569 lines
19 KiB
Org Mode
569 lines
19 KiB
Org Mode
#+TITLE: Attocube - Test Bench
|
||
:DRAWER:
|
||
#+LANGUAGE: en
|
||
#+EMAIL: dehaeze.thomas@gmail.com
|
||
#+AUTHOR: Dehaeze Thomas
|
||
|
||
#+HTML_LINK_HOME: ../index.html
|
||
#+HTML_LINK_UP: ../index.html
|
||
|
||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
||
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
||
|
||
#+BIND: org-latex-image-default-option "scale=1"
|
||
#+BIND: org-latex-image-default-width ""
|
||
|
||
#+LaTeX_CLASS: scrreprt
|
||
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full]
|
||
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
|
||
|
||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||
#+PROPERTY: header-args:matlab+ :comments org
|
||
#+PROPERTY: header-args:matlab+ :exports both
|
||
#+PROPERTY: header-args:matlab+ :results none
|
||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||
:END:
|
||
|
||
#+begin_export html
|
||
<hr>
|
||
<p>This report is also available as a <a href="./test-bench-attocube.pdf">pdf</a>.</p>
|
||
<hr>
|
||
#+end_export
|
||
|
||
* Introduction :ignore:
|
||
|
||
In this document, few caracteristics of the Attocube Displacement Measuring Interferometer IDS3010 ([[https://www.attocube.com/en/products/laser-displacement-sensor/displacement-measuring-interferometer][link]]) are studied:
|
||
- Section [[sec:attocube_asd_noise]]: the ASD noise of the measured displacement is estimated
|
||
- Section [[sec:effect_air_protection]]: the effect of two air protections on the stability of the measurement is studied
|
||
- Section [[sec:attocube_non_linearity]]: the cyclic non-linearity of the attocube is estimated using a encoder
|
||
|
||
* Estimation of the Spectral Density of the Attocube Noise
|
||
:PROPERTIES:
|
||
:header-args:matlab+: :tangle matlab/attocube_asd_noise.m
|
||
:END:
|
||
<<sec:attocube_asd_noise>>
|
||
** Introduction :ignore:
|
||
|
||
#+name: fig:test-bench-schematic
|
||
#+caption: Test Bench Schematic
|
||
[[file:figs/test-bench-schematic.png]]
|
||
|
||
#+name: fig:test-bench-picture
|
||
#+caption: Picture of the test bench. The Attocube and mirror are covered by a "bubble sheet"
|
||
#+ATTR_ORG: :width 600px
|
||
#+ATTR_LATEX: :width \linewidth
|
||
[[file:figs/IMG-7865.JPG]]
|
||
|
||
** Matlab Init :noexport:ignore:
|
||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||
<<matlab-dir>>
|
||
#+end_src
|
||
|
||
#+begin_src matlab :exports none :results silent :noweb yes
|
||
<<matlab-init>>
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no
|
||
addpath('./matlab/mat/');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :eval no
|
||
addpath('./mat/');
|
||
#+end_src
|
||
|
||
** Long and Slow measurement
|
||
The first measurement was made during ~17 hours with a sampling time of $T_s = 0.1\,s$.
|
||
|
||
#+begin_src matlab
|
||
load('long_test_plastic.mat', 'x', 't')
|
||
Ts = 0.1; % [s]
|
||
#+end_src
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
plot(t/60/60, 1e9*x)
|
||
xlim([0, 17.5]);
|
||
xlabel('Time [h]'); ylabel('Displacement [nm]');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/long_meas_time_domain_full.pdf', 'width', 'wide', 'height', 'normal');
|
||
#+end_src
|
||
|
||
#+name: fig:long_meas_time_domain_full
|
||
#+caption: Long measurement time domain data
|
||
#+RESULTS:
|
||
[[file:figs/long_meas_time_domain_full.png]]
|
||
|
||
Let's fit the data with a step response to a first order low pass filter (Figure [[fig:long_meas_time_domain_fit]]).
