2021-06-07 19:00:29 +02:00
#+TITLE : Nano-Hexapod - Test Bench
:DRAWER:
#+LANGUAGE : en
#+EMAIL : dehaeze.thomas@gmail.com
#+AUTHOR : Dehaeze Thomas
#+HTML_LINK_HOME : ../index.html
#+HTML_LINK_UP : ../index.html
#+HTML_HEAD : <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
#+HTML_HEAD : <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
#+BIND : org-latex-image-default-option "scale=1"
#+BIND : org-latex-image-default-width ""
#+LaTeX_CLASS : scrreprt
#+LaTeX_CLASS_OPTIONS : [a4paper, 10pt, DIV=12, parskip=full]
#+LaTeX_HEADER_EXTRA : \input{preamble.tex}
#+PROPERTY : header-args:matlab :session *MATLAB*
#+PROPERTY : header-args:matlab+ :comments org
#+PROPERTY : header-args:matlab+ :exports both
#+PROPERTY : header-args:matlab+ :results none
#+PROPERTY : header-args:matlab+ :eval no-export
#+PROPERTY : header-args:matlab+ :noweb yes
#+PROPERTY : header-args:matlab+ :mkdirp yes
#+PROPERTY : header-args:matlab+ :output-dir figs
#+PROPERTY : header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY : header-args:latex+ :imagemagick t :fit yes
#+PROPERTY : header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY : header-args:latex+ :imoutoptions -quality 100
#+PROPERTY : header-args:latex+ :results file raw replace
#+PROPERTY : header-args:latex+ :buffer no
#+PROPERTY : header-args:latex+ :tangle no
#+PROPERTY : header-args:latex+ :eval no-export
#+PROPERTY : header-args:latex+ :exports results
#+PROPERTY : header-args:latex+ :mkdirp yes
#+PROPERTY : header-args:latex+ :output-dir figs
#+PROPERTY : header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
#+begin_export html
<hr >
<p >This report is also available as a <a href="./test-bench-nano-hexapod.pdf" >pdf</a >.</p >
<hr >
#+end_export
2021-06-09 18:14:45 +02:00
#+latex : \clearpage
2021-06-09 11:46:28 +02:00
2021-06-08 22:14:48 +02:00
* Introduction :ignore:
2021-06-14 18:08:46 +02:00
This document is dedicated to the experimental study of the nano-hexapod shown in Figure [[fig:picture_bench_granite_nano_hexapod ]].
#+name : fig:picture_bench_granite_nano_hexapod
#+caption : Nano-Hexapod
#+attr_latex : :width \linewidth
[[file:figs/IMG_20210608_152917.jpg ]]
2021-06-09 11:46:28 +02:00
2021-06-07 19:00:29 +02:00
#+begin_note
2021-06-14 18:08:46 +02:00
Here are the documentation of the equipment used for this test bench (lots of them are shwon in Figure [[fig:picture_bench_granite_overview ]]):
2021-06-07 19:00:29 +02:00
- Voltage Amplifier: PiezoDrive [[file:doc/PD200-V7-R1.pdf ][PD200 ]]
- Amplified Piezoelectric Actuator: Cedrat [[file:doc/APA300ML.pdf ][APA300ML ]]
- DAC/ADC: Speedgoat [[file:doc/IO131-OEM-Datasheet.pdf ][IO313 ]]
- Encoder: Renishaw [[file:doc/L-9517-9678-05-A_Data_sheet_VIONiC_series_en.pdf ][Vionic ]] and used [[file:doc/L-9517-9862-01-C_Data_sheet_RKLC_EN.pdf ][Ruler ]]
- Interferometers: Attocube
#+end_note
2021-06-08 22:14:48 +02:00
#+name : fig:picture_bench_granite_overview
#+caption : Nano-Hexapod and the control electronics
2021-06-08 22:39:35 +02:00
#+attr_latex : :width \linewidth
2021-06-08 22:14:48 +02:00
[[file:figs/IMG_20210608_154722.jpg ]]
2021-06-14 18:08:46 +02:00
In Figure [[fig:nano_hexapod_signals ]] is shown a block diagram of the experimental setup.
When possible, the notations are consistent with this diagram and summarized in Table [[tab:list_signals ]].
2021-06-09 11:46:28 +02:00
#+begin_src latex :file nano_hexapod_signals.pdf
\definecolor{instrumentation}{rgb}{0, 0.447, 0.741}
\definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098}
\begin{tikzpicture}
% Blocs
\node[block={4.0cm}{3.0cm}, fill=mechanics!20!white] (nano_hexapod) {Mechanics};
\coordinate[] (inputF) at (nano_hexapod.west);
\coordinate[] (outputL) at ($(nano_hexapod.south east)!0.8!(nano_hexapod.north east)$);
\coordinate[] (outputF) at ($(nano_hexapod.south east)!0.2!(nano_hexapod.north east)$);
\node[block, left= 0.8 of inputF, fill=instrumentation!20!white, align=center] (F_stack) {\tiny Actuator \\ \tiny stacks};
\node[block, left= 0.8 of F_stack, fill=instrumentation!20!white] (PD200) {PD200};
\node[DAC, left= 0.8 of PD200, fill=instrumentation!20!white] (F_DAC) {DAC};
\node[block, right=0.8 of outputF, fill=instrumentation!20!white, align=center] (Fm_stack){\tiny Sensor \\ \tiny stack};
\node[ADC, right=0.8 of Fm_stack,fill=instrumentation!20!white] (Fm_ADC) {ADC};
\node[block, right=0.8 of outputL, fill=instrumentation!20!white] (encoder) {\tiny Encoder};
% Connections and labels
\draw[->] ($(F_DAC.west)+(-0.8,0)$) node[above right]{$\bm{u}$} node[below right]{$[V]$} -- node[sloped]{$/$} (F_DAC.west);
\draw[->] (F_DAC.east) -- node[midway, above]{$\tilde{\bm{u}}$}node[midway, below]{$[V]$} (PD200.west);
\draw[->] (PD200.east) -- node[midway, above]{$\bm{u}_a$}node[midway, below]{$[V]$} (F_stack.west);
\draw[->] (F_stack.east) -- (inputF) node[above left]{$\bm{\tau}$}node[below left]{$[N]$};
\draw[->] (outputF) -- (Fm_stack.west) node[above left]{$\bm{\epsilon}$} node[below left]{$[m]$};
\draw[->] (Fm_stack.east) -- node[midway, above]{$\tilde{\bm{\tau}}_m$}node[midway, below]{$[V]$} (Fm_ADC.west);
\draw[->] (Fm_ADC.east) -- node[sloped]{$/$} ++(0.8, 0)coordinate(end) node[above left]{$\bm{\tau}_m$}node[below left]{$[V]$};
\draw[->] (outputL) -- (encoder.west) node[above left]{$d\bm{\mathcal{L}}$} node[below left]{$[m]$};
\draw[->] (encoder.east) -- node[sloped]{$/$} (encoder-|end) node[above left]{$d\bm{\mathcal{L}}_m$}node[below left]{$[m]$};
% Nano-Hexapod
\begin{scope}[on background layer]
\node[fit={(F_stack.west|-nano_hexapod.south) (Fm_stack.east|-nano_hexapod.north)}, fill=black!20!white, draw, inner sep=2pt] (system) {};
\node[above] at (system.north) {Nano-Hexapod};
\end{scope}
\end{tikzpicture}
#+end_src
#+name : fig:nano_hexapod_signals
#+caption : Block diagram of the system with named signals
#+attr_latex : :scale 1
[[file:figs/nano_hexapod_signals.png ]]
#+name : tab:list_signals
#+caption : List of signals
#+attr_latex : :environment tabularx :width \linewidth :align Xllll
#+attr_latex : :center t :booktabs t :float t
| | *Unit* | *Matlab* | *Vector* | *Elements* |
|------------------------------------+-----------+-----------+-----------------------+----------------------|
