Analyze measurements with encoders fixed to plates

This commit is contained in:
2021-06-30 22:45:20 +02:00
parent 1f56532810
commit 2aef9377cb
91 changed files with 42624 additions and 353 deletions

Binary file not shown.

BIN
matlab/mat/Kiff.mat Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,48 @@
function [ref] = generateXYZTrajectory(args)
% generateXYZTrajectory -
%
% Syntax: [ref] = generateXYZTrajectory(args)
%
% Inputs:
% - args
%
% Outputs:
% - ref - Reference Signal
arguments
args.points double {mustBeNumeric} = zeros(2, 3) % [m]
args.ti (1,1) double {mustBeNumeric, mustBePositive} = 1 % Time to go to first point and after last point [s]
args.tw (1,1) double {mustBeNumeric, mustBePositive} = 0.5 % Time wait between each point [s]
args.tm (1,1) double {mustBeNumeric, mustBePositive} = 1 % Motion time between points [s]
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Sampling Time [s]
end
time_i = 0:args.Ts:args.ti;
time_w = 0:args.Ts:args.tw;
time_m = 0:args.Ts:args.tm;
% Go to initial position
xyz = (args.points(1,:))'*(time_i/args.ti);
% Wait
xyz = [xyz, xyz(:,end).*ones(size(time_w))];
% Scans
for i = 2:size(args.points, 1)
% Go to next point
xyz = [xyz, xyz(:,end) + (args.points(i,:)' - xyz(:,end))*(time_m/args.tm)];
% Wait a litle bit
xyz = [xyz, xyz(:,end).*ones(size(time_w))];
end
% End motion
xyz = [xyz, xyz(:,end) - xyz(:,end)*(time_i/args.ti)];
t = 0:args.Ts:args.Ts*(length(xyz) - 1);
ref = zeros(length(xyz), 7);
ref(:, 1) = t;
ref(:, 2:4) = xyz';

View File

@@ -0,0 +1,83 @@
function [ref] = generateYZScanTrajectory(args)
% generateYZScanTrajectory -
%
% Syntax: [ref] = generateYZScanTrajectory(args)
%
% Inputs:
% - args
%
% Outputs:
% - ref - Reference Signal
arguments
args.y_tot (1,1) double {mustBeNumeric} = 10e-6 % [m]
args.z_tot (1,1) double {mustBeNumeric} = 10e-6 % [m]
args.n (1,1) double {mustBeInteger, mustBePositive} = 10 % [-]
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4 % [s]
args.ti (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
args.tw (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
args.ty (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
args.tz (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
end
time_i = 0:args.Ts:args.ti;
time_w = 0:args.Ts:args.tw;
time_y = 0:args.Ts:args.ty;
time_z = 0:args.Ts:args.tz;
% Go to initial position
y = (time_i/args.ti)*(args.y_tot/2);
% Wait
y = [y, y(end)*ones(size(time_w))];
% Scans
for i = 1:args.n
if mod(i,2) == 0
y = [y, -(args.y_tot/2) + (time_y/args.ty)*args.y_tot];
else
y = [y, (args.y_tot/2) - (time_y/args.ty)*args.y_tot];
end
if i < args.n
y = [y, y(end)*ones(size(time_z))];
end
end
% Wait a litle bit
y = [y, y(end)*ones(size(time_w))];
% End motion
y = [y, y(end) - y(end)*time_i/args.ti];
% Go to initial position
z = (time_i/args.ti)*(args.z_tot/2);
% Wait
z = [z, z(end)*ones(size(time_w))];
% Scans
for i = 1:args.n
z = [z, z(end)*ones(size(time_y))];
if i < args.n
z = [z, z(end) - (time_z/args.tz)*args.z_tot/(args.n-1)];
end
end
% Wait a litle bit
z = [z, z(end)*ones(size(time_w))];
% End motion
z = [z, z(end) - z(end)*time_i/args.ti];
t = 0:args.Ts:args.Ts*(length(y) - 1);
ref = zeros(length(y), 7);
ref(:, 1) = t;
ref(:, 3) = y;
ref(:, 4) = z;

View File

@@ -0,0 +1,34 @@
function [J] = getJacobianNanoHexapod(Hbm)
% getJacobianNanoHexapod -
%
% Syntax: [J] = getJacobianNanoHexapod(Hbm)
%
% Inputs:
% - Hbm - Height of {B} w.r.t. {M} [m]
%
% Outputs:
% - J - Jacobian Matrix
Fa = [[-86.05, -74.78, 22.49],
[ 86.05, -74.78, 22.49],
[ 107.79, -37.13, 22.49],
[ 21.74, 111.91, 22.49],
[-21.74, 111.91, 22.49],
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]
Mb = [[-28.47, -106.25, -22.50],
[ 28.47, -106.25, -22.50],
[ 106.25, 28.47, -22.50],
[ 77.78, 77.78, -22.50],
[-77.78, 77.78, -22.50],
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]
H = 95e-3; % Stewart platform height [m]
Fb = Mb + [0; 0; H]; % Bi w.r.t. {F} [m]
si = Fb - Fa;
si = si./vecnorm(si); % Normalize
Bb = Mb - [0; 0; Hbm];
J = [si', cross(Bb, si)'];

View File

@@ -0,0 +1,23 @@
function [M] = getTransformationMatrixAcc(Opm, Osm)
% getTransformationMatrixAcc -
%
% Syntax: [M] = getTransformationMatrixAcc(Opm, Osm)
%
% Inputs:
% - Opm - Nx3 (N = number of accelerometer measurements) X,Y,Z position of accelerometers
% - Opm - Nx3 (N = number of accelerometer measurements) Unit vectors representing the accelerometer orientation
%
% Outputs:
% - M - Transformation Matrix
M = zeros(length(Opm), 6);
for i = 1:length(Opm)
Ri = [0, Opm(3,i), -Opm(2,i);
-Opm(3,i), 0, Opm(1,i);
Opm(2,i), -Opm(1,i), 0];
M(i, 1:3) = Osm(:,i)';
M(i, 4:6) = Osm(:,i)'*Ri;
end
end