Update analysis
This commit is contained in:
@@ -3,13 +3,30 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2021-06-08 mar. 22:15 -->
|
||||
<!-- 2021-06-08 mar. 22:38 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Nano-Hexapod - Test Bench</title>
|
||||
<meta name="author" content="Dehaeze Thomas" />
|
||||
<meta name="generator" content="Org Mode" />
|
||||
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
||||
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
||||
<script>
|
||||
MathJax = {
|
||||
svg: {
|
||||
scale: 1,
|
||||
fontCache: "global"
|
||||
},
|
||||
tex: {
|
||||
tags: "ams",
|
||||
multlineWidth: "%MULTLINEWIDTH",
|
||||
tagSide: "right",
|
||||
macros: {bm: ["\\boldsymbol{#1}",1],},
|
||||
tagIndent: ".8em"
|
||||
}
|
||||
};
|
||||
</script>
|
||||
<script id="MathJax-script" async
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="org-div-home-and-up">
|
||||
@@ -22,17 +39,17 @@
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#orge60a691">1. Encoders fixed to the Struts</a>
|
||||
<li><a href="#orgd7e7f5e">1. Encoders fixed to the Struts</a>
|
||||
<ul>
|
||||
<li><a href="#org7010817">1.1. Introduction</a></li>
|
||||
<li><a href="#orga8cffa3">1.2. Load Data</a></li>
|
||||
<li><a href="#org46d9ef0">1.3. Spectral Analysis - Setup</a></li>
|
||||
<li><a href="#org8d17470">1.4. DVF Plant</a></li>
|
||||
<li><a href="#org22119eb">1.5. IFF Plant</a></li>
|
||||
<li><a href="#org9f943b4">1.6. Jacobian</a>
|
||||
<li><a href="#org00dcf35">1.1. Introduction</a></li>
|
||||
<li><a href="#orgb763144">1.2. Load Data</a></li>
|
||||
<li><a href="#orgb853f20">1.3. Spectral Analysis - Setup</a></li>
|
||||
<li><a href="#orge1489cc">1.4. DVF Plant</a></li>
|
||||
<li><a href="#org0c1cf8a">1.5. IFF Plant</a></li>
|
||||
<li><a href="#orgc6ecc36">1.6. Jacobian</a>
|
||||
<ul>
|
||||
<li><a href="#org31b15c3">1.6.1. DVF Plant</a></li>
|
||||
<li><a href="#org6b0e225">1.6.2. IFF Plant</a></li>
|
||||
<li><a href="#org1c3941e">1.6.1. DVF Plant</a></li>
|
||||
<li><a href="#org31caf05">1.6.2. IFF Plant</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@@ -44,7 +61,7 @@
|
||||
<p>This report is also available as a <a href="./test-bench-nano-hexapod.pdf">pdf</a>.</p>
|
||||
<hr>
|
||||
|
||||
<div class="note" id="org6b76075">
|
||||
<div class="note" id="orgf7b18a3">
|
||||
<p>
|
||||
Here are the documentation of the equipment used for this test bench:
|
||||
</p>
|
||||
@@ -59,29 +76,34 @@ Here are the documentation of the equipment used for this test bench:
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org6594005" class="figure">
|
||||
<div id="org2a6b667" class="figure">
|
||||
<p><img src="figs/IMG_20210608_152917.jpg" alt="IMG_20210608_152917.jpg" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>Nano-Hexapod</p>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org0571a2e" class="figure">
|
||||
<div id="org7b600dc" class="figure">
|
||||
<p><img src="figs/IMG_20210608_154722.jpg" alt="IMG_20210608_154722.jpg" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 2: </span>Nano-Hexapod and the control electronics</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge60a691" class="outline-2">
|
||||
<h2 id="orge60a691"><span class="section-number-2">1</span> Encoders fixed to the Struts</h2>
|
||||
<div id="outline-container-orgd7e7f5e" class="outline-2">
|
||||
<h2 id="orgd7e7f5e"><span class="section-number-2">1</span> Encoders fixed to the Struts</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
</div>
|
||||
<div id="outline-container-org7010817" class="outline-3">
|
||||
<h3 id="org7010817"><span class="section-number-3">1.1</span> Introduction</h3>
|
||||
<div id="outline-container-org00dcf35" class="outline-3">
|
||||
<h3 id="org00dcf35"><span class="section-number-3">1.1</span> Introduction</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<p>
|
||||
In this section, the encoders are fixed to the struts.