| Control Input (wanted DAC voltage) | =[V]= | =u= | $\bm{u}$ | $u_i$ |
| DAC Output Voltage | =[V]= | =u= | $\tilde{\bm{u}}$ | $\tilde{u}_i$ |
| PD200 Output Voltage | =[V]= | =ua= | $\bm{u}_a$ | $u_{a,i}$ |
| Actuator applied force | =[N]= | =tau= | $\bm{\tau}$ | $\tau_i$ |
|------------------------------------+-----------+-----------+-----------------------+----------------------|
| Strut motion | =[m]= | =dL= | $d\bm{\mathcal{L}}$ | $d\mathcal{L}_i$ |
| Encoder measured displacement | =[m]= | =dLm= | $d\bm{\mathcal{L}}_m$ | $d\mathcal{L}_{m,i}$ |
|------------------------------------+-----------+-----------+-----------------------+----------------------|
| Force Sensor strain | =[m]= | =epsilon= | $\bm{\epsilon}$ | $\epsilon_i$ |
| Force Sensor Generated Voltage | =[V]= | =taum= | $\tilde{\bm{\tau}}_m$ | $\tilde{\tau}_{m,i}$ |
| Measured Generated Voltage | =[V]= | =taum= | $\bm{\tau}_m$ | $\tau_{m,i}$ |
|------------------------------------+-----------+-----------+-----------------------+----------------------|
| Motion of the top platform | =[m,rad]= | =dX= | $d\bm{\mathcal{X}}$ | $d\mathcal{X}_i$ |
| Metrology measured displacement | =[m,rad]= | =dXm= | $d\bm{\mathcal{X}}_m$ | $d\mathcal{X}_{m,i}$ |
2021-06-14 18:08:46 +02:00
This document is divided in the following sections:
- Section [[sec:encoders_struts ]]: the encoders are fixed to the struts
- Section [[sec:encoders_plates ]]: the encoders are fixed to the plates
2021-06-08 22:14:48 +02:00
* Encoders fixed to the Struts
2021-06-14 18:08:46 +02:00
<<sec:encoders_struts >>
2021-06-08 22:14:48 +02:00
** Introduction
2021-06-08 22:39:35 +02:00
In this section, the encoders are fixed to the struts.
2021-06-08 22:14:48 +02:00
2021-06-14 18:08:46 +02:00
It is divided in the following sections:
- Section [[sec:enc_struts_plant_id ]]: the transfer function matrix from the actuators to the force sensors and to the encoders is experimentally identified.
- Section [[sec:enc_struts_comp_simscape ]]: the obtained FRF matrix is compared with the dynamics of the simscape model
- Section [[sec:enc_struts_iff ]]: decentralized Integral Force Feedback (IFF) is applied and its performances are evaluated.
- Section [[sec:enc_struts_modal_analysis ]]: a modal analysis of the nano-hexapod is performed
2021-06-08 22:14:48 +02:00
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir >>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init >>
#+end_src
#+begin_src matlab :tangle no
addpath('./matlab/mat/ ');
addpath('./matlab/src/ ');
addpath('./matlab/ ');
#+end_src
#+begin_src matlab :eval no
addpath('./mat/ ');
addpath('./src/ ');
#+end_src
2021-06-09 11:46:28 +02:00
** Identification of the dynamics
2021-06-14 18:08:46 +02:00
<<sec:enc_struts_plant_id >>
2021-06-09 11:46:28 +02:00
*** Load Data
2021-06-08 22:14:48 +02:00
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% Load Identification Data
2021-06-08 22:14:48 +02:00
meas_data_lf = {};
for i = 1:6
meas_data_lf(i) = {load(sprintf('mat/frf_data_exc_strut_ %i_noise_lf.mat', i), 't', 'Va', 'Vs', 'de')};
meas_data_hf(i) = {load(sprintf('mat/frf_data_exc_strut_ %i_noise_hf.mat', i), 't', 'Va', 'Vs', 'de')};
end
#+end_src
2021-06-09 11:46:28 +02:00
*** Spectral Analysis - Setup
2021-06-08 22:14:48 +02:00
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% Setup useful variables
2021-06-08 22:14:48 +02:00
% Sampling Time [s]
Ts = (meas_data_lf{1}.t(end) - (meas_data_lf{1}.t(1)))/(length(meas_data_lf{1}.t)-1);
% Sampling Frequency [Hz]
Fs = 1/Ts;
% Hannning Windows
win = hanning(ceil(1*Fs));
2021-06-09 18:14:45 +02:00
% And we get the frequency vector
2021-06-08 22:14:48 +02:00
[~, f] = tfestimate(meas_data_lf{1}.Va, meas_data_lf{1}.de, win, [], [], 1/Ts);
i_lf = f < 250; % Points for low frequency excitation
i_hf = f > 250; % Points for high frequency excitation
#+end_src
2021-06-09 11:46:28 +02:00
*** DVF Plant
2021-06-08 22:14:48 +02:00
First, let's compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure [[fig:enc_struts_dvf_coh ]]).
#+begin_src matlab
%% Coherence
coh_dvf_lf = zeros(length(f), 6, 6);
coh_dvf_hf = zeros(length(f), 6, 6);
for i = 1:6
coh_dvf_lf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
coh_dvf_hf(:, :, i) = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);
end
#+end_src
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Coherence for the transfer function from u to dLm
2021-06-08 22:14:48 +02:00
figure;
hold on;
for i = 1:5
for j = i+1:6
plot(f(i_lf), coh_dvf_lf(i_lf, i, j), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
plot(f(i_hf), coh_dvf_hf(i_hf, i, j), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), coh_dvf_lf(i_lf,i, i), ...
'DisplayName', sprintf('$G_{dvf}(%i,%i)$', i, i));
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), coh_dvf_hf(i_hf,i, i), ...
'HandleVisibility', 'off');
end
plot(f(i_lf), coh_dvf_lf(i_lf, 1, 2), 'color', [0, 0, 0, 0.2], ...
'DisplayName', '$G_{dvf}(i,j)$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
xlim([20, 2e3]); ylim([0, 1]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_dvf_coh.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name : fig:enc_struts_dvf_coh
#+caption : Obtained coherence for the DVF plant
#+RESULTS :
[[file:figs/enc_struts_dvf_coh.png ]]
Then the 6x6 transfer function matrix is estimated (Figure [[fig:enc_struts_dvf_frf ]]).
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% DVF Plant (transfer function from u to dLm)
2021-06-08 22:14:48 +02:00
G_dvf_lf = zeros(length(f), 6, 6);
G_dvf_hf = zeros(length(f), 6, 6);
for i = 1:6
G_dvf_lf(:, :, i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
G_dvf_hf(:, :, i) = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);
end
#+end_src
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Bode plot for the transfer function from u to dLm
2021-06-08 22:14:48 +02:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
for i = 1:5
for j = i+1:6
plot(f(i_lf), abs(G_dvf_lf(i_lf, i, j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
plot(f(i_hf), abs(G_dvf_hf(i_hf, i, j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), abs(G_dvf_lf(i_lf,i, i)), ...
