2020-12-16 11:52:53 +01:00
<?xml version="1.0" encoding="utf-8"?>
< !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
< html xmlns = "http://www.w3.org/1999/xhtml" lang = "en" xml:lang = "en" >
< head >
2021-01-04 11:44:11 +01:00
<!-- 2021 - 01 - 04 lun. 11:44 -->
2020-12-16 11:52:53 +01:00
< meta http-equiv = "Content-Type" content = "text/html;charset=utf-8" / >
< title > Encoder Renishaw Vionic - Test Bench< / title >
< meta name = "generator" content = "Org mode" / >
< meta name = "author" content = "Dehaeze Thomas" / >
< link rel = "stylesheet" type = "text/css" href = "https://research.tdehaeze.xyz/css/style.css" / >
< script type = "text/javascript" src = "https://research.tdehaeze.xyz/js/script.js" > < / script >
< script > M a t h J a x = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
< / script >
< script type = "text/javascript" src = "https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" > < / script >
< / head >
< body >
< div id = "org-div-home-and-up" >
< a accesskey = "h" href = "../index.html" > UP < / a >
|
< a accesskey = "H" href = "../index.html" > HOME < / a >
< / div > < div id = "content" >
< h1 class = "title" > Encoder Renishaw Vionic - Test Bench< / h1 >
< div id = "table-of-contents" >
< h2 > Table of Contents< / h2 >
< div id = "text-table-of-contents" >
< ul >
2021-01-04 11:44:11 +01:00
< li > < a href = "#org55157ef" > 1. Encoder Model< / a > < / li >
< li > < a href = "#org8ef40ec" > 2. Test-Bench Description< / a > < / li >
< li > < a href = "#orgce223ed" > 3. Measurement procedure< / a > < / li >
< li > < a href = "#org51852cb" > 4. Measurement Results< / a > < / li >
2020-12-16 11:52:53 +01:00
< / ul >
< / div >
< / div >
2021-01-04 11:44:11 +01:00
< div class = "note" id = "org4436bab" >
2020-12-16 11:52:53 +01:00
< p >
You can find below the document of:
< / p >
< ul class = "org-ul" >
< li > < a href = "doc/L-9517-9678-05-A_Data_sheet_VIONiC_series_en.pdf" > Vionic Encoder< / a > < / li >
< li > < a href = "doc/L-9517-9862-01-C_Data_sheet_RKLC_EN.pdf" > Linear Scale< / a > < / li >
< / ul >
2020-12-16 14:07:07 +01:00
< / div >
< p >
We would like to characterize the encoder measurement system.
< / p >
< p >
In particular, we would like to measure:
< / p >
< ul class = "org-ul" >
< li > Power Spectral Density of the measurement noise< / li >
2020-12-17 14:54:16 +01:00
< li > Bandwidth of the sensor< / li >
< li > Linearity of the sensor< / li >
2020-12-16 14:07:07 +01:00
< / ul >
2021-01-04 11:44:11 +01:00
< div id = "orgeb4726b" class = "figure" >
< p > < img src = "figs/encoder_vionic.png" alt = "encoder_vionic.png" / >
< / p >
< p > < span class = "figure-number" > Figure 1: < / span > Picture of the Vionic Encoder< / p >
< / div >
< div id = "outline-container-org55157ef" class = "outline-2" >
< h2 id = "org55157ef" > < span class = "section-number-2" > 1< / span > Encoder Model< / h2 >
2020-12-16 11:52:53 +01:00
< div class = "outline-text-2" id = "text-1" >
< p >
The Encoder is characterized by its dynamics \(G_m(s)\) from the “ true” displacement \(y\) to measured displacement \(y_m\).
Ideally, this dynamics is constant over a wide frequency band with very small phase drop.
< / p >
< p >
It is also characterized by its measurement noise \(n\) that can be described by its Power Spectral Density (PSD).
< / p >
2020-12-16 14:07:07 +01:00
< p >
2021-01-04 11:44:11 +01:00
The model of the encoder is shown in Figure < a href = "#org2d59f14" > 2< / a > .
