree of freedom mass-spring-damper systems:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
\label{eq:oem_no_rotation}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    d_u &= \frac{1}{m s^2 + cs + k} F_u \\
 | 
			
		||||
    d_v &= \frac{1}{m s^2 + cs + k} F_v
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
\subsection{Change of Variables / Parameters for the study}
 | 
			
		||||
\label{sec:orgb7d090c}
 | 
			
		||||
 | 
			
		||||
In order this study is more independent on the system parameters, the following change of variable is performed:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Natural frequency of the mass-spring system in \(\si{\radian/\s}\)
 | 
			
		||||
\item \(\xi = \frac{c}{2 \sqrt{k m}}\): Damping ratio
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_d
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\label{eq:tf_d}
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
Where \(\bm{G}_d\) is a \(2 \times 2\) transfer function matrix.
 | 
			
		||||
 | 
			
		||||
@@ -153,68 +169,11 @@ With:
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Natural frequency of the mass-spring system in \(\si{\radian/\s}\)
 | 
			
		||||
\item \(\xi\) damping ratio
 | 
			
		||||
\end{itemize}
 | 
			
		||||
\(G_{dp}\) describes to poles of the system, \(G_{dz}\) the zeros of the diagonal terms and \(G_{dc}\) the coupling.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Constant Rotational Speed}
 | 
			
		||||
\label{sec:orgd9375df}
 | 
			
		||||
To simplify, let's consider a constant rotational speed \(\dot{\theta} = \Omega\) and thus \(\ddot{\theta} = 0\).
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:coupledplant}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\
 | 
			
		||||
  -2 m \omega_0 s          & ms^2 + (k-m{\omega_0}^2) \\
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:coupled_plant}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\frac{\frac{1}{k}}{\left( \frac{s^2}{{\omega_0}^2} + (1 - \frac{{\Omega}^2}{{\omega_0}^2}) \right)^2 + \left( 2 \frac{{\Omega} s}{{\omega_0}^2} \right)^2}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  \frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} & 2 \frac{\Omega s}{{\omega_0}^2} \\
 | 
			
		||||
  -2 \frac{\Omega s}{{\omega_0}^2}          & \frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to one degree of freedom mass spring system.
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:coupled_plant_no_rot}
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
 | 
			
		||||
\frac{\frac{1}{k}}{\frac{s^2}{{\omega_0}^2} + 1}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  1 & 0 \\
 | 
			
		||||
  0 & 1
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
 | 
			
		||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure \ref{fig:campbell_diagram}).
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\begin{subfigure}[c]{0.4\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
 | 
			
		||||
\caption{\label{fig:campbell_diagram_real} Real Part}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\begin{subfigure}[c]{0.4\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
 | 
			
		||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the poles as a function of the rotational speed \(\Omega\)}
 | 
			
		||||
\centering
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
The magnitude of the coupling terms are increasing with the rotation speed.
 | 
			
		||||
\subsection{System Dynamics and Campbell Diagram}
 | 
			
		||||
\label{sec:org24f5f5f}
 | 
			
		||||
The bode plot of \(\bm{G}_d\) is shown in Figure \ref{fig:plant_compare_rotating_speed}.
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\begin{subfigure}[c]{0.45\linewidth}
 | 
			
		||||
@@ -230,10 +189,33 @@ The magnitude of the coupling terms are increasing with the rotation speed.
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback}
 | 
			
		||||
\label{sec:org95f47e8}
 | 
			
		||||
 | 
			
		||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
 | 
			
		||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
 | 
			
		||||
 | 
			
		||||
When the rotational speed \(\Omega\) reaches \(\omega_0\), the real part of one pair of complex conjugate becomes position meaning is system is unstable.
 | 
			
		||||
 | 
			
		||||
The stiffness of the X-Y stage is too small to hold to rotating payload hence the instability.
 | 
			
		||||
 | 
			
		||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\begin{subfigure}[c]{0.4\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
 | 
			
		||||
\caption{\label{fig:campbell_diagram_real} Real Part}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\begin{subfigure}[c]{0.4\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
 | 
			