'DisplayName', sprintf('$G_{dvf}(%i,%i)$', i, i));
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), abs(G_dvf_hf(i_hf,i, i)), ...
'HandleVisibility', 'off');
end
plot(f(i_lf), abs(G_dvf_lf(i_lf, 1, 2)), 'color', [0, 0, 0, 0.2], ...
'DisplayName', '$G_{dvf}(i,j)$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
ylim([1e-9, 1e-3]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
ax2 = nexttile;
hold on;
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), 180/pi*angle(G_dvf_lf(i_lf,i, i)));
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), 180/pi*angle(G_dvf_hf(i_hf,i, i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([20, 2e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_dvf_frf.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:enc_struts_dvf_frf
#+caption : Measured FRF for the DVF plant
#+RESULTS :
[[file:figs/enc_struts_dvf_frf.png ]]
2021-06-09 11:46:28 +02:00
*** IFF Plant
2021-06-08 22:14:48 +02:00
First, let's compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure [[fig:enc_struts_iff_coh ]]).
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% Coherence for the IFF plant
2021-06-08 22:14:48 +02:00
coh_iff_lf = zeros(length(f), 6, 6);
coh_iff_hf = zeros(length(f), 6, 6);
for i = 1:6
coh_iff_lf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
coh_iff_hf(:, :, i) = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);
end
#+end_src
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Coherence of the IFF Plant (transfer function from u to taum)
2021-06-08 22:14:48 +02:00
figure;
hold on;
for i = 1:5
for j = i+1:6
plot(f(i_lf), coh_iff_lf(i_lf, i, j), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
plot(f(i_hf), coh_iff_hf(i_hf, i, j), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), coh_iff_lf(i_lf,i, i), ...
'DisplayName', sprintf('$G_{iff}(%i,%i)$', i, i));
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), coh_iff_hf(i_hf,i, i), ...
'HandleVisibility', 'off');
end
plot(f(i_lf), coh_iff_lf(i_lf, 1, 2), 'color', [0, 0, 0, 0.2], ...
'DisplayName', '$G_{iff}(i,j)$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
xlim([20, 2e3]); ylim([0, 1]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_iff_coh.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name : fig:enc_struts_iff_coh
#+caption : Obtained coherence for the IFF plant
#+RESULTS :
[[file:figs/enc_struts_iff_coh.png ]]
Then the 6x6 transfer function matrix is estimated (Figure [[fig:enc_struts_iff_frf ]]).
#+begin_src matlab
%% IFF Plant
G_iff_lf = zeros(length(f), 6, 6);
G_iff_hf = zeros(length(f), 6, 6);
for i = 1:6
G_iff_lf(:, :, i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
G_iff_hf(:, :, i) = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);
end
#+end_src
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Bode plot of the IFF Plant (transfer function from u to taum)
2021-06-08 22:14:48 +02:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
for i = 1:5
for j = i+1:6
plot(f(i_lf), abs(G_iff_lf(i_lf, i, j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
plot(f(i_hf), abs(G_iff_hf(i_hf, i, j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), abs(G_iff_lf(i_lf,i, i)), ...
'DisplayName', sprintf('$G_{iff}(%i,%i)$', i, i));
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), abs(G_iff_hf(i_hf,i, i)), ...
'HandleVisibility', 'off');
end
plot(f(i_lf), abs(G_iff_lf(i_lf, 1, 2)), 'color', [0, 0, 0, 0.2], ...
'DisplayName', '$G_{iff}(i,j)$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
ylim([1e-3, 1e2]);
ax2 = nexttile;
hold on;
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), 180/pi*angle(G_iff_lf(i_lf,i, i)));
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), 180/pi*angle(G_iff_hf(i_hf,i, i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([20, 2e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_iff_frf.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:enc_struts_iff_frf
#+caption : Measured FRF for the IFF plant
#+RESULTS :
[[file:figs/enc_struts_iff_frf.png ]]
2021-06-09 11:46:28 +02:00
** Jacobian :noexport:
2021-06-08 22:39:35 +02:00
*** Introduction :ignore:
The Jacobian is used to transform the excitation force in the cartesian frame as well as the displacements.
2021-06-09 11:46:28 +02:00
Consider the plant shown in Figure [[fig:schematic_jacobian_in_out ]] with:
2021-06-08 22:39:35 +02:00
- $\tau$ the 6 input voltages (going to the PD200 amplifier and then to the APA)
- $d\mathcal{L}$ the relative motion sensor outputs (encoders)
- $\bm{\tau}_m$ the generated voltage of the force sensor stacks
- $J_a$ and $J_s$ the Jacobians for the actuators and sensors
#+begin_src latex :file schematic_jacobian_in_out.pdf
\begin{tikzpicture}
% Blocs
\node[block={2.0cm}{2.0cm}] (P) {Plant};
\coordinate[] (inputF) at (P.west);
\coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$);
\coordinate[] (outputF) at ($(P.south east)!0.2!(P.north east)$);
\node[block, left= of inputF] (Ja) {$\bm{J}^{-T}_a$};
\node[block, right= of outputL] (Js) {$\bm{J}^{-1}_s$};
\node[block, right= of outputF] (Jf) {$\bm{J}^{-1}_s$};
% Connections and labels
\draw[->] ($(Ja.west)+(-1,0)$) -- (Ja.west) node[above left]{$\bm{\mathcal{F}}$};
\draw[->] (Ja.east) -- (inputF) node[above left]{$\bm{\tau}$};
\draw[->] (outputL) -- (Js.west) node[above left]{$d\bm{\mathcal{L}}$};
\draw[->] (Js.east) -- ++(1, 0) node[above left]{$d\bm{\mathcal{X}}$};
\draw[->] (outputF) -- (Jf.west) node[above left]{$\bm{\tau}_m$};
\draw[->] (Jf.east) -- ++(1, 0) node[above left]{$\bm{\mathcal{F}}_m$};
\end{tikzpicture}
#+end_src
#+name : fig:schematic_jacobian_in_out
#+caption : Plant in the cartesian Frame
#+RESULTS :
[[file:figs/schematic_jacobian_in_out.png ]]
First, we load the Jacobian matrix (same for the actuators and sensors).
2021-06-08 22:14:48 +02:00
#+begin_src matlab
load('jacobian.mat', 'J');
#+end_src
2021-06-08 22:39:35 +02:00
2021-06-08 22:14:48 +02:00
*** DVF Plant
2021-06-08 22:39:35 +02:00
The transfer function from $\bm{\mathcal{F}}$ to $d\bm{\mathcal{X}}$ is computed and shown in Figure [[fig:enc_struts_dvf_cart_frf ]].
2021-06-08 22:14:48 +02:00
#+begin_src matlab
G_dvf_J_lf = permute(pagemtimes(inv(J), pagemtimes(permute(G_dvf_lf, [2 3 1]), inv(J'))), [3 1 2]);
G_dvf_J_hf = permute(pagemtimes(inv(J), pagemtimes(permute(G_dvf_hf, [2 3 1]), inv(J'))), [3 1 2]);
#+end_src
#+begin_src matlab :exports none
labels = {'$D_x/F_ {x}$', '$D_y/F_ {y}$', '$D_z/F_ {z}$', '$R_{x}/M_ {x}$', '$R_{y}/M_ {y}$', '$R_{R}/M_ {z}$'};
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
for i = 1:5
for j = i+1:6
plot(f(i_lf), abs(G_dvf_J_lf(i_lf, i, j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
plot(f(i_hf), abs(G_dvf_J_hf(i_hf, i, j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), abs(G_dvf_J_lf(i_lf,i, i)), ...
