Export to pdf
This commit is contained in:
214
index.html
214
index.html
@@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2021-02-02 mar. 18:24 -->
|
||||
<!-- 2021-02-02 mar. 18:44 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Encoder Renishaw Vionic - Test Bench</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
@@ -39,19 +39,33 @@
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#orgd4a4664">1. Encoder Model</a></li>
|
||||
<li><a href="#org8e70edd">2. Test-Bench Description</a></li>
|
||||
<li><a href="#orge118b0f">3. Measurement procedure</a></li>
|
||||
<li><a href="#org8e44240">4. Measurement Results</a>
|
||||
<li><a href="#orgad23dda">1. Encoder Model</a></li>
|
||||
<li><a href="#org6337f06">2. Noise Measurement</a>
|
||||
<ul>
|
||||
<li><a href="#org7e465e7">4.1. Noise Measurement</a></li>
|
||||
<li><a href="#orgc20e5d1">2.1. Test Bench</a></li>
|
||||
<li><a href="#org818aa3a">2.2. Results</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgfb293f3">3. Linearity Measurement</a>
|
||||
<ul>
|
||||
<li><a href="#orgee55e64">3.1. Test Bench</a></li>
|
||||
<li><a href="#org53d1667">3.2. Results</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org1f03c19">4. Dynamical Measurement</a>
|
||||
<ul>
|
||||
<li><a href="#org2650123">4.1. Test Bench</a></li>
|
||||
<li><a href="#org26f79d3">4.2. Results</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
<hr>
|
||||
<p>This report is also available as a <a href="./index.pdf">pdf</a>.</p>
|
||||
<hr>
|
||||
|
||||
<div class="note" id="org4c0c9be">
|
||||
<div class="note" id="org7fbf5f9">
|
||||
<p>
|
||||
You can find below the document of:
|
||||
</p>
|
||||
@@ -76,14 +90,14 @@ In particular, we would like to measure:
|
||||
</ul>
|
||||
|
||||
|
||||
<div id="org13fff85" class="figure">
|
||||
<div id="org136f1cc" class="figure">
|
||||
<p><img src="figs/encoder_vionic.png" alt="encoder_vionic.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>Picture of the Vionic Encoder</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd4a4664" class="outline-2">
|
||||
<h2 id="orgd4a4664"><span class="section-number-2">1</span> Encoder Model</h2>
|
||||
<div id="outline-container-orgad23dda" class="outline-2">
|
||||
<h2 id="orgad23dda"><span class="section-number-2">1</span> Encoder Model</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
<p>
|
||||
The Encoder is characterized by its dynamics \(G_m(s)\) from the “true” displacement \(y\) to measured displacement \(y_m\).
|
||||
@@ -95,18 +109,27 @@ It is also characterized by its measurement noise \(n\) that can be described by
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The model of the encoder is shown in Figure <a href="#org08a4e7a">2</a>.
|
||||
The model of the encoder is shown in Figure <a href="#orgb95c9f6">2</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org08a4e7a" class="figure">
|
||||
<div id="orgb95c9f6" class="figure">
|
||||
<p><img src="figs/encoder-model-schematic.png" alt="encoder-model-schematic.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 2: </span>Model of the Encoder</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
We can also use a transfer function \(G_n(s)\) to shape a noise \(\tilde{n}\) with unity ASD as shown in Figure <a href="#org9d20614">4</a>.
|
||||
</p>
|
||||
|
||||
<table id="org20ed9a5" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
<div id="org985a473" class="figure">
|
||||
<p><img src="figs/encoder-model-schematic-with-asd.png" alt="encoder-model-schematic-with-asd.png" />
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<table id="orgcd45716" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 1:</span> Characteristics of the Vionic Encoder</caption>
|
||||
|
||||
<colgroup>
|
||||
@@ -151,104 +174,57 @@ The model of the encoder is shown in Figure <a href="#org08a4e7a">2</a>.
|
||||
</table>
|
||||
|
||||
|
||||
<div id="org2068d11" class="figure">
|
||||
<div id="org9d20614" class="figure">
|
||||
<p><img src="./figs/vionic_expected_noise.png" alt="vionic_expected_noise.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 3: </span>Expected interpolation errors for the Vionic Encoder</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Expected interpolation errors for the Vionic Encoder</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-org8e70edd" class="outline-2">
|
||||
<h2 id="org8e70edd"><span class="section-number-2">2</span> Test-Bench Description</h2>
|
||||
<div id="outline-container-org6337f06" class="outline-2">
|
||||
<h2 id="org6337f06"><span class="section-number-2">2</span> Noise Measurement</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
<p>
|
||||
<a id="org93db977"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-orgc20e5d1" class="outline-3">
|
||||
<h3 id="orgc20e5d1"><span class="section-number-3">2.1</span> Test Bench</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
To measure the noise \(n\) of the encoder, one can rigidly fix the head and the ruler together such that no motion should be measured.
|
||||
Then, the measured signal \(y_m\) corresponds to the noise \(n\).
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org818aa3a" class="outline-3">
|
||||
<h3 id="org818aa3a"><span class="section-number-3">2.2</span> Results</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<p>
|
||||
In order to measure the linearity, we have to compare the measured displacement with a reference sensor with a known linearity.
|
||||
An interferometer or capacitive sensor should work fine.
|
||||
An actuator should also be there so impose a displacement.
|
||||
First we load the data.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
One idea is to use the test-bench shown in Figure <a href="#orgfefda93">4</a>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The APA300ML is used to excite the mass in a broad bandwidth.
|
||||
The motion is measured at the same time by the Vionic Encoder and by an interferometer (most likely an Attocube).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
As the interferometer has a very large bandwidth, we should be able to estimate the bandwidth of the encoder is it is less than the Nyquist frequency (~ 5kHz).
