Start to rewrite all the equations

This commit is contained in:
2020-06-25 12:18:44 +02:00
parent 5d09c5c703
commit 0c3a83ba54
23 changed files with 9988 additions and 9422 deletions

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

After

Width:  |  Height:  |  Size: 56 KiB

View File

@@ -1395,7 +1395,6 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
#+begin_src matlab
kp = 0;
cp = 0;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
@@ -1407,7 +1406,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
#+begin_src matlab
kp = 0.5*m*W^2;
cp = 0;
k = 1 - kp;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
@@ -1419,7 +1418,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
#+begin_src matlab
kp = 1.5*m*W^2;
cp = 0;
k = 1 - kp;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
@@ -1442,6 +1441,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
ylim([1e-5, 2e1]);
ax2 = subplot(2, 1, 2);
hold on;
@@ -1704,6 +1704,7 @@ It is shown that large values of $k_p$ decreases the attainable damping.
hold on;
for kp_i = 1:length(kps)
kp = kps(kp_i);
k = 1 - kp;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));
@@ -1791,7 +1792,7 @@ Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such t
#+begin_src matlab
kp = 5*m*W^2;
cp = 0.01;
k = 1 - kp;
w0p = sqrt((k + kp)/m);
xip = c/(2*sqrt((k+kp)*m));