'DisplayName', labels{i});
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), abs(G_dvf_J_hf(i_hf,i, i)), ...
'HandleVisibility', 'off');
end
plot(f(i_lf), abs(G_dvf_J_lf(i_lf, 1, 2)), 'color', [0, 0, 0, 0.2], ...
'DisplayName', '$D_i/F_j$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
ylim([1e-7, 1e-1]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
ax2 = nexttile;
hold on;
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), 180/pi*angle(G_dvf_J_lf(i_lf,i, i)));
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), 180/pi*angle(G_dvf_J_hf(i_hf,i, i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([20, 2e3]);
#+end_src
2021-06-08 22:39:35 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_dvf_cart_frf.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:enc_struts_dvf_cart_frf
#+caption : Measured FRF for the DVF plant in the cartesian frame
#+RESULTS :
[[file:figs/enc_struts_dvf_cart_frf.png ]]
2021-06-08 22:14:48 +02:00
*** IFF Plant
2021-06-08 22:39:35 +02:00
The transfer function from $\bm{\mathcal{F}}$ to $\bm{\mathcal{F}}_m$ is computed and shown in Figure [[fig:enc_struts_iff_cart_frf ]].
2021-06-08 22:14:48 +02:00
#+begin_src matlab
G_iff_J_lf = permute(pagemtimes(inv(J), pagemtimes(permute(G_iff_lf, [2 3 1]), inv(J'))), [3 1 2]);
G_iff_J_hf = permute(pagemtimes(inv(J), pagemtimes(permute(G_iff_hf, [2 3 1]), inv(J'))), [3 1 2]);
#+end_src
#+begin_src matlab :exports none
labels = {'$F_{m,x}/F_ {x}$', '$F_{m,y}/F_ {y}$', '$F_{m,z}/F_ {z}$', '$M_{m,x}/M_ {x}$', '$M_{m,y}/M_ {y}$', '$M_{m,z}/M_ {z}$'};
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
for i = 1:5
for j = i+1:6
plot(f(i_lf), abs(G_iff_J_lf(i_lf, i, j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
plot(f(i_hf), abs(G_iff_J_hf(i_hf, i, j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), abs(G_iff_J_lf(i_lf,i, i)), ...
'DisplayName', labels{i});
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), abs(G_iff_J_hf(i_hf,i, i)), ...
'HandleVisibility', 'off');
end
plot(f(i_lf), abs(G_iff_J_lf(i_lf, 1, 2)), 'color', [0, 0, 0, 0.2], ...
'DisplayName', '$D_i/F_j$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
2021-06-08 22:39:35 +02:00
ylim([1e-3, 1e4]);
2021-06-08 22:14:48 +02:00
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
ax2 = nexttile;
hold on;
for i =1:6
set(gca,'ColorOrderIndex',i)
plot(f(i_lf), 180/pi*angle(G_iff_J_lf(i_lf,i, i)));
set(gca,'ColorOrderIndex',i)
plot(f(i_hf), 180/pi*angle(G_iff_J_hf(i_hf,i, i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([20, 2e3]);
#+end_src
2021-06-08 22:39:35 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_iff_cart_frf.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:enc_struts_iff_cart_frf
#+caption : Measured FRF for the IFF plant in the cartesian frame
#+RESULTS :
[[file:figs/enc_struts_iff_cart_frf.png ]]
2021-06-09 11:46:28 +02:00
** Comparison with the Simscape Model
2021-06-14 18:08:46 +02:00
<<sec:enc_struts_comp_simscape >>
2021-06-09 11:46:28 +02:00
*** Introduction :ignore:
In this section, the measured dynamics is compared with the dynamics estimated from the Simscape model.
*** Initialize :noexport:
#+begin_src matlab :tangle no
2021-06-09 18:14:45 +02:00
%% Add all useful folders to the path
2021-06-09 11:46:28 +02:00
addpath('matlab/')
addpath('matlab/nass-simscape/matlab/nano_hexapod/ ')
addpath('matlab/nass-simscape/STEPS/nano_hexapod/ ')
addpath('matlab/nass-simscape/STEPS/png/ ')
addpath('matlab/nass-simscape/src/ ')
addpath('matlab/nass-simscape/mat/ ')
#+end_src
#+begin_src matlab :eval no
2021-06-09 18:14:45 +02:00
%% Add all useful folders to the path
2021-06-09 11:46:28 +02:00
addpath('nass-simscape/matlab/nano_hexapod/ ')
addpath('nass-simscape/STEPS/nano_hexapod/ ')
addpath('nass-simscape/STEPS/png/ ')
addpath('nass-simscape/src/ ')
addpath('nass-simscape/mat/ ')
#+end_src
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% Open Simulink Model
2021-06-09 11:46:28 +02:00
mdl = 'nano_hexapod_simscape';
options = linearizeOptions;
options.SampleTime = 0;
open(mdl)
#+end_src
*** Dynamics from Actuator to Force Sensors
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
2021-06-09 11:46:28 +02:00
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
#+end_src
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% Identify the IFF Plant (transfer function from u to taum)
2021-06-09 11:46:28 +02:00
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
2021-06-09 18:14:45 +02:00
Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
2021-06-09 11:46:28 +02:00
#+end_src
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data
2021-06-09 11:46:28 +02:00
freqs = 2*logspace(1, 3, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(G_iff_lf(i_lf,1, 1)), 'color', [0,0,0,0.2], ...
2021-06-09 11:46:28 +02:00
'DisplayName', '$\tau_{m,i}/u_i$ - FRF')
for i = 2:6
set(gca,'ColorOrderIndex',2)
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(G_iff_lf(i_lf,i, i)), 'color', [0,0,0,0.2], ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
2021-06-09 18:14:45 +02:00
plot(f(i_hf), abs(G_iff_hf(i_hf,i, i)), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs, 'Hz'))), '-', ...
'DisplayName', '$\tau_{m,i}/u_i$ - Model')
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-', ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
ax2 = nexttile;
hold on;
for i = 1:6
2021-06-09 18:14:45 +02:00
plot(f(i_lf), 180/pi*angle(G_iff_lf(i_lf,i, i)), 'color', [0,0,0,0.2]);
plot(f(i_hf), 180/pi*angle(G_iff_hf(i_hf,i, i)), 'color', [0,0,0,0.2]);
2021-06-09 11:46:28 +02:00
end
for i = 1:6
2021-06-09 18:14:45 +02:00
set(gca,'ColorOrderIndex',2);
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-');
2021-06-09 11:46:28 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_iff_comp_simscape.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:enc_struts_iff_comp_simscape
#+caption : Diagonal elements of the IFF Plant
#+RESULTS :
[[file:figs/enc_struts_iff_comp_simscape.png ]]
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data (off-diagonal elements)
2021-06-09 11:46:28 +02:00
freqs = 2*logspace(1, 3, 1000);
figure;
hold on;
% Off diagonal terms
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(G_iff_lf(i_lf, 1, 2)), 'color', [0,0,0,0.2], ...
