Start to rewrite all the equations
This commit is contained in:
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 56 KiB |
@@ -1395,7 +1395,6 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
|
||||
|
||||
#+begin_src matlab
|
||||
kp = 0;
|
||||
cp = 0;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
@@ -1407,7 +1406,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
|
||||
|
||||
#+begin_src matlab
|
||||
kp = 0.5*m*W^2;
|
||||
cp = 0;
|
||||
k = 1 - kp;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
@@ -1419,7 +1418,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
|
||||
|
||||
#+begin_src matlab
|
||||
kp = 1.5*m*W^2;
|
||||
cp = 0;
|
||||
k = 1 - kp;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
@@ -1442,6 +1441,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
|
||||
ylim([1e-5, 2e1]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
@@ -1704,6 +1704,7 @@ It is shown that large values of $k_p$ decreases the attainable damping.
|
||||
hold on;
|
||||
for kp_i = 1:length(kps)
|
||||
kp = kps(kp_i);
|
||||
k = 1 - kp;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
@@ -1791,7 +1792,7 @@ Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such t
|
||||
|
||||
#+begin_src matlab
|
||||
kp = 5*m*W^2;
|
||||
cp = 0.01;
|
||||
k = 1 - kp;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
|
Reference in New Issue
Block a user