2020-12-16 14:07:07 +01:00
< / p >
2020-12-16 11:52:53 +01:00
2021-01-04 11:44:11 +01:00
< div id = "org2d59f14" class = "figure" >
2020-12-16 11:52:53 +01:00
< p > < img src = "figs/encoder-model-schematic.png" alt = "encoder-model-schematic.png" / >
< / p >
2021-01-04 11:44:11 +01:00
< p > < span class = "figure-number" > Figure 2: < / span > Model of the Encoder< / p >
2020-12-16 11:52:53 +01:00
< / div >
2020-12-17 14:54:16 +01:00
2021-01-04 11:44:11 +01:00
< table id = "org476b3d6" border = "2" cellspacing = "0" cellpadding = "6" rules = "groups" frame = "hsides" >
2020-12-17 14:54:16 +01:00
< caption class = "t-above" > < span class = "table-number" > Table 1:< / span > Characteristics of the Vionic Encoder< / caption >
< colgroup >
< col class = "org-left" / >
< col class = "org-left" / >
< / colgroup >
< thead >
< tr >
< th scope = "col" class = "org-left" > < b > Characteristics< / b > < / th >
< th scope = "col" class = "org-left" > < b > Manual< / b > < / th >
< / tr >
< / thead >
< tbody >
< tr >
< td class = "org-left" > Resolution< / td >
< td class = "org-left" > 2.5nm< / td >
< / tr >
< tr >
< td class = "org-left" > Sub-Divisional Error< / td >
< td class = "org-left" > \(< \pm 15\,nm\)< / td >
< / tr >
< tr >
< td class = "org-left" > Bandwidth< / td >
< td class = "org-left" > > 50 kHz< / td >
< / tr >
< / tbody >
< / table >
2021-01-04 11:44:11 +01:00
< div id = "orgb8bf3d5" class = "figure" >
2020-12-17 14:54:16 +01:00
< p > < img src = "./figs/vionic_expected_noise.png" alt = "vionic_expected_noise.png" / >
< / p >
2021-01-04 11:44:11 +01:00
< p > < span class = "figure-number" > Figure 3: < / span > Expected interpolation errors for the Vionic Encoder< / p >
2020-12-16 11:52:53 +01:00
< / div >
< / div >
2020-12-17 14:54:16 +01:00
< / div >
2020-12-16 11:52:53 +01:00
2021-01-04 11:44:11 +01:00
< div id = "outline-container-org8ef40ec" class = "outline-2" >
< h2 id = "org8ef40ec" > < span class = "section-number-2" > 2< / span > Test-Bench Description< / h2 >
2020-12-16 14:07:07 +01:00
< div class = "outline-text-2" id = "text-2" >
< p >
To measure the noise \(n\) of the encoder, one can rigidly fix the head and the ruler together such that no motion should be measured.
Then, the measured signal \(y_m\) corresponds to the noise \(n\).
< / p >
2020-12-16 11:52:53 +01:00
2020-12-16 14:07:07 +01:00
< p >
In order to measure the linearity, we have to compare the measured displacement with a reference sensor with a known linearity.
2020-12-17 14:54:16 +01:00
An interferometer or capacitive sensor should work fine.
2020-12-16 14:07:07 +01:00
An actuator should also be there so impose a displacement.
< / p >
2020-12-17 14:54:16 +01:00
< p >
2021-01-04 11:44:11 +01:00
One idea is to use the test-bench shown in Figure < a href = "#org1fd5a94" > 4< / a > .
2020-12-17 14:54:16 +01:00
< / p >
< p >
The APA300ML is used to excite the mass in a broad bandwidth.
The motion is measured at the same time by the Vionic Encoder and by an interferometer (most likely an Attocube).
< / p >
< p >
As the interferometer has a very large bandwidth, we should be able to estimate the bandwidth of the encoder is it is less than the Nyquist frequency (~ 5kHz).
< / p >
2021-01-04 11:44:11 +01:00
< div id = "org1fd5a94" class = "figure" >
2020-12-17 14:54:16 +01:00
< p > < img src = "figs/test_bench_encoder_calibration.png" alt = "test_bench_encoder_calibration.png" / >
< / p >
2021-01-04 11:44:11 +01:00
< p > < span class = "figure-number" > Figure 4: < / span > Schematic of the test bench< / p >
2020-12-17 14:54:16 +01:00
< / div >
< p >
To measure the noise of the sensor, we can also simply measure the output signal when the relative motion between the encoder and the ruler is null.
2021-01-04 11:44:11 +01:00
This can be done by clamping the two as done in the mounting strut tool (Figure < a href = "#orgab0ed8d" > 5< / a > ).
2020-12-17 14:54:16 +01:00
< / p >
2021-01-04 11:44:11 +01:00
< div id = "orgab0ed8d" class = "figure" >
2020-12-17 14:54:16 +01:00
< p > < img src = "figs/test_bench_measure_noise.png" alt = "test_bench_measure_noise.png" / >
< / p >
2021-01-04 11:44:11 +01:00
< p > < span class = "figure-number" > Figure 5: < / span > Mounting Strut test bench as a clamping method to measure the encoder noise.< / p >
2020-12-17 14:54:16 +01:00
< / div >
2020-12-16 14:07:07 +01:00
< / div >
2020-12-16 11:52:53 +01:00
< / div >
2021-01-04 11:44:11 +01:00
< div id = "outline-container-orgce223ed" class = "outline-2" >
< h2 id = "orgce223ed" > < span class = "section-number-2" > 3< / span > Measurement procedure< / h2 >
2020-12-16 14:07:07 +01:00
< / div >
2020-12-16 11:52:53 +01:00
2021-01-04 11:44:11 +01:00
< div id = "outline-container-org51852cb" class = "outline-2" >
< h2 id = "org51852cb" > < span class = "section-number-2" > 4< / span > Measurement Results< / h2 >
2020-12-16 11:52:53 +01:00
< / div >
< / div >
< div id = "postamble" class = "status" >
< p class = "author" > Author: Dehaeze Thomas< / p >
2021-01-04 11:44:11 +01:00
< p class = "date" > Created: 2021-01-04 lun. 11:44< / p >
2020-12-16 11:52:53 +01:00
< / div >
< / body >
< / html >