'DisplayName', '$\tau_{m,i}/u_j$ - FRF')
2021-06-09 11:46:28 +02:00
for i = 1:5
for j = i+1:6
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(G_iff_lf(i_lf, i, j)), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
plot(f(i_hf), abs(G_iff_hf(i_hf, i, j)), 'color', [0,0,0,0.2], ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
end
end
set(gca,'ColorOrderIndex',2);
2021-06-09 18:14:45 +02:00
plot(freqs, abs(squeeze(freqresp(Giff(1, 2), freqs, 'Hz'))), ...
'DisplayName', '$\tau_{m,i}/u_j$ - Model')
2021-06-09 11:46:28 +02:00
for i = 1:5
for j = i+1:6
set(gca,'ColorOrderIndex',2);
2021-06-09 18:14:45 +02:00
plot(freqs, abs(squeeze(freqresp(Giff(i, j), freqs, 'Hz'))), ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [V/V]');
xlim([freqs(1), freqs(end)]); ylim([1e-3, 1e2]);
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_iff_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name : fig:enc_struts_iff_comp_offdiag_simscape
#+caption : Off diagonal elements of the IFF Plant
#+RESULTS :
[[file:figs/enc_struts_iff_comp_offdiag_simscape.png ]]
*** Dynamics from Actuator to Encoder
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% Initialization of the Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
2021-06-09 11:46:28 +02:00
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
#+end_src
#+begin_src matlab
2021-06-09 18:14:45 +02:00
%% Identify the DVF Plant (transfer function from u to dLm)
2021-06-09 11:46:28 +02:00
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
2021-06-09 18:14:45 +02:00
Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
2021-06-09 11:46:28 +02:00
#+end_src
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Diagonal elements of the DVF plant
2021-06-09 11:46:28 +02:00
freqs = 2*logspace(1, 3, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(G_dvf_lf(i_lf,1, 1)), 'color', [0,0,0,0.2], ...
2021-06-09 11:46:28 +02:00
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
for i = 2:6
set(gca,'ColorOrderIndex',2)
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(G_dvf_lf(i_lf,i, i)), 'color', [0,0,0,0.2], ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
2021-06-09 18:14:45 +02:00
plot(f(i_hf), abs(G_dvf_hf(i_hf,i, i)), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs, 'Hz'))), '-', ...
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-', ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
ylim([1e-8, 1e-3]);
2021-06-09 18:14:45 +02:00
legend('location', 'northeast');
2021-06-09 11:46:28 +02:00
ax2 = nexttile;
hold on;
for i = 1:6
2021-06-09 18:14:45 +02:00
plot(f(i_lf), 180/pi*angle(G_dvf_lf(i_lf,i, i)), 'color', [0,0,0,0.2]);
plot(f(i_hf), 180/pi*angle(G_dvf_hf(i_hf,i, i)), 'color', [0,0,0,0.2]);
2021-06-09 11:46:28 +02:00
end
for i = 1:6
2021-06-09 18:14:45 +02:00
set(gca,'ColorOrderIndex',2);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-');
2021-06-09 11:46:28 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_dvf_comp_simscape.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:enc_struts_dvf_comp_simscape
#+caption : Diagonal elements of the DVF Plant
#+RESULTS :
[[file:figs/enc_struts_dvf_comp_simscape.png ]]
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Off-diagonal elements of the DVF plant
2021-06-09 11:46:28 +02:00
freqs = 2*logspace(1, 3, 1000);
figure;
hold on;
% Off diagonal terms
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(G_dvf_lf(i_lf, 1, 2)), 'color', [0,0,0,0.2], ...
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF')
2021-06-09 11:46:28 +02:00
for i = 1:5
for j = i+1:6
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(G_dvf_lf(i_lf, i, j)), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
plot(f(i_hf), abs(G_dvf_hf(i_hf, i, j)), 'color', [0,0,0,0.2], ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
end
end
set(gca,'ColorOrderIndex',2);
2021-06-09 18:14:45 +02:00
plot(freqs, abs(squeeze(freqresp(Gdvf(1, 2), freqs, 'Hz'))), ...
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - Model')
2021-06-09 11:46:28 +02:00
for i = 1:5
for j = i+1:6
set(gca,'ColorOrderIndex',2);
2021-06-09 18:14:45 +02:00
plot(freqs, abs(squeeze(freqresp(Gdvf(i, j), freqs, 'Hz'))), ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]');
xlim([freqs(1), freqs(end)]); ylim([1e-8, 1e-3]);
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_dvf_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name : fig:enc_struts_dvf_comp_offdiag_simscape
#+caption : Off diagonal elements of the DVF Plant
#+RESULTS :
[[file:figs/enc_struts_dvf_comp_offdiag_simscape.png ]]
2021-06-09 18:14:45 +02:00
** Integral Force Feedback
2021-06-14 18:08:46 +02:00
<<sec:enc_struts_iff >>
2021-06-09 18:14:45 +02:00
*** Root Locus and Decentralized Loop gain
#+begin_src matlab
%% IFF Controller
Kiff_g1 = (1/(s + 2*pi*40))* ... % Low pass filter (provides integral action above 40Hz)
(s/(s + 2*pi*30))* ... % High pass filter to limit low frequency gain
(1/(1 + s/2/pi/500))*... % Low pass filter to be more robust to high frequency resonances
eye(6); % Diagonal 6x6 controller
#+end_src
#+begin_src matlab :exports none
%% Root Locus for IFF
gains = logspace(1, 4, 100);
figure;
hold on;
% Pure Integrator
set(gca,'ColorOrderIndex',1);
plot(real(pole(Giff)), imag(pole(Giff)), 'x', 'DisplayName', '$g = 0$');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(Giff)), imag(tzero(Giff)), 'o', 'HandleVisibility', 'off');
for g = gains
clpoles = pole(feedback(Giff, g*Kiff_g1*eye(6)));
set(gca,'ColorOrderIndex',1);
plot(real(clpoles), imag(clpoles), '.', 'HandleVisibility', 'off');
end
g = 4e2;
clpoles = pole(feedback(Giff, g*Kiff_g1*eye(6)));
set(gca,'ColorOrderIndex',2);
plot(real(clpoles), imag(clpoles), 'x', 'DisplayName', sprintf('$g=%.0f$', g));
hold off;
axis square;
xlim([-1250, 0]); ylim([0, 1250]);
xlabel('Real Part'); ylabel('Imaginary Part');
legend('location', 'northwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_iff_root_locus.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:enc_struts_iff_root_locus
#+caption : Root Locus for the IFF control strategy
#+RESULTS :
[[file:figs/enc_struts_iff_root_locus.png ]]
Then the "optimal" IFF controller is:
#+begin_src matlab
%% IFF controller with Optimal gain
Kiff = g*Kiff_g1;
#+end_src
2021-06-09 11:46:28 +02:00
#+begin_src matlab :exports none
2021-06-09 18:14:45 +02:00
%% Bode plot of the "decentralized loop gain"
freqs = 2*logspace(1, 3, 1000);
2021-06-09 11:46:28 +02:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
2021-06-09 18:14:45 +02:00
plot(f(i_lf), abs(squeeze(freqresp(Kiff(1,1), f(i_lf), 'Hz')).*G_iff_lf(i_lf,1, 1)), 'color', [0,0,0,0.2], ...