|
||
|
||
#+begin_src matlab
|
||
f = @(b,x) b(1)*(1 - exp(-x/b(2)));
|
||
|
||
y_cur = x(t < 17.5*60*60);
|
||
t_cur = t(t < 17.5*60*60);
|
||
|
||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||
B0 = [400e-9, 2*60*60]; % Choose Appropriate Initial Estimates
|
||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||
#+end_src
|
||
|
||
The corresponding time constant is (in [h]):
|
||
#+begin_src matlab :results value replace :exports results
|
||
B(2)/60/60
|
||
#+end_src
|
||
|
||
#+RESULTS:
|
||
: 2.0658
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
plot(t_cur/60/60, 1e9*y_cur);
|
||
plot(t_cur/60/60, 1e9*f(B, t_cur));
|
||
hold off;
|
||
xlim([0, 17.5])
|
||
xlabel('Time [h]'); ylabel('Displacement [nm]');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/long_meas_time_domain_fit.pdf', 'width', 'wide', 'height', 'normal');
|
||
#+end_src
|
||
|
||
#+name: fig:long_meas_time_domain_fit
|
||
#+caption: Fit of the measurement data with a step response of a first order low pass filter
|
||
#+RESULTS:
|
||
[[file:figs/long_meas_time_domain_fit.png]]
|
||
|
||
We can see in Figure [[fig:long_meas_time_domain_full]] that there is a transient period where the measured displacement experiences some drifts.
|
||
This is probably due to thermal effects.
|
||
We only select the data between =t1= and =t2=.
|
||
The obtained displacement is shown in Figure [[fig:long_meas_time_domain_zoom]].
|
||
|
||
#+begin_src matlab
|
||
t1 = 10.5; t2 = 17.5; % [h]
|
||
|
||
x = x(t > t1*60*60 & t < t2*60*60);
|
||
x = x - mean(x);
|
||
t = t(t > t1*60*60 & t < t2*60*60);
|
||
t = t - t(1);
|
||
#+end_src
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
plot(t/60/60, 1e9*x);
|
||
xlabel('Time [h]'); ylabel('Measured Displacement [nm]')
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/long_meas_time_domain_zoom.pdf', 'width', 'wide', 'height', 'normal');
|
||
#+end_src
|
||
|
||
#+name: fig:long_meas_time_domain_zoom
|
||
#+caption: Kept data (removed slow drifts during the first hours)
|
||
#+RESULTS:
|
||
[[file:figs/long_meas_time_domain_zoom.png]]
|
||
|
||
The Power Spectral Density of the measured displacement is computed
|
||
#+begin_src matlab
|
||
win = hann(ceil(length(x)/20));
|
||
[p_1, f_1] = pwelch(x, win, [], [], 1/Ts);
|
||
#+end_src
|
||
|
||
As a low pass filter was used in the measurement process, we multiply the PSD by the square of the inverse of the filter's norm.
|
||
#+begin_src matlab
|
||
G_lpf = 1/(1 + s/2/pi);
|
||
p_1 = p_1./abs(squeeze(freqresp(G_lpf, f_1, 'Hz'))).^2;
|
||
#+end_src
|
||
|
||
Only frequencies below 2Hz are taken into account (high frequency noise will be measured afterwards).
|
||
#+begin_src matlab
|
||
p_1 = p_1(f_1 < 2);
|
||
f_1 = f_1(f_1 < 2);
|
||
#+end_src
|
||
|
||
** Short and Fast measurement
|
||
An second measurement is done in order to estimate the high frequency noise of the interferometer.
|
||
The measurement is done with a sampling time of $T_s = 0.1\,ms$ and a duration of ~100s.
|
||
|
||
#+begin_src matlab
|
||
load('short_test_plastic.mat')
|
||
Ts = 1e-4; % [s]
|
||
#+end_src
|
||
|
||
#+begin_src matlab
|
||
x = detrend(x, 0);
|
||
#+end_src
|
||
|
||
The time domain measurement is shown in Figure [[fig:short_meas_time_domain]].
