attocube-test-bench/index.org

17 KiB
Raw Blame History

Attocube - Test Bench

Estimation of the Spectral Density of the Attocube Noise

Long and Slow measurement

The first measurement was made during ~17 hours with a sampling time of $T_s = 0.1\,s$.

  load('./mat/long_test_plastic.mat', 'x', 't')
  Ts = 0.1; % [s]

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/long_meas_time_domain_full.png

Long measurement time domain data

Let's fit the data with a step response to a first order low pass filter (Figure fig:long_meas_time_domain_fit).

  f = @(b,x) b(1)*(1 - exp(-x/b(2)));

  y_cur = x(t < 17.5*60*60);
  t_cur = t(t < 17.5*60*60);

  nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
  B0 = [400e-9, 2*60*60];                        % Choose Appropriate Initial Estimates
  [B,rnrm] = fminsearch(nrmrsd, B0);     % Estimate Parameters B

The corresponding time constant is (in [h]):

2.0658

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/long_meas_time_domain_fit.png

Fit of the measurement data with a step response of a first order low pass filter

We can see in Figure fig:long_meas_time_domain_full that there is a transient period where the measured displacement experiences some drifts. This is probably due to thermal effects. We only select the data between t1 and t2. The obtained displacement is shown in Figure fig:long_meas_time_domain_zoom.

  t1 = 10.5; t2 = 17.5; % [h]

  x = x(t > t1*60*60 & t < t2*60*60);
  x = x - mean(x);
  t = t(t > t1*60*60 & t < t2*60*60);
  t = t - t(1);

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/long_meas_time_domain_zoom.png

Kept data (removed slow drifts during the first hours)

The Power Spectral Density of the measured displacement is computed

  win = hann(ceil(length(x)/20));
  [p_1, f_1] = pwelch(x, win, [], [], 1/Ts);

As a low pass filter was used in the measurement process, we multiply the PSD by the square of the inverse of the filter's norm.

  G_lpf = 1/(1 + s/2/pi);
  p_1 = p_1./abs(squeeze(freqresp(G_lpf, f_1, 'Hz'))).^2;

Only frequencies below 2Hz are taken into account (high frequency noise will be measured afterwards).

  p_1 = p_1(f_1 < 2);
  f_1 = f_1(f_1 < 2);

Short and Fast measurement

An second measurement is done in order to estimate the high frequency noise of the interferometer. The measurement is done with a sampling time of $T_s = 0.1\,ms$ and a duration of ~100s.

  load('./mat/short_test_plastic.mat')
  Ts = 1e-4; % [s]
  x = detrend(x, 0);

The time domain measurement is shown in Figure fig:short_meas_time_domain.

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/short_meas_time_domain.png

Time domain measurement with the high sampling rate

The Power Spectral Density of the measured displacement is computed

  win = hann(ceil(length(x)/20));
  [p_2, f_2] = pwelch(x, win, [], [], 1/Ts);

Obtained Amplitude Spectral Density of the measured displacement

The computed ASD of the two measurements are combined in Figure fig:psd_combined.

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/psd_combined.png

Obtained Amplitude Spectral Density of the measured displacement

Effect of the "bubble sheet" and "Aluminium tube"

Aluminium Tube and Bubble Sheet

  load('./mat/short_test_plastic.mat');
  Ts = 1e-4; % [s]
  x = detrend(x, 0);
  win = hann(ceil(length(x)/10));
  [p_1, f_1] = pwelch(x, win, [], [], 1/Ts);

Only Aluminium Tube

  load('./mat/short_test_alu_tube.mat');
  Ts = 1e-4; % [s]
  x = detrend(x, 0);

The time domain measurement is shown in Figure fig:short_meas_time_domain.

  win = hann(ceil(length(x)/10));
  [p_2, f_2] = pwelch(x, win, [], [], 1/Ts);

Nothing

  load('./mat/short_test_without_material.mat');
  Ts = 1e-4; % [s]
  x = detrend(x, 0);

The time domain measurement is shown in Figure fig:short_meas_time_domain.

  win = hann(ceil(length(x)/10));
  [p_3, f_3] = pwelch(x, win, [], [], 1/Ts);

Comparison

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/asd_noise_comp_bubble_aluminium.png

Comparison of the noise ASD with and without bubble sheet

Measurement of the Attocube's non-linearity

Introduction   ignore

The measurement setup is shown in Figure fig:exp_setup_schematic.

Here are the equipment used in the test bench:

  • Renishaw Resolution Encoder with 1nm resolution (doc)
  • Attocube interferometer (doc)
  • Cedrat Amplified Piezoelectric Actuator APA95ML (doc)
  • Voltage Amplifier LA75B (doc)
  • Speedgoat IO131 with 16bits ADC and DAC (doc)
/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/exp_setup_schematic.png
Schematic of the Experiment

A DAC and voltage amplified are used to move the mass with the Amplified Piezoelectric Actuator (APA95ML). The encoder and the attocube are measure ring the same motion.

As will be shown shortly, this measurement permitted to measure the period non-linearity of the Attocube.

Load Data

The measurement data are loaded and the offset are removed using the detrend command.

  load('mat/int_enc_comp.mat', 'interferometer', 'encoder', 'u', 't');
  Ts = 1e-4; % Sampling Time [s]
  interferometer = detrend(interferometer, 0);
  encoder = detrend(encoder, 0);
  u = detrend(u, 0);

Time Domain Results

One period of the displacement of the mass as measured by the encoder and interferometer are shown in Figure fig:int_enc_one_cycle. It consist of the sinusoidal motion at 0.5Hz with an amplitude of approximately $70\mu m$.

The frequency of the motion is chosen such that no resonance in the system is excited. This should improve the coherence between the measurements made by the encoder and interferometer.

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/int_enc_one_cycle.png

One cycle measurement

The difference between the two measurements during the same period is shown in Figure fig:int_enc_one_cycle_error.

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/int_enc_one_cycle_error.png

Difference between the Encoder and the interferometer during one cycle

Difference between Encoder and Interferometer as a function of time

The data is filtered using a second order low pass filter with a cut-off frequency $\omega_0$ as defined below.

  w0 = 2*pi*5; % [rad/s]
  xi = 0.7;

  G_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);

After filtering, the data is "re-shaped" such that we can superimpose all the measured periods as shown in Figure fig:int_enc_error_mean_time. This gives an idea of the measurement error as given by the Attocube during a $70 \mu m$ motion.

  d_err_mean = reshape(lsim(G_lpf, encoder - interferometer, t), [2/Ts floor(Ts/2*length(encoder))]);
  d_err_mean = d_err_mean - mean(d_err_mean);

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/int_enc_error_mean_time.png

Difference between the two measurement in the time domain, averaged for all the cycles

Difference between Encoder and Interferometer as a function of position

Figure fig:int_enc_error_mean_time gives the measurement error as a function of time. We here wish the compute this measurement error as a function of the position (as measured by the encoer).

To do so, all the attocube measurements corresponding to each position measured by the Encoder (resolution of $1nm$) are averaged. Figure fig:int_enc_error_mean_position is obtained where we clearly see an error with a period comparable to the motion range and a much smaller period corresponding to the non-linear period errors that we wish the estimate.

  [e_sorted, ~, e_ind] = unique(encoder);

  i_mean = zeros(length(e_sorted), 1);
  for i = 1:length(e_sorted)
    i_mean(i) = mean(interferometer(e_ind == i));
  end

  i_mean_error = (i_mean - e_sorted);

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/int_enc_error_mean_position.png

Difference between the two measurement as a function of the measured position by the encoder, averaged for all the cycles

The period of the non-linearity seems to be equal to $765 nm$ which corresponds to half the wavelength of the Laser ($1.53 \mu m$). For the motion range done here, the non-linearity is measured over ~18 periods which permits to do some averaging.

  win_length = 1530/2; % length of the windows (corresponds to 765 nm)
  num_avg = floor(length(e_sorted)/win_length); % number of averaging

  i_init = ceil((length(e_sorted) - win_length*num_avg)/2); % does not start at the extremity

  e_sorted_mean_over_period = mean(reshape(i_mean_error(i_init:i_init+win_length*num_avg-1), [win_length num_avg]), 2);

The obtained periodic non-linearity is shown in Figure fig:int_non_linearity_period_wavelength.

/tdehaeze/attocube-test-bench/media/commit/bb51a528c5bb317caa64c373c6143d0ec9d0af8f/figs/int_non_linearity_period_wavelength.png

Non-Linearity of the Interferometer over the period of the wavelength