'DisplayName', '$\tau_{m,i}/u_i \cdot K_ {iff}$ - FRF')
for i = 2:6
set(gca,'ColorOrderIndex',2)
plot(f(i_lf), abs(squeeze(freqresp(Kiff(1,1), f(i_lf), 'Hz')).*G_iff_lf(i_lf,i, i)), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
plot(f(i_hf), abs(squeeze(freqresp(Kiff(1,1), f(i_hf), 'Hz')).*G_iff_hf(i_hf,i, i)), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
2021-06-09 11:46:28 +02:00
end
2021-06-09 18:14:45 +02:00
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*Giff(1,1), freqs, 'Hz'))), '-', ...
'DisplayName', '$\tau_{m,i}/u_i \cdot K_ {iff}$ - Model')
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*Giff(i,i), freqs, 'Hz'))), '-', ...
2021-06-09 11:46:28 +02:00
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
2021-06-09 18:14:45 +02:00
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
legend('location', 'northeast');
2021-06-09 11:46:28 +02:00
ax2 = nexttile;
hold on;
2021-06-09 18:14:45 +02:00
for i = 1:6
plot(f(i_lf), 180/pi*angle(squeeze(freqresp(Kiff(1,1), f(i_lf), 'Hz')).*G_iff_lf(i_lf,i, i)), 'color', [0,0,0,0.2]);
plot(f(i_hf), 180/pi*angle(squeeze(freqresp(Kiff(1,1), f(i_hf), 'Hz')).*G_iff_hf(i_hf,i, i)), 'color', [0,0,0,0.2]);
end
for i = 1:6
set(gca,'ColorOrderIndex',2);
plot(freqs, 180/pi*angle(squeeze(freqresp(Kiff(1,1)*Giff(i,i), freqs, 'Hz'))), '-');
2021-06-09 11:46:28 +02:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
2021-06-09 18:14:45 +02:00
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_iff_opt_loop_gain.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:enc_struts_iff_opt_loop_gain
#+caption : Bode plot of the "decentralized loop gain" $G_\text{iff}(i,i) \times K_\text{iff}(i,i)$
#+RESULTS :
[[file:figs/enc_struts_iff_opt_loop_gain.png ]]
*** Multiple Gains - Simulation
#+begin_src matlab
%% Tested IFF gains
2021-06-10 17:52:16 +02:00
iff_gains = [4, 10, 20, 40, 100, 200, 400];
2021-06-09 18:14:45 +02:00
#+end_src
#+begin_src matlab
%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');
#+end_src
#+begin_src matlab
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
Gd_iff = {zeros(1, length(iff_gains))};
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Strut Displacement (encoder)
for i = 1:length(iff_gains)
Kiff = iff_gains(i)*Kiff_g1*eye(6); % IFF Controller
Gd_iff(i) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)};
isstable(Gd_iff{i})
end
#+end_src
#+begin_src matlab :exports none
%% Bode plot of the transfer function from u to dLm for tested values of the IFF gain
freqs = 2*logspace(1, 3, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
for i = 1:length(iff_gains)
plot(freqs, abs(squeeze(freqresp(Gd_iff{i}(1,1), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$g = %.0f$', iff_gains(i)));
end
2021-06-09 11:46:28 +02:00
hold off;
2021-06-09 18:14:45 +02:00
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
ax2 = nexttile;
hold on;
for i = 1:length(iff_gains)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff{i}(1,1), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
2021-06-09 11:46:28 +02:00
linkaxes([ax1,ax2],'x');
2021-06-09 18:14:45 +02:00
xlim([freqs(1), freqs(end)]);
2021-06-09 11:46:28 +02:00
#+end_src
2021-06-09 18:14:45 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/enc_struts_iff_gains_effect_dvf_plant.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
2021-06-09 11:46:28 +02:00
2021-06-09 18:14:45 +02:00
#+name : fig:enc_struts_iff_gains_effect_dvf_plant
#+caption : Effect of the IFF gain $g$ on the transfer function from $\bm{\tau}$ to $d\bm{\mathcal{L}}_m$
#+RESULTS :
[[file:figs/enc_struts_iff_gains_effect_dvf_plant.png ]]
2021-06-09 11:46:28 +02:00
2021-06-10 17:52:16 +02:00
*** Experimental Results - Gains
**** Introduction :ignore:
Let's look at the damping introduced by IFF as a function of the IFF gain and compare that with the results obtained using the Simscape model.
**** Load Data
#+begin_src matlab
%% Load Identification Data
meas_iff_gains = {};
for i = 1:length(iff_gains)
meas_iff_gains(i) = {load(sprintf('mat/iff_strut_1_noise_g_ %i.mat', iff_gains(i)), 't', 'Vexc', 'Vs', 'de', 'u')};
end
#+end_src
**** Spectral Analysis - Setup
#+begin_src matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_gains{1}.t(end) - (meas_iff_gains{1}.t(1)))/(length(meas_iff_gains{1}.t)-1);
% Sampling Frequency [Hz]
Fs = 1/Ts;
% Hannning Windows
win = hanning(ceil(1*Fs));
% And we get the frequency vector
[~, f] = tfestimate(meas_iff_gains{1}.Vexc, meas_iff_gains{1}.de, win, [], [], 1/Ts);
#+end_src
**** DVF Plant
#+begin_src matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_gains = {};
for i = 1:length(iff_gains)
G_iff_gains{i} = tfestimate(meas_iff_gains{i}.Vexc, meas_iff_gains{i}.de(:,1), win, [], [], 1/Ts);
end
#+end_src
#+begin_src matlab :exports none
%% Bode plot of the transfer function from u to dLm for tested values of the IFF gain
freqs = 2*logspace(1, 3, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
for i = 1:length(iff_gains)
plot(f, abs(G_iff_gains{i}), '-', ...
'DisplayName', sprintf('$g_{iff} = %.0f$', iff_gains(i)));
end
set(gca,'ColorOrderIndex',1)
for i = 1:length(iff_gains)
plot(freqs, abs(squeeze(freqresp(Gd_iff{i}(1,1), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
ax2 = nexttile;
hold on;
for i =1:length(iff_gains)
plot(f, 180/pi*angle(G_iff_gains{i}), '-');
end
set(gca,'ColorOrderIndex',1)
for i = 1:length(iff_gains)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff{i}(1,1), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/comp_iff_gains_dvf_plant.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:comp_iff_gains_dvf_plant
#+caption : Transfer function from $u$ to $d\mathcal{L}_m$ for multiple values of the IFF gain
#+RESULTS :
[[file:figs/comp_iff_gains_dvf_plant.png ]]
#+begin_src matlab :exports none
xlim([20, 200]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/comp_iff_gains_dvf_plant_zoom.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:comp_iff_gains_dvf_plant_zoom
#+caption : Transfer function from $u$ to $d\mathcal{L}_m$ for multiple values of the IFF gain (Zoom)
#+RESULTS :
[[file:figs/comp_iff_gains_dvf_plant_zoom.png ]]
#+begin_important
The IFF control strategy is very effective for the damping of the suspension modes.
It however does not damp the modes at 200Hz, 300Hz and 400Hz (flexible modes of the APA).
This is very logical.
Also, the experimental results and the models obtained from the Simscape model are in agreement.
