Start to rewrite all the equations
This commit is contained in:
		
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 56 KiB  | 
@@ -1395,7 +1395,6 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  kp = 0;
 | 
			
		||||
  cp = 0;
 | 
			
		||||
 | 
			
		||||
  w0p = sqrt((k + kp)/m);
 | 
			
		||||
  xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
@@ -1407,7 +1406,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  kp = 0.5*m*W^2;
 | 
			
		||||
  cp = 0;
 | 
			
		||||
  k = 1 - kp;
 | 
			
		||||
 | 
			
		||||
  w0p = sqrt((k + kp)/m);
 | 
			
		||||
  xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
@@ -1419,7 +1418,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  kp = 1.5*m*W^2;
 | 
			
		||||
  cp = 0;
 | 
			
		||||
  k = 1 - kp;
 | 
			
		||||
 | 
			
		||||
  w0p = sqrt((k + kp)/m);
 | 
			
		||||
  xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
@@ -1442,6 +1441,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
 | 
			
		||||
  ylim([1e-5, 2e1]);
 | 
			
		||||
 | 
			
		||||
  ax2 = subplot(2, 1, 2);
 | 
			
		||||
  hold on;
 | 
			
		||||
@@ -1704,6 +1704,7 @@ It is shown that large values of $k_p$ decreases the attainable damping.
 | 
			
		||||
  hold on;
 | 
			
		||||
  for kp_i = 1:length(kps)
 | 
			
		||||
      kp = kps(kp_i);
 | 
			
		||||
      k = 1 - kp;
 | 
			
		||||
 | 
			
		||||
      w0p = sqrt((k + kp)/m);
 | 
			
		||||
      xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
@@ -1791,7 +1792,7 @@ Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such t
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  kp = 5*m*W^2;
 | 
			
		||||
  cp = 0.01;
 | 
			
		||||
  k = 1 - kp;
 | 
			
		||||
 | 
			
		||||
  w0p = sqrt((k + kp)/m);
 | 
			
		||||
  xip = c/(2*sqrt((k+kp)*m));
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user