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga8cffa3" class="outline-3">
|
||||
<h3 id="orga8cffa3"><span class="section-number-3">1.2</span> Load Data</h3>
|
||||
<div id="outline-container-orgb763144" class="outline-3">
|
||||
<h3 id="orgb763144"><span class="section-number-3">1.2</span> Load Data</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">meas_data_lf = {};
|
||||
@@ -95,8 +117,8 @@ Here are the documentation of the equipment used for this test bench:
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org46d9ef0" class="outline-3">
|
||||
<h3 id="org46d9ef0"><span class="section-number-3">1.3</span> Spectral Analysis - Setup</h3>
|
||||
<div id="outline-container-orgb853f20" class="outline-3">
|
||||
<h3 id="orgb853f20"><span class="section-number-3">1.3</span> Spectral Analysis - Setup</h3>
|
||||
<div class="outline-text-3" id="text-1-3">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-comment">% Sampling Time [s]</span>
|
||||
@@ -126,11 +148,11 @@ i_hf = f <span class="org-type">></span> 250; <span class="org-comment">% Poi
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8d17470" class="outline-3">
|
||||
<h3 id="org8d17470"><span class="section-number-3">1.4</span> DVF Plant</h3>
|
||||
<div id="outline-container-orge1489cc" class="outline-3">
|
||||
<h3 id="orge1489cc"><span class="section-number-3">1.4</span> DVF Plant</h3>
|
||||
<div class="outline-text-3" id="text-1-4">
|
||||
<p>
|
||||
First, let’s compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure <a href="#org67e2048">3</a>).
|
||||
First, let’s compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure <a href="#orgdf189a0">3</a>).
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
@@ -147,14 +169,14 @@ coh_dvf_hf = zeros(length(f), 6, 6);
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org67e2048" class="figure">
|
||||
<div id="orgdf189a0" class="figure">
|
||||
<p><img src="figs/enc_struts_dvf_coh.png" alt="enc_struts_dvf_coh.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 3: </span>Obtained coherence for the DVF plant</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Then the 6x6 transfer function matrix is estimated (Figure <a href="#org4e87d8b">4</a>).
|
||||
Then the 6x6 transfer function matrix is estimated (Figure <a href="#orgce0ab32">4</a>).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% DVF Plant</span></span>
|
||||
@@ -169,7 +191,7 @@ G_dvf_hf = zeros(length(f), 6, 6);
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org4e87d8b" class="figure">
|
||||
<div id="orgce0ab32" class="figure">
|
||||
<p><img src="figs/enc_struts_dvf_frf.png" alt="enc_struts_dvf_frf.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Measured FRF for the DVF plant</p>
|
||||
@@ -178,11 +200,11 @@ G_dvf_hf = zeros(length(f), 6, 6);
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-org22119eb" class="outline-3">
|
||||
<h3 id="org22119eb"><span class="section-number-3">1.5</span> IFF Plant</h3>
|
||||
<div id="outline-container-org0c1cf8a" class="outline-3">
|
||||
<h3 id="org0c1cf8a"><span class="section-number-3">1.5</span> IFF Plant</h3>
|
||||
<div class="outline-text-3" id="text-1-5">
|
||||
<p>
|
||||
First, let’s compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure <a href="#org38ac16f">5</a>).
|
||||
First, let’s compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure <a href="#org1ba438b">5</a>).
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
@@ -199,14 +221,14 @@ coh_iff_hf = zeros(length(f), 6, 6);
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org38ac16f" class="figure">
|
||||
<div id="org1ba438b" class="figure">
|
||||
<p><img src="figs/enc_struts_iff_coh.png" alt="enc_struts_iff_coh.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Obtained coherence for the IFF plant</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Then the 6x6 transfer function matrix is estimated (Figure <a href="#org0b97d99">6</a>).
|
||||
Then the 6x6 transfer function matrix is estimated (Figure <a href="#orge2cbf29">6</a>).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% IFF Plant</span></span>
|
||||
@@ -221,7 +243,7 @@ G_iff_hf = zeros(length(f), 6, 6);
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org0b97d99" class="figure">
|
||||
<div id="orge2cbf29" class="figure">
|
||||
<p><img src="figs/enc_struts_iff_frf.png" alt="enc_struts_iff_frf.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Measured FRF for the IFF plant</p>
|
||||
@@ -229,33 +251,80 @@ G_iff_hf = zeros(length(f), 6, 6);
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org9f943b4" class="outline-3">
|
||||
<h3 id="org9f943b4"><span class="section-number-3">1.6</span> Jacobian</h3>
|
||||
<div id="outline-container-orgc6ecc36" class="outline-3">
|
||||
<h3 id="orgc6ecc36"><span class="section-number-3">1.6</span> Jacobian</h3>
|
||||
<div class="outline-text-3" id="text-1-6">
|
||||
<p>
|
||||
The Jacobian is used to transform the excitation force in the cartesian frame as well as the displacements.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Consider the plant shown in Figure <a href="#org573cce0">7</a> with:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>\(\tau\) the 6 input voltages (going to the PD200 amplifier and then to the APA)</li>
|
||||
<li>\(d\mathcal{L}\) the relative motion sensor outputs (encoders)</li>
|
||||
<li>\(\bm{\tau}_m\) the generated voltage of the force sensor stacks</li>
|
||||
<li>\(J_a\) and \(J_s\) the Jacobians for the actuators and sensors</li>
|
||||
</ul>
|
||||
|
||||
|
||||
<div id="org573cce0" class="figure">
|
||||
<p><img src="figs/schematic_jacobian_in_out.png" alt="schematic_jacobian_in_out.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 7: </span>Plant in the cartesian Frame</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
First, we load the Jacobian matrix (same for the actuators and sensors).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">load(<span class="org-string">'jacobian.mat'</span>, <span class="org-string">'J'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
<div id="outline-container-org31b15c3" class="outline-4">
|
||||
<h4 id="org31b15c3"><span class="section-number-4">1.6.1</span> DVF Plant</h4>
|
||||
|
||||
<div id="outline-container-org1c3941e" class="outline-4">
|
||||
<h4 id="org1c3941e"><span class="section-number-4">1.6.1</span> DVF Plant</h4>
|
||||
<div class="outline-text-4" id="text-1-6-1">
|
||||
<p>
|
||||
The transfer function from \(\bm{\mathcal{F}}\) to \(d\bm{\mathcal{X}}\) is computed and shown in Figure <a href="#org92f038e">8</a>.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">G_dvf_J_lf = permute(pagemtimes(inv(J), pagemtimes(permute(G_dvf_lf, [2 3 1]), inv(J<span class="org-type">'</span>))), [3 1 2]);
|
||||
G_dvf_J_hf = permute(pagemtimes(inv(J), pagemtimes(permute(G_dvf_hf, [2 3 1]), inv(J<span class="org-type">'</span>))), [3 1 2]);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org92f038e" class="figure">
|
||||
<p><img src="figs/enc_struts_dvf_cart_frf.png" alt="enc_struts_dvf_cart_frf.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 8: </span>Measured FRF for the DVF plant in the cartesian frame</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org6b0e225" class="outline-4">
|
||||
<h4 id="org6b0e225"><span class="section-number-4">1.6.2</span> IFF Plant</h4>
|
||||
<div id="outline-container-org31caf05" class="outline-4">
|
||||
<h4 id="org31caf05"><span class="section-number-4">1.6.2</span> IFF Plant</h4>
|
||||
<div class="outline-text-4" id="text-1-6-2">
|
||||
<p>
|
||||
The transfer function from \(\bm{\mathcal{F}}\) to \(\bm{\mathcal{F}}_m\) is computed and shown in Figure <a href="#orge1b3404">9</a>.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">G_iff_J_lf = permute(pagemtimes(inv(J), pagemtimes(permute(G_iff_lf, [2 3 1]), inv(J<span class="org-type">'</span>))), [3 1 2]);
|
||||
G_iff_J_hf = permute(pagemtimes(inv(J), pagemtimes(permute(G_iff_hf, [2 3 1]), inv(J<span class="org-type">'</span>))), [3 1 2]);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orge1b3404" class="figure">
|
||||
<p><img src="figs/enc_struts_iff_cart_frf.png" alt="enc_struts_iff_cart_frf.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 9: </span>Measured FRF for the IFF plant in the cartesian frame</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
@@ -263,7 +332,7 @@ G_iff_J_hf = permute(pagemtimes(inv(J), pagemtimes(permute(G_iff_hf, [2 3 1]), i
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2021-06-08 mar. 22:15</p>
|
||||
<p class="date">Created: 2021-06-08 mar. 22:38</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user