#+end_important
**** Experimental Results - Comparison of the un-damped and fully damped system
#+begin_src matlab :exports none
%% Bode plot for the transfer function from u to dLm
freqs = 2*logspace(1, 3, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
% Un Damped measurement
set(gca,'ColorOrderIndex',1)
plot(f(i_lf), abs(G_dvf_lf(i_lf,1, 1)), ...
'DisplayName', 'Un-Damped')
set(gca,'ColorOrderIndex',1)
plot(f(i_hf), abs(G_dvf_hf(i_hf,1, 1)), ...
'HandleVisibility', 'off');
for i = 2:6
set(gca,'ColorOrderIndex',1)
plot(f(i_lf), abs(G_dvf_lf(i_lf,i, i)), ...
'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',1)
plot(f(i_hf), abs(G_dvf_hf(i_hf,i, i)), ...
'HandleVisibility', 'off');
end
% IFF Damped measurement
set(gca,'ColorOrderIndex',2)
plot(f, abs(G_iff_opt{1}(:,1)), ...
'DisplayName', 'Optimal gain')
for i = 2:6
set(gca,'ColorOrderIndex',2)
plot(f, abs(G_iff_opt{i}(:,i)), ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $d_e/V_ {exc}$ [m/V]'); set(gca, 'XTickLabel',[]);
ylim([1e-9, 1e-3]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
ax2 = nexttile;
hold on;
for i =1:6
set(gca,'ColorOrderIndex',1)
plot(f(i_lf), 180/pi*angle(G_dvf_lf(i_lf,i, i)));
set(gca,'ColorOrderIndex',1)
plot(f(i_hf), 180/pi*angle(G_dvf_hf(i_hf,i, i)));
set(gca,'ColorOrderIndex',2)
plot(f, 180/pi*angle(G_iff_opt{i}(:,i)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([20, 2e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/comp_undamped_opt_iff_gain_diagonal.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:comp_undamped_opt_iff_gain_diagonal
#+caption : Comparison of the diagonal elements of the tranfer function from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ without active damping and with optimal IFF gain
#+RESULTS :
[[file:figs/comp_undamped_opt_iff_gain_diagonal.png ]]
2021-06-14 18:08:46 +02:00
#+begin_question
A series of modes at around 205Hz are also damped.
Are these damped modes at 205Hz additional "suspension" modes or flexible modes of the struts?
#+end_question
2021-06-10 17:52:16 +02:00
*** Experimental Results - Damped Plant with Optimal gain
**** Introduction :ignore:
Let's now look at the $6 \times 6$ damped plant with the optimal gain $g = 400$.
**** Load Data
#+begin_src matlab
%% Load Identification Data
meas_iff_struts = {};
for i = 1:6
meas_iff_struts(i) = {load(sprintf('mat/iff_strut_ %i_noise_g_400.mat', i), 't', 'Vexc', 'Vs', 'de', 'u')};
end
#+end_src
**** Spectral Analysis - Setup
#+begin_src matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_struts{1}.t(end) - (meas_iff_struts{1}.t(1)))/(length(meas_iff_struts{1}.t)-1);
% Sampling Frequency [Hz]
Fs = 1/Ts;
% Hannning Windows
win = hanning(ceil(1*Fs));
% And we get the frequency vector
[~, f] = tfestimate(meas_iff_struts{1}.Vexc, meas_iff_struts{1}.de, win, [], [], 1/Ts);
#+end_src
**** DVF Plant
#+begin_src matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_opt = {};
for i = 1:6
G_iff_opt{i} = tfestimate(meas_iff_struts{i}.Vexc, meas_iff_struts{i}.de, win, [], [], 1/Ts);
end
#+end_src
#+begin_src matlab :exports none
%% Bode plot for the transfer function from u to dLm
freqs = 2*logspace(1, 3, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
% Diagonal Elements FRF
plot(f, abs(G_iff_opt{1}(:,1)), 'color', [0,0,0,0.2], ...
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
for i = 2:6
plot(f, abs(G_iff_opt{i}(:,i)), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
% Diagonal Elements Model
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(Gd_iff{end}(1,1), freqs, 'Hz'))), '-', ...
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
for i = 2:6
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(Gd_iff{end}(i,i), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $d_e/V_ {exc}$ [m/V]'); set(gca, 'XTickLabel',[]);
ylim([1e-9, 1e-3]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
ax2 = nexttile;
hold on;
for i =1:6
plot(f, 180/pi*angle(G_iff_opt{i}(:,i)), 'color', [0,0,0,0.2]);
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff{end}(i,i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([20, 2e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/damped_iff_plant_comp_diagonal.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:damped_iff_plant_comp_diagonal
#+caption : Comparison of the diagonal elements of the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ with active damping (IFF) applied with an optimal gain $g = 400$
#+RESULTS :
[[file:figs/damped_iff_plant_comp_diagonal.png ]]
#+begin_src matlab :exports none
%% Bode plot for the transfer function from u to dLm
freqs = 2*logspace(1, 3, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
% Off diagonal FRF
plot(f, abs(G_iff_opt{1}(:,2)), 'color', [0,0,0,0.2], ...
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF')
for i = 1:5
for j = i+1:6
plot(f, abs(G_iff_opt{i}(:,j)), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
% Off diagonal Model
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(Gd_iff{end}(1,2), freqs, 'Hz'))), '-', ...
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - Model')
for i = 1:5
for j = i+1:6
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(Gd_iff{end}(i,j), freqs, 'Hz'))), ...
'HandleVisibility', 'off');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $d_e/V_ {exc}$ [m/V]'); set(gca, 'XTickLabel',[]);
ylim([1e-9, 1e-3]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
ax2 = nexttile;
hold on;
% Off diagonal FRF
for i = 1:5
for j = i+1:6
plot(f, 180/pi*angle(G_iff_opt{i}(:,j)), 'color', [0, 0, 0, 0.2]);
end
end
% Off diagonal Model
for i = 1:5
for j = i+1:6
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff{end}(i,j), freqs, 'Hz'))));
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([20, 2e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/damped_iff_plant_comp_off_diagonal.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name : fig:damped_iff_plant_comp_off_diagonal
#+caption : Comparison of the off-diagonal elements of the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ with active damping (IFF) applied with an optimal gain $g = 400$
#+RESULTS :
[[file:figs/damped_iff_plant_comp_off_diagonal.png ]]
#+begin_important
2021-06-14 18:08:46 +02:00
With the IFF control strategy applied and the optimal gain used, the suspension modes are very well damped.
Remains the undamped flexible modes of the APA (200Hz, 300Hz, 400Hz), and the modes of the plates (700Hz).
2021-06-10 17:52:16 +02:00
The Simscape model and the experimental results are in very good agreement.
#+end_important
2021-06-09 18:14:45 +02:00
2021-06-14 17:29:28 +02:00
** Modal Analysis
2021-06-14 18:08:46 +02:00
<<sec:enc_struts_modal_analysis >>
2021-06-14 17:29:28 +02:00
*** Introduction :ignore:
Several 3-axis accelerometers are fixed on the top platform of the nano-hexapod as shown in Figure [[fig:compliance_vertical_comp_iff ]].
#+name : fig:accelerometers_nano_hexapod
#+caption : Location of the accelerometers on top of the nano-hexapod
#+attr_latex : :width \linewidth
[[file:figs/accelerometers_nano_hexapod.jpg ]]
The top platform is then excited using an instrumented hammer as shown in Figure [[fig:hammer_excitation_compliance_meas ]].