		||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the poles as a function of the rotational speed \(\Omega\)}
 | 
			
		||||
\centering
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Decentralized Integral Force Feedback}
 | 
			
		||||
\label{sec:orgd957fd6}
 | 
			
		||||
\subsection{Control Schematic}
 | 
			
		||||
\label{sec:org8bb26ea}
 | 
			
		||||
\label{sec:orgc01d8cf}
 | 
			
		||||
 | 
			
		||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
 | 
			
		||||
 | 
			
		||||
@@ -244,29 +226,28 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equations}
 | 
			
		||||
\label{sec:orgbd9ebe0}
 | 
			
		||||
The sensed forces are equal to:
 | 
			
		||||
\label{sec:orge5896ec}
 | 
			
		||||
The forces measured by the force sensors are equal to:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
 | 
			
		||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
 | 
			
		||||
\label{eq:measured_force}
 | 
			
		||||
  \begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
  \begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Which then gives:
 | 
			
		||||
Reinjecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
\bm{G}_{f}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\label{eq:tf_f}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
\bm{G}_f =
 | 
			
		||||
\frac{1}{G_{fp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  G_{fz} & -G_{fc} \\
 | 
			
		||||
  G_{fc} &  G_{fz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{align}
 | 
			
		||||
@@ -275,8 +256,17 @@ Which then gives:
 | 
			
		||||
  G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\bm{G}_f =
 | 
			
		||||
\frac{1}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 & -G_{fc} \\
 | 
			
		||||
  G_{fc} &  \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\subsection{Plant Dynamics}
 | 
			
		||||
\label{sec:org392809f}
 | 
			
		||||
\label{sec:org0a22a10}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -284,9 +274,8 @@ Which then gives:
 | 
			
		||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of \(\bm{G}_f\) for several rotational speeds \(\Omega\)}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Integral Force Feedback}
 | 
			
		||||
\label{sec:org049877c}
 | 
			
		||||
\subsection{Problems with Integral Force Feedback}
 | 
			
		||||
\label{sec:orgd432439}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -297,15 +286,17 @@ Which then gives:
 | 
			
		||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
 | 
			
		||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback with High Pass Filters}
 | 
			
		||||
\label{sec:org54452db}
 | 
			
		||||
\label{sec:org2e1883a}
 | 
			
		||||
\subsection{Modification of the Control Low}
 | 
			
		||||
\label{sec:org325cdd4}
 | 
			
		||||
\label{sec:org218110f}
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_{F}(s) = \frac{1}{s} \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = \frac{1}{s + \omega_i}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Feedback Analysis}
 | 
			
		||||
\label{sec:org5efee77}
 | 
			
		||||
\label{sec:org03090fc}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -320,7 +311,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Optimal Cut-Off Frequency}
 | 
			
		||||
\label{sec:orgd5828e4}
 | 
			
		||||
\label{sec:org6ba4e55}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -335,9 +326,9 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback with Parallel Springs}
 | 
			
		||||
\label{sec:org22884d6}
 | 
			
		||||
\label{sec:org90ec20f}
 | 
			
		||||
\subsection{Stiffness in Parallel with the Force Sensor}
 | 
			
		||||
\label{sec:orgb871bfd}
 | 
			
		||||
\label{sec:org60d6640}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -345,25 +336,59 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\caption{\label{fig:system_parallel_springs}System with added springs \(k_p\) in parallel with the actuators}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_k
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
\frac{1}{G_{kp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{kz} & -G_{kc} \\
 | 
			
		||||
   G_{kc} &  G_{kz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{kp} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
 | 
			
		||||
  G_{kz} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
 | 
			
		||||
  G_{kc} &= \left( 2 \xi^\prime \frac{s}{\omega_0^\prime} + \frac{k}{k + k_p} \right) \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
where:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item \(\omega_0^\prime = \frac{k + k_p}{m}\)
 | 
			
		||||
\item \(\xi^\prime = \frac{c}{2 \sqrt{(k + k_p) m}}\)
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
 | 
			
		||||
\label{sec:org4d37cce}
 | 
			
		||||
\label{sec:org3ec34fe}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} > 0
 | 
			
		||||
\end{equation}
 | 
			
		||||
Which is equivalent to
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  k_p > m \Omega^2
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/plant_iff_kp.pdf}
 | 
			
		||||
\caption{\label{fig:plant_iff_kp}Bode Plot of \(f_u/F_u\) without any parallel stiffness, with a parallel stiffness \(k_p < m \Omega^2\) and with \(k_p > m \Omega^2\)}
 | 
			
		||||
\caption{\label{fig:plant_iff_kp}Bode Plot of \(f_u/F_u\) without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\)}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_iff_kp.pdf}
 | 
			
		||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without any parallel stiffness, with a parallel stiffness \(k_p < m \Omega^2\) and with \(k_p > m \Omega^2\)}
 | 
			
		||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\)}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Optimal Parallel Stiffness}
 | 
			
		||||
\label{sec:orgd19b212}
 | 
			
		||||
\label{sec:org9c47159}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -379,9 +404,9 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Direct Velocity Feedback}
 | 
			
		||||
\label{sec:org6904969}
 | 
			
		||||
\label{sec:org5cb3076}
 | 
			
		||||
\subsection{Control Schematic}
 | 
			
		||||
\label{sec:org103e18b}
 | 
			
		||||
\label{sec:orgaaa522f}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -389,14 +414,34 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\caption{\label{fig:system_dvf}System with relative velocity sensors and with decentralized controllers \(K_V\)}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Equations}
 | 
			
		||||
\label{sec:org793c22d}
 | 
			
		||||
\label{sec:orge0a4555}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_v
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
\frac{s}{k} \frac{1}{G_{vp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{vz} & G_{vc} \\
 | 
			
		||||
  -G_{vc} & G_{vz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{vz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
 | 
			
		||||
  G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Relative Direct Velocity Feedback}
 | 
			
		||||
\label{sec:orgc28d518}
 | 
			
		||||
\label{sec:org5401110}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -405,14 +450,14 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
 | 
			
		||||
\label{sec:org6af1fdb}
 | 
			
		||||
\label{sec:org4cbf163}
 | 
			
		||||
\subsection{Physical Comparison}
 | 
			
		||||
\label{sec:orgdff3aa2}
 | 
			
		||||
\label{sec:org5eba275}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Attainable Damping}
 | 
			
		||||
\label{sec:org22c8f42}
 | 
			
		||||
\label{sec:org44635e0}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -422,7 +467,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Transmissibility and Compliance}
 | 
			
		||||
\label{sec:org3e2cf56}
 | 
			
		||||
\label{sec:org58e9594}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
@@ -438,13 +483,12 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\centering
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\section{Conclusion}
 | 
			
		||||
\label{sec:orge292803}
 | 
			
		||||
\label{sec:org292b448}
 | 
			
		||||
\label{sec:conclusion}
 | 
			
		||||
 | 
			
		||||
\section*{Acknowledgment}
 | 
			
		||||
\label{sec:orgaf681fb}
 | 
			
		||||
\label{sec:orgff7af07}
 | 
			
		||||
 | 
			
		||||
\bibliography{ref.bib}
 | 
			
		||||
\end{document}
 | 
			
		||||
 
 | 
			
		||||
@@ -56,3 +56,16 @@
 | 
			
		||||
  year = {2018},
 | 
			
		||||
  publisher = {Springer},
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@inproceedings{preumont91_activ,
 | 
			
		||||
  author          = {Andre Preumont and Jean-Paul Dufour and Christian Malekian},
 | 
			
		||||
  title           = {Active damping by a local force feedback with piezoelectric
 | 
			
		||||
                  actuators},
 | 
			
		||||
  booktitle       = {32nd Structures, Structural Dynamics, and Materials
 | 
			
		||||
                  Conference},
 | 
			
		||||
  year            = 1991,
 | 
			
		||||
  doi             = {10.2514/6.1991-989},
 | 
			
		||||
  url             = {https://doi.org/10.2514/6.1991-989},
 | 
			
		||||
  month           = {apr},
 | 
			
		||||
  publisher       = {American Institute of Aeronautics and Astronautics},
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user