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
plot(t, 1e9*x)
|
||
xlabel('Time [s]'); ylabel('Displacement [nm]');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/short_meas_time_domain.pdf', 'width', 'wide', 'height', 'normal');
|
||
#+end_src
|
||
|
||
#+name: fig:short_meas_time_domain
|
||
#+caption: Time domain measurement with the high sampling rate
|
||
#+RESULTS:
|
||
[[file:figs/short_meas_time_domain.png]]
|
||
|
||
The Power Spectral Density of the measured displacement is computed
|
||
#+begin_src matlab
|
||
win = hann(ceil(length(x)/20));
|
||
[p_2, f_2] = pwelch(x, win, [], [], 1/Ts);
|
||
#+end_src
|
||
|
||
** Obtained Amplitude Spectral Density of the measured displacement
|
||
|
||
The computed ASD of the two measurements are combined in Figure [[fig:psd_combined]].
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
plot(f_1(8:end), sqrt(p_1(8:end)), 'k-');
|
||
plot(f_2(8:end), sqrt(p_2(8:end)), 'k-');
|
||
hold off;
|
||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||
ylabel('ASD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/psd_combined.pdf', 'width', 'wide', 'height', 'tall');
|
||
#+end_src
|
||
|
||
#+name: fig:psd_combined
|
||
#+caption: Obtained Amplitude Spectral Density of the measured displacement
|
||
#+RESULTS:
|
||
[[file:figs/psd_combined.png]]
|
||
|
||
* Effect of the "bubble sheet" and "Aluminium tube"
|
||
:PROPERTIES:
|
||
:header-args:matlab+: :tangle matlab/effect_air_protection.m
|
||
:END:
|
||
<<sec:effect_air_protection>>
|
||
** Introduction :ignore:
|
||
|
||
#+name: fig:picture-test-bench-aluminium-tube
|
||
#+caption: Aluminium tube used to protect the beam path from disturbances
|
||
#+ATTR_ORG: :width 600px
|
||
#+ATTR_LATEX: :width \linewidth
|
||
[[file:figs/IMG-7864.JPG]]
|
||
|
||
** Matlab Init :noexport:ignore:
|
||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||
<<matlab-dir>>
|
||
#+end_src
|
||
|
||
#+begin_src matlab :exports none :results silent :noweb yes
|
||
<<matlab-init>>
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no
|
||
addpath('./matlab/mat/');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :eval no
|
||
addpath('./mat/');
|
||
#+end_src
|
||
|
||
** Aluminium Tube and Bubble Sheet :ignore:
|
||
Measurements corresponding to the used of both the aluminium tube and the "bubble sheet "are loaded and PSD is computed.
|
||
#+begin_src matlab
|
||
load('short_test_plastic.mat');
|
||
Ts = 1e-4; % [s]
|
||
|
||
t_1 = t;
|
||
x_1 = detrend(x, 0);
|
||
|
||
[p_1, f_1] = pwelch(x_1, win, [], [], 1/Ts);
|
||
#+end_src
|
||
|
||
** Only Aluminium Tube :ignore:
|
||
Then, the measurement corresponding to the use of the aluminium tube only are loaded and the PSD is computed.
|
||
#+begin_src matlab
|
||
load('short_test_alu_tube.mat');
|
||
Ts = 1e-4; % [s]
|
||
|
||
t_2 = t;
|
||
x_2 = detrend(x, 0);
|
||
|
||
[p_2, f_2] = pwelch(x_2, win, [], [], 1/Ts);
|
||
#+end_src
|
||
|
||
** Nothing :ignore:
|
||
Finally, the measurements when neither using the aluminium tube nor the "bubble sheet" are used.
|
||
#+begin_src matlab
|
||
load('short_test_without_material.mat');
|
||
Ts = 1e-4; % [s]
|
||
|
||
t_3 = t;
|
||
x_3 = detrend(x, 0);
|
||
|
||
[p_3, f_3] = pwelch(x_3, win, [], [], 1/Ts);
|
||
#+end_src
|
||
|
||
** Comparison :ignore:
|
||
The time domain signals are compared in Figure [[fig:time_domain_comp_bubble_aluminium]] and the power spectral densities are compared in Figure [[fig:asd_noise_comp_bubble_aluminium]].