#+name : fig:hammer_excitation_compliance_meas
#+caption : Example of an excitation using an instrumented hammer
#+attr_latex : :width \linewidth
[[file:figs/hammer_excitation_compliance_meas.jpg ]]
*** Effectiveness of the IFF Strategy - Compliance
In this section, we wish to estimated the effectiveness of the IFF strategy concerning the compliance.
The top plate is excited vertically using the instrumented hammer two times:
1. no control loop is used
2. decentralized IFF is used
The data is loaded.
#+begin_src matlab
frf_ol = load('Measurement_Z_axis.mat'); % Open-Loop
frf_iff = load('Measurement_Z_axis_damped.mat'); % IFF
#+end_src
The mean vertical motion of the top platform is computed by averaging all 5 accelerometers.
#+begin_src matlab
%% Multiply by 10 (gain in m/s^2/V) and divide by 5 (number of accelerometers)
d_frf_ol = 10/5*(frf_ol.FFT1_H1_4_1_RMS_Y_Mod + frf_ol.FFT1_H1_7_1_RMS_Y_Mod + frf_ol.FFT1_H1_10_1_RMS_Y_Mod + frf_ol.FFT1_H1_13_1_RMS_Y_Mod + frf_ol.FFT1_H1_16_1_RMS_Y_Mod)./ (2*pi*frf_ol.FFT1_H1_16_1_RMS_X_Val).^2;
d_frf_iff = 10/5*(frf_iff.FFT1_H1_4_1_RMS_Y_Mod + frf_iff.FFT1_H1_7_1_RMS_Y_Mod + frf_iff.FFT1_H1_10_1_RMS_Y_Mod + frf_iff.FFT1_H1_13_1_RMS_Y_Mod + frf_iff.FFT1_H1_16_1_RMS_Y_Mod)./ (2*pi*frf_iff.FFT1_H1_16_1_RMS_X_Val).^2;
#+end_src
The vertical compliance (magnitude of the transfer function from a vertical force applied on the top plate to the vertical motion of the top plate) is shown in Figure [[fig:compliance_vertical_comp_iff ]].
#+begin_src matlab :exports none
figure;
hold on;
plot(frf_ol.FFT1_H1_16_1_RMS_X_Val, d_frf_ol, 'DisplayName', 'OL');
plot(frf_iff.FFT1_H1_16_1_RMS_X_Val, d_frf_iff, 'DisplayName', 'IFF');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Vertical Compliance [$m/N$]');
xlim([20, 2e3]); ylim([2e-9, 2e-5]);
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/compliance_vertical_comp_iff.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name : fig:compliance_vertical_comp_iff
#+caption : Measured vertical compliance with and without IFF
#+RESULTS :
[[file:figs/compliance_vertical_comp_iff.png ]]
#+begin_important
From Figure [[fig:compliance_vertical_comp_iff ]], it is clear that the IFF control strategy is very effective in damping the suspensions modes of the nano-hexapode.
It also has the effect of degrading (slightly) the vertical compliance at low frequency.
2021-06-14 18:08:46 +02:00
It also seems some damping can be added to the modes at around 205Hz which are flexible modes of the struts.
2021-06-14 17:29:28 +02:00
#+end_important
*** Comparison with the Simscape Model
Let's now compare the measured vertical compliance with the vertical compliance as estimated from the Simscape model.
The transfer function from a vertical external force to the absolute motion of the top platform is identified (with and without IFF) using the Simscape model.
#+begin_src matlab :exports none
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fz_ext'], 1, 'openinput'); io_i = io_i + 1; % External - Vertical force
io(io_i) = linio([mdl, '/Z_top_plat'], 1, 'openoutput'); io_i = io_i + 1; % Absolute vertical motion of top platform
%% Initialize Nano-Hexapod in Open Loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
G_compl_z_ol = linearize(mdl, io, 0.0, options);
%% Initialize Nano-Hexapod with IFF
Kiff = 400*(1/(s + 2*pi*40))* ... % Low pass filter (provides integral action above 40Hz)
(s/(s + 2*pi*30))* ... % High pass filter to limit low frequency gain
(1/(1 + s/2/pi/500))*... % Low pass filter to be more robust to high frequency resonances
eye(6); % Diagonal 6x6 controller
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');
G_compl_z_iff = linearize(mdl, io, 0.0, options);
#+end_src
The comparison is done in Figure [[fig:compliance_vertical_comp_model_iff ]].
2021-06-14 18:08:46 +02:00
Again, the model is quite accurate!
2021-06-14 17:29:28 +02:00
#+begin_src matlab :exports none
%% Comparison of the measured compliance and the one obtained from the model
freqs = 2*logspace(1,3,1000);
figure;
hold on;
plot(frf_ol.FFT1_H1_16_1_RMS_X_Val, d_frf_ol, '-', 'DisplayName', 'OL - Meas.');
plot(frf_iff.FFT1_H1_16_1_RMS_X_Val, d_frf_iff, '-', 'DisplayName', 'IFF - Meas.');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G_compl_z_ol, freqs, 'Hz'))), '--', 'DisplayName', 'OL - Model')
plot(freqs, abs(squeeze(freqresp(G_compl_z_iff, freqs, 'Hz'))), '--', 'DisplayName', 'IFF - Model')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Vertical Compliance [$m/N$]');
xlim([20, 2e3]); ylim([2e-9, 2e-5]);
legend('location', 'northeast', 'FontSize', 8);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/compliance_vertical_comp_model_iff.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name : fig:compliance_vertical_comp_model_iff
#+caption : Measured vertical compliance with and without IFF
#+RESULTS :
[[file:figs/compliance_vertical_comp_model_iff.png ]]
*** Obtained Mode Shapes
Then, several excitation are performed using the instrumented Hammer and the mode shapes are extracted.
We can observe the mode shapes of the first 6 modes that are the suspension modes (the plate is behaving as a solid body) in Figure [[fig:mode_shapes_annotated ]].
#+name : fig:mode_shapes_annotated
#+caption : Measured mode shapes for the first six modes
#+attr_latex : :width \linewidth
[[file:figs/mode_shapes_annotated.gif ]]
Then, there is a mode at 692Hz which corresponds to a flexible mode of the top plate (Figure [[fig:mode_shapes_annotated ]]).
#+name : fig:mode_shapes_annotated
#+caption : First flexible mode at 692Hz
#+attr_latex : :width 0.3\linewidth
[[file:figs/ModeShapeFlex1_crop.gif ]]
The obtained modes are summarized in Table [[tab:description_modes ]].
#+name : tab:description_modes
#+caption : Description of the identified modes
#+attr_latex : :environment tabularx :width 0.7\linewidth :align ccX
#+attr_latex : :center t :booktabs t :float t
| Mode | Freq. [Hz] | Description |
|------+------------+----------------------------------------------|
| 1 | 105 | Suspension Mode: Y-translation |
| 2 | 107 | Suspension Mode: X-translation |
| 3 | 131 | Suspension Mode: Z-translation |
| 4 | 161 | Suspension Mode: Y-tilt |
| 5 | 162 | Suspension Mode: X-tilt |
| 6 | 180 | Suspension Mode: Z-rotation |
| 7 | 692 | (flexible) Membrane mode of the top platform |
2021-06-09 18:14:45 +02:00
* Encoders fixed to the plates
2021-06-14 18:08:46 +02:00
<<sec:encoders_plates >>
2021-06-09 18:14:45 +02:00
** Introduction :ignore: