Prepare files for long measurement

This commit is contained in:
Thomas Dehaeze 2021-02-11 10:09:23 +01:00
parent 15d8508bf0
commit 73dc280ab3

View File

@ -105,7 +105,7 @@ The characteristics as advertise in the manual as well as our specifications are
| <l> | <c> | <c> | | <l> | <c> | <c> |
| *Characteristics* | *Manual* | *Specification* | | *Characteristics* | *Manual* | *Specification* |
|-------------------+--------------+-----------------| |-------------------+--------------+-----------------|
| Time Delay | | < 0.5 ms | | Time Delay | < 10 ns | < 0.5 ms |
| Bandwidth | > 500 kHz | > 5 kHz | | Bandwidth | > 500 kHz | > 5 kHz |
| Noise | < 1.6 nm rms | < 50 nm rms | | Noise | < 1.6 nm rms | < 50 nm rms |
| Linearity | < +/- 15 nm | | | Linearity | < +/- 15 nm | |
@ -193,11 +193,84 @@ addpath('./mat/');
#+end_src #+end_src
** TODO Thermal drifts ** TODO Thermal drifts
- [ ] picture of the setup - [ ] picture of the setup
- [ ] long thermal drifts - [ ] long thermal drifts
- [ ] Identification of the drifts (exponential fit)
- [ ] once stabilize, look at the noise - [ ] once stabilize, look at the noise
- [ ] compute low frequency ASD (may still be thermal drifts of the mechanics and not noise) - [ ] compute low frequency ASD (may still be thermal drifts of the mechanics and not noise)
#+begin_src matlab
enc_l = load('mat/noise_meas_40h_200Hz_1.mat', 't', 'x');
enc_l.x = enc_l.x - mean(enc_l.x(enc_l.t < 1)); % Start at zero displacement
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(enc_l.t/3600, 1e9*enc_l.x, '-');
hold off;
xlabel('Time [h]');
ylabel('Displacement [nm]');
#+end_src
Exponential fit
#+begin_src matlab
f = @(b,x) b(1)*(1 - exp(-x/b(2)));
y_cur = enc_l.x;
t_cur = end_l.t;
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
B0 = [400e-9, 2*60*60]; % Choose Appropriate Initial Estimates
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters B
#+end_src
The corresponding time constant is (in [h]):
#+begin_src matlab :results value replace :exports results
B(2)/60/60
#+end_src
Comparison of the data and exponential fit
#+begin_src matlab :exports none
figure;
hold on;
plot(enc_l.t/60/60, 1e9*enc_l.x);
plot(enc_l.t/60/60, 1e9*f(B, enc_l.t));
hold off;
xlim([0, 17.5])
xlabel('Time [h]'); ylabel('Displacement [nm]');
#+end_src
Let's get only the data once it is stabilized
#+begin_src matlab
x_stab = enc_l.x(enc_l.t > 20*3600);
x_stab = x_stab - mean(x_stab);
t_stab = enc_l.t(enc_l.t > 20*3600);
x_stab = x_stab - x_stab(1);
#+end_src
#+begin_src matlab :exports none
% Compute sampling Frequency
Ts = (enc{1}.t(end) - enc{1}.t(1))/(length(enc{1}.t)-1);
Fs = 1/Ts;
% Hannning Windows
win = hanning(ceil(60/Ts));
[pxx, f] = pwelch(x_stab, win, [], [], Fs);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(f, sqrt(pxx))
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
% xlim([10, Fs/2]);
% ylim([1e-11, 1e-10]);
#+end_src
** Time Domain signals ** Time Domain signals
First we load the data. First we load the data.
#+begin_src matlab :exports none #+begin_src matlab :exports none
@ -302,7 +375,6 @@ exportFig('figs/vionic_noise_asd.pdf', 'width', 'wide', 'height', 'normal');
[[file:figs/vionic_noise_asd.png]] [[file:figs/vionic_noise_asd.png]]
** Noise Model ** Noise Model
Let's create a transfer function that approximate the measured noise of the encoder. Let's create a transfer function that approximate the measured noise of the encoder.
#+begin_src matlab #+begin_src matlab
Gn_e = 1.8e-11/(1 + s/2/pi/1e4); Gn_e = 1.8e-11/(1 + s/2/pi/1e4);