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgfefda93" class="figure">
|
||||
<p><img src="figs/test_bench_encoder_calibration.png" alt="test_bench_encoder_calibration.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Schematic of the test bench</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
To measure the noise of the sensor, we can also simply measure the output signal when the relative motion between the encoder and the ruler is null.
|
||||
This can be done by clamping the two as done in the mounting strut tool (Figure <a href="#org742c647">5</a>).
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org742c647" class="figure">
|
||||
<p><img src="figs/test_bench_measure_noise.png" alt="test_bench_measure_noise.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Mounting Strut test bench as a clamping method to measure the encoder noise.</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge118b0f" class="outline-2">
|
||||
<h2 id="orge118b0f"><span class="section-number-2">3</span> Measurement procedure</h2>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8e44240" class="outline-2">
|
||||
<h2 id="org8e44240"><span class="section-number-2">4</span> Measurement Results</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
</div>
|
||||
<div id="outline-container-org7e465e7" class="outline-3">
|
||||
<h3 id="org7e465e7"><span class="section-number-3">4.1</span> Noise Measurement</h3>
|
||||
<div class="outline-text-3" id="text-4-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">load(<span class="org-string">'noise_meas_100s_20kHz.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'x'</span>);
|
||||
x = x <span class="org-type">-</span> mean(x);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
hold on;
|
||||
plot(t, 1e9<span class="org-type">*</span>x, <span class="org-string">'.'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'Raw'</span>);
|
||||
plot(t, 1e9<span class="org-type">*</span>lsim(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>500), x, t), <span class="org-string">'DisplayName'</span>, <span class="org-string">'LPF - 500Hz'</span>)
|
||||
hold off;
|
||||
xlabel(<span class="org-string">'Time [s]'</span>);
|
||||
ylabel(<span class="org-string">'Displacement [nm]'</span>);
|
||||
legend(<span class="org-string">'location'</span>, <span class="org-string">'northeast'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org3070d03" class="figure">
|
||||
<p><img src="figs/vionic_noise_time.png" alt="vionic_noise_time.png" />
|
||||
<p>
|
||||
The time domain data are shown in Figure <a href="#orgb5a687f">4</a>.
|
||||
</p>
|
||||
<p>
|
||||
<img src="figs/vionic_noise_time.png" alt="vionic_noise_time.png" />
|
||||
The amplitude spectral density is computed and shown in Figure <a href="#org5702aa0">5</a>.
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Time domain measurement (raw data and low pass filtered data)</p>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orgd593081" class="figure">
|
||||
<div id="org5702aa0" class="figure">
|
||||
<p><img src="figs/vionic_noise_asd.png" alt="vionic_noise_asd.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 7: </span>Amplitude Spectral Density of the measured signal</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Amplitude Spectral Density of the measured signal</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@@ -259,19 +235,81 @@ Let’s create a transfer function that approximate the measured noise of th
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
The amplitude of the transfer function and the measured ASD are shown in Figure <a href="#orgbbcd196">6</a>.
|
||||
</p>
|
||||
|
||||
<div id="orgd1f9fd9" class="figure">
|
||||
|
||||
<div id="orgbbcd196" class="figure">
|
||||
<p><img src="figs/vionic_noise_asd_model.png" alt="vionic_noise_asd_model.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 8: </span>Measured ASD of the noise and modelled one</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Measured ASD of the noise and modelled one</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="outline-container-orgfb293f3" class="outline-2">
|
||||
<h2 id="orgfb293f3"><span class="section-number-2">3</span> Linearity Measurement</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
<a id="org0812023"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-orgee55e64" class="outline-3">
|
||||
<h3 id="orgee55e64"><span class="section-number-3">3.1</span> Test Bench</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<p>
|
||||
In order to measure the linearity, we have to compare the measured displacement with a reference sensor with a known linearity.
|
||||
An interferometer or capacitive sensor should work fine.
|
||||
An actuator should also be there so impose a displacement.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
One idea is to use the test-bench shown in Figure <a href="#org00b4ff5">7</a>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The APA300ML is used to excite the mass in a broad bandwidth.
|
||||
The motion is measured at the same time by the Vionic Encoder and by an interferometer (most likely an Attocube).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
As the interferometer has a very large bandwidth, we should be able to estimate the bandwidth of the encoder if it is less than the Nyquist frequency that can be around 10kHz.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org00b4ff5" class="figure">
|
||||
<p><img src="figs/test_bench_encoder_calibration.png" alt="test_bench_encoder_calibration.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 7: </span>Schematic of the test bench</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org53d1667" class="outline-3">
|
||||
<h3 id="org53d1667"><span class="section-number-3">3.2</span> Results</h3>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org1f03c19" class="outline-2">
|
||||
<h2 id="org1f03c19"><span class="section-number-2">4</span> Dynamical Measurement</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
<p>
|
||||
<a id="org02907d6"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org2650123" class="outline-3">
|
||||
<h3 id="org2650123"><span class="section-number-3">4.1</span> Test Bench</h3>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org26f79d3" class="outline-3">
|
||||
<h3 id="org26f79d3"><span class="section-number-3">4.2</span> Results</h3>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2021-02-02 mar. 18:24</p>
|
||||
<p class="date">Created: 2021-02-02 mar. 18:44</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user