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
plot(t_3, 1e9*x_3, 'DisplayName', 'Nothing');
|
||
plot(t_2, 1e9*x_2, 'DisplayName', 'Alunimium');
|
||
plot(t_1, 1e9*x_1, 'DisplayName', 'Alunimium + Bubble');
|
||
hold off;
|
||
xlabel('Time [s]'); ylabel('Displacement [nm]')
|
||
legend('location', 'southeast');
|
||
ylim([-20, 20]);
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/time_domain_comp_bubble_aluminium.pdf', 'width', 'wide', 'height', 'normal');
|
||
#+end_src
|
||
|
||
#+name: fig:time_domain_comp_bubble_aluminium
|
||
#+caption: Time domain signals
|
||
#+RESULTS:
|
||
[[file:figs/time_domain_comp_bubble_aluminium.png]]
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
plot(f_3(8:end), sqrt(p_3(8:end)), '-', ...
|
||
'DisplayName', 'Nothing');
|
||
plot(f_2(8:end), sqrt(p_2(8:end)), '-', ...
|
||
'DisplayName', 'Aluminium');
|
||
plot(f_1(8:end), sqrt(p_1(8:end)), '-', ...
|
||
'DisplayName', 'Alunimium + Bubble');
|
||
hold off;
|
||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||
ylabel('ASD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]');
|
||
xlim([1e-1, 5e3]);
|
||
legend('location', 'northeast');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/asd_noise_comp_bubble_aluminium.pdf', 'width', 'wide', 'height', 'tall');
|
||
#+end_src
|
||
|
||
#+name: fig:asd_noise_comp_bubble_aluminium
|
||
#+caption: Comparison of the noise ASD with and without bubble sheet
|
||
#+RESULTS:
|
||
[[file:figs/asd_noise_comp_bubble_aluminium.png]]
|
||
|
||
* Measurement of the Attocube's non-linearity
|
||
:PROPERTIES:
|
||
:header-args:matlab+: :tangle matlab/attocube_non_linearity.m
|
||
:END:
|
||
<<sec:attocube_non_linearity>>
|
||
|
||
** Introduction :ignore:
|
||
The measurement setup is shown in Figure [[fig:exp_setup_schematic]].
|
||
|
||
#+begin_note
|
||
Here are the equipment used in the test bench:
|
||
- Renishaw Resolution Encoder with 1nm resolution ([[file:doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf][doc]])
|
||
- Attocube interferometer ([[file:doc/IDS3010.pdf][doc]])
|
||
- Cedrat Amplified Piezoelectric Actuator APA95ML ([[file:doc/APA95ML.pdf][doc]])
|
||
- Voltage Amplifier LA75B ([[file:doc/LA75B.pdf][doc]])
|
||
- Speedgoat IO131 with 16bits ADC and DAC ([[file:doc/IO130 IO131 OEM Datasheet.pdf][doc]])
|
||
#+end_note
|
||
|
||
#+name: fig:exp_setup_schematic
|
||
#+caption: Schematic of the Experiment
|
||
[[file:figs/exp_setup_schematic.png]]
|
||
|
||
A DAC and voltage amplified are used to move the mass with the Amplified Piezoelectric Actuator (APA95ML).
|
||
The encoder and the attocube are measure ring the same motion.
|
||
|
||
As will be shown shortly, this measurement permitted to measure the period non-linearity of the Attocube.
|
||
|
||
** Matlab Init :noexport:ignore:
|
||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||
<<matlab-dir>>
|
||
#+end_src
|
||
|
||
#+begin_src matlab :exports none :results silent :noweb yes
|
||
<<matlab-init>>
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no
|
||
addpath('./matlab/mat/');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :eval no
|
||
addpath('./mat/');
|
||
#+end_src
|
||
|
||
** Load Data
|
||
The measurement data are loaded and the offset are removed using the =detrend= command.
|
||
|
||
#+begin_src matlab
|
||
load('int_enc_comp.mat', 'interferometer', 'encoder', 'u', 't');
|
||
Ts = 1e-4; % Sampling Time [s]
|
||
#+end_src
|
||
|
||
#+begin_src matlab
|
||
interferometer = detrend(interferometer, 0);
|
||
encoder = detrend(encoder, 0);
|
||
u = detrend(u, 0);
|
||
#+end_src
|
||
|
||
** Time Domain Results
|
||
One period of the displacement of the mass as measured by the encoder and interferometer are shown in Figure [[fig:int_enc_one_cycle]].
|
||
It consist of the sinusoidal motion at 0.5Hz with an amplitude of approximately $70\mu m$.
|
||
|
||
The frequency of the motion is chosen such that no resonance in the system is excited.
|
||
This should improve the coherence between the measurements made by the encoder and interferometer.
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
plot(t, encoder, '-', 'DisplayName', 'Encoder')
|
||
plot(t, interferometer, '--', 'DisplayName', 'Interferometer')
|
||
hold off;
|
||
xlabel('Time [s]'); ylabel('Displacement [m]');
|
||
legend('location', 'southeast');
|
||
xlim([50, 52])
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/int_enc_one_cycle.pdf', 'width', 'wide', 'height', 'normal');
|
||
#+end_src
|
||
|
||
#+name: fig:int_enc_one_cycle
|
||
#+caption: One cycle measurement
|
||
#+RESULTS:
|
||
[[file:figs/int_enc_one_cycle.png]]
|
||
|
||
The difference between the two measurements during the same period is shown in Figure [[fig:int_enc_one_cycle_error]].
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
plot(t, encoder - interferometer, 'DisplayName', 'Difference')
|
||
hold off;
|
||
xlabel('Time [s]'); ylabel('Displacement [m]');
|
||
legend('location', 'northeast');
|
||
xlim([50, 52])
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/int_enc_one_cycle_error.pdf', 'width', 'wide', 'height', 'normal');
|
||
#+end_src
|
||
|
||
#+name: fig:int_enc_one_cycle_error
|
||
#+caption: Difference between the Encoder and the interferometer during one cycle
|
||
#+RESULTS:
|
||
[[file:figs/int_enc_one_cycle_error.png]]
|
||
|
||
** Difference between Encoder and Interferometer as a function of time
|
||
The data is filtered using a second order low pass filter with a cut-off frequency $\omega_0$ as defined below.
|
||
|
||
#+begin_src matlab
|
||
w0 = 2*pi*5; % [rad/s]
|
||
xi = 0.7;
|
||
|
||
G_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);
|
||
#+end_src
|
||
|
||
After filtering, the data is "re-shaped" such that we can superimpose all the measured periods as shown in Figure [[fig:int_enc_error_mean_time]].
|
||
This gives an idea of the measurement error as given by the Attocube during a $70 \mu m$ motion.
|
||
#+begin_src matlab
|
||
d_err_mean = reshape(lsim(G_lpf, encoder - interferometer, t), [2/Ts floor(Ts/2*length(encoder))]);
|
||
d_err_mean = d_err_mean - mean(d_err_mean);
|
||
#+end_src
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
for i_i = 1:size(d_err_mean, 2)
|
||
plot(t(1:size(d_err_mean, 1)), d_err_mean(:, i_i), 'k-')
|
||
end
|
||
plot(t(1:size(d_err_mean, 1)), mean(d_err_mean, 2), 'r-')
|
||
hold off;
|
||
xlabel('Time [s]'); ylabel('Displacement [m]');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/int_enc_error_mean_time.pdf', 'width', 'wide', 'height', 'normal', 'simplify', true);
|
||
#+end_src
|
||
|
||
#+name: fig:int_enc_error_mean_time
|
||
#+caption: Difference between the two measurement in the time domain, averaged for all the cycles
|
||
#+RESULTS:
|
||
[[file:figs/int_enc_error_mean_time.png]]
|
||
|
||
** Difference between Encoder and Interferometer as a function of position
|
||
Figure [[fig:int_enc_error_mean_time]] gives the measurement error as a function of time.
|
||
We here wish the compute this measurement error as a function of the position (as measured by the encoer).
|
||
|
||
To do so, all the attocube measurements corresponding to each position measured by the Encoder (resolution of $1nm$) are averaged.
|
||
Figure [[fig:int_enc_error_mean_position]] is obtained where we clearly see an error with a period comparable to the motion range and a much smaller period corresponding to the non-linear period errors that we wish the estimate.
|
||
#+begin_src matlab
|
||
[e_sorted, ~, e_ind] = unique(encoder);
|
||
|
||
i_mean = zeros(length(e_sorted), 1);
|
||
for i = 1:length(e_sorted)
|
||
i_mean(i) = mean(interferometer(e_ind == i));
|
||
end
|
||
|
||
i_mean_error = (i_mean - e_sorted);
|
||
#+end_src
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
% plot(encoder, interferometer - encoder, 'k.', 'DisplayName', 'Difference')
|
||
plot(1e6*(e_sorted), 1e9*(i_mean_error))
|
||
hold off;
|
||
xlabel('Encoder Measurement [$\mu m$]'); ylabel('Measrement Error [nm]');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/int_enc_error_mean_position.pdf', 'width', 'wide', 'height', 'normal');
|
||
#+end_src
|
||
|
||
#+name: fig:int_enc_error_mean_position
|
||
#+caption: Difference between the two measurement as a function of the measured position by the encoder, averaged for all the cycles
|
||
#+RESULTS:
|
||
[[file:figs/int_enc_error_mean_position.png]]
|
||
|
||
The period of the non-linearity seems to be equal to $765 nm$ which corresponds to half the wavelength of the Laser ($1.53 \mu m$).
|
||
For the motion range done here, the non-linearity is measured over ~18 periods which permits to do some averaging.
|
||
|
||
#+begin_src matlab
|
||
win_length = 1530/2; % length of the windows (corresponds to 765 nm)
|
||
num_avg = floor(length(e_sorted)/win_length); % number of averaging
|
||
|
||
i_init = ceil((length(e_sorted) - win_length*num_avg)/2); % does not start at the extremity
|
||
|
||
e_sorted_mean_over_period = mean(reshape(i_mean_error(i_init:i_init+win_length*num_avg-1), [win_length num_avg]), 2);
|
||
#+end_src
|
||
|
||
The obtained periodic non-linearity is shown in Figure [[fig:int_non_linearity_period_wavelength]].
|
||
|
||
#+begin_src matlab :exports none
|
||
figure;
|
||
hold on;
|
||
plot(1e-3*(0:win_length-1), 1e9*(e_sorted_mean_over_period))
|
||
hold off;
|
||
xlabel('Displacement [$\mu m$]'); ylabel('Measurement Non-Linearity [nm]');
|
||
#+end_src
|
||
|
||
#+begin_src matlab :tangle no :exports results :results file replace
|
||
exportFig('figs/int_non_linearity_period_wavelength.pdf', 'width', 'wide', 'height', 'tall');
|
||
#+end_src
|
||
|
||
#+name: fig:int_non_linearity_period_wavelength
|
||
#+caption: Non-Linearity of the Interferometer over the period of the wavelength
|
||
#+RESULTS:
|
||
[[file:figs/int_non_linearity_period_wavelength.png]]
|