test-bench-force-sensor/index.html

737 lines
24 KiB
HTML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-11-12 jeu. 10:16 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Piezoelectric Force Sensor - Test Bench</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Piezoelectric Force Sensor - Test Bench</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org99cbc3b">1. Change of Stiffness due to Sensors stack being open/closed circuit</a>
<ul>
<li><a href="#org8df2126">1.1. Load Data</a></li>
<li><a href="#orgd97a936">1.2. Transfer Functions</a></li>
</ul>
</li>
<li><a href="#orgd9adefa">2. Effect of a Resistor in Parallel with the Stack Sensor</a>
<ul>
<li><a href="#org6cc7b78">2.1. Excitation steps and measured generated voltage</a></li>
<li><a href="#orga1cd4c0">2.2. Estimation of the voltage offset and discharge time constant</a></li>
<li><a href="#orge8fa34a">2.3. Estimation of the ADC input impedance</a></li>
<li><a href="#org96db33c">2.4. Explanation of the Voltage offset</a></li>
<li><a href="#orgf987e1d">2.5. Effect of an additional Parallel Resistor</a></li>
<li><a href="#org1bfcf07">2.6. Obtained voltage offset and time constant with the added resistor</a></li>
</ul>
</li>
<li><a href="#orge72ac2b">3. Generated Number of Charge / Voltage</a>
<ul>
<li><a href="#orgd28174f">3.1. Data Loading</a></li>
<li><a href="#orgd39b262">3.2. Excitation signal and corresponding displacement</a></li>
<li><a href="#org0aaf282">3.3. Generated Voltage</a></li>
<li><a href="#orgb349423">3.4. Generated Charge</a></li>
<li><a href="#org16c85ae">3.5. Generated Voltage/Charge as a function of the displacement</a></li>
</ul>
</li>
</ul>
</div>
</div>
<p>
In this document is studied how a piezoelectric stack can be used to measured the force.
</p>
<p>
It is divided in the following sections:
</p>
<ul class="org-ul">
<li>Section <a href="#org3d57e4e">1</a>: the effect of the input impedance of the electronics connected to the force sensor stack on the stiffness of the stack is studied</li>
<li>Section <a href="#org915df51">2</a>: the effect of a resistor in parallel with the sensor stack is studied</li>
<li>Section <a href="#org50b540e">3</a>: the voltage / number of charge generated by the sensor as a function of the displacement is measured</li>
</ul>
<div id="outline-container-org99cbc3b" class="outline-2">
<h2 id="org99cbc3b"><span class="section-number-2">1</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org3d57e4e"></a>
</p>
<p>
The experimental Setup is schematically represented in Figure <a href="#org284a4f0">1</a>.
</p>
<p>
The dynamics from the voltage \(u\) used to drive the actuator stacks to the encoder displacement \(d_e\) is identified when the switch connected to the sensor stack is either open or closed.
</p>
<div id="org284a4f0" class="figure">
<p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Schematic of the Experiment</p>
</div>
<p>
When the switch is opened, this correspond of having a measurement electronics with an high input impedance such as a <b>voltage</b> amplifier.
When the switch is closed, this correspond of having a measurement electronics with an small input impedance such as a <b>charge</b> amplifier.
</p>
<p>
We wish here to see how the system dynamics is changing in the two extreme cases.
</p>
<div class="note" id="org2dcec72">
<p>
The equipment used in the test bench are:
</p>
<ul class="org-ul">
<li>Renishaw Resolution Encoder with 1nm resolution (<a href="doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf">doc</a>)</li>
<li>Cedrat Amplified Piezoelectric Actuator APA95ML (<a href="doc/APA95ML.pdf">doc</a>)</li>
<li>Voltage Amplifier LA75B (<a href="doc/LA75B.pdf">doc</a>)</li>
<li>Speedgoat IO131 with 16bits ADC and DAC (<a href="doc/IO130 IO131 OEM Datasheet.pdf">doc</a>)</li>
</ul>
</div>
</div>
<div id="outline-container-org8df2126" class="outline-3">
<h3 id="org8df2126"><span class="section-number-3">1.1</span> Load Data</h3>
<div class="outline-text-3" id="text-1-1">
<div class="org-src-container">
<pre class="src src-matlab">oc = load(<span class="org-string">'identification_open_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
sc = load(<span class="org-string">'identification_short_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-orgd97a936" class="outline-3">
<h3 id="orgd97a936"><span class="section-number-3">1.2</span> Transfer Functions</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
win = hann(ceil(10<span class="org-type">/</span>Ts));
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">[tf_oc_est, f] = tfestimate(oc.u, oc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
[co_oc_est, <span class="org-type">~</span>] = mscohere( oc.u, oc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
[tf_sc_est, <span class="org-type">~</span>] = tfestimate(sc.u, sc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
[co_sc_est, <span class="org-type">~</span>] = mscohere( sc.u, sc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
</pre>
</div>
<div id="org559e474" class="figure">
<p><img src="figs/stiffness_force_sensor_coherence.png" alt="stiffness_force_sensor_coherence.png" />
</p>
</div>
<div id="org986b204" class="figure">
<p><img src="figs/stiffness_force_sensor_bode.png" alt="stiffness_force_sensor_bode.png" />
</p>
</div>
<div id="org62eed17" class="figure">
<p><img src="figs/stiffness_force_sensor_bode_zoom.png" alt="stiffness_force_sensor_bode_zoom.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Zoom on the change of resonance</p>
</div>
<div class="important" id="orgd5a860c">
<p>
The change of resonance frequency / stiffness is very small and is not important here.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgd9adefa" class="outline-2">
<h2 id="orgd9adefa"><span class="section-number-2">2</span> Effect of a Resistor in Parallel with the Stack Sensor</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="org915df51"></a>
</p>
<p>
The setup is shown in Figure <a href="#orgee79898">5</a> where two stacks are used as actuator (in parallel) and one stack is used as sensor.
The voltage amplifier used has a gain of 20 [V/V] (Cedrat LA75B).
</p>
<div id="orgee79898" class="figure">
<p><img src="figs/force_sensor_setup.png" alt="force_sensor_setup.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Schematic of the setup</p>
</div>
<div class="note" id="org61996ca">
<p>
The equipment used in the test bench are:
</p>
<ul class="org-ul">
<li>Renishaw Resolution Encoder with 1nm resolution (<a href="doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf">doc</a>)</li>
<li>Cedrat Amplified Piezoelectric Actuator APA95ML (<a href="doc/APA95ML.pdf">doc</a>)</li>
<li>Voltage Amplifier LA75B (<a href="doc/LA75B.pdf">doc</a>)</li>
<li>Speedgoat IO131 with 16bits ADC and DAC (<a href="doc/IO130 IO131 OEM Datasheet.pdf">doc</a>)</li>
</ul>
</div>
</div>
<div id="outline-container-org6cc7b78" class="outline-3">
<h3 id="org6cc7b78"><span class="section-number-3">2.1</span> Excitation steps and measured generated voltage</h3>
<div class="outline-text-3" id="text-2-1">
<p>
The measured data is loaded.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_steps.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
</pre>
</div>
<p>
The excitation signal (steps) and measured voltage across the sensor stack are shown in Figure <a href="#orgf9c6d37">6</a>.
</p>
<div id="orgf9c6d37" class="figure">
<p><img src="figs/force_sen_steps_time_domain.png" alt="force_sen_steps_time_domain.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Time domain signal during the 3 actuator voltage steps</p>
</div>
</div>
</div>
<div id="outline-container-orga1cd4c0" class="outline-3">
<h3 id="orga1cd4c0"><span class="section-number-3">2.2</span> Estimation of the voltage offset and discharge time constant</h3>
<div class="outline-text-3" id="text-2-2">
<p>
The measured voltage shows an exponential decay which indicates that the charge across the capacitor formed by the stack is discharging into a resistor.
This corresponds to an RC circuit with a time constant \(\tau = RC\).
</p>
<p>
In order to estimate the time domain, we fit the data with an exponential.
The fit function is:
</p>
<div class="org-src-container">
<pre class="src src-matlab">f = @(b,x) b(1)<span class="org-type">.*</span>exp(b(2)<span class="org-type">.*</span>x) <span class="org-type">+</span> b(3);
</pre>
</div>
<p>
Three steps are performed at the following time intervals:
</p>
<div class="org-src-container">
<pre class="src src-matlab">t_s = [ 2.5, 23;
23.8, 35;
35.8, 50];
</pre>
</div>
<p>
We are interested by the <code>b(2)</code> term, which is the time constant of the exponential.
</p>
<div class="org-src-container">
<pre class="src src-matlab">tau = zeros(size(t_s, 1),1);
V0 = zeros(size(t_s, 1),1);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name">t_i</span> = <span class="org-constant">1:size(t_s, 1)</span>
t_cur = t(t_s(t_i, 1) <span class="org-type">&lt;</span> t <span class="org-type">&amp;</span> t <span class="org-type">&lt;</span> t_s(t_i, 2));
t_cur = t_cur <span class="org-type">-</span> t_cur(1);
y_cur = v(t_s(t_i, 1) <span class="org-type">&lt;</span> t <span class="org-type">&amp;</span> t <span class="org-type">&lt;</span> t_s(t_i, 2));
nrmrsd = @(b) norm(y_cur <span class="org-type">-</span> f(b,t_cur)); <span class="org-comment">% Residual Norm Cost Function</span>
B0 = [0.5, <span class="org-type">-</span>0.15, 2.2]; <span class="org-comment">% Choose Appropriate Initial Estimates</span>
[B,rnrm] = fminsearch(nrmrsd, B0); <span class="org-comment">% Estimate Parameters &#8216;B&#8217;</span>
tau(t_i) = 1<span class="org-type">/</span>B(2);
V0(t_i) = B(3);
<span class="org-keyword">end</span>
</pre>
</div>
<p>
The obtained values are shown below.
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">\(tau\) [s]</th>
<th scope="col" class="org-right">\(V_0\) [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">6.47</td>
<td class="org-right">2.26</td>
</tr>
<tr>
<td class="org-right">6.76</td>
<td class="org-right">2.26</td>
</tr>
<tr>
<td class="org-right">6.49</td>
<td class="org-right">2.25</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="outline-container-orge8fa34a" class="outline-3">
<h3 id="orge8fa34a"><span class="section-number-3">2.3</span> Estimation of the ADC input impedance</h3>
<div class="outline-text-3" id="text-2-3">
<p>
With the capacitance being \(C = 4.4 \mu F\), the internal impedance of the Speedgoat ADC can be computed as follows:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
Rin = abs(mean(tau))<span class="org-type">/</span>Cp;
</pre>
</div>
<pre class="example">
1494100.0
</pre>
<p>
The input impedance of the Speedgoat&rsquo;s ADC should then be close to \(1.5\,M\Omega\) (specified at \(1\,M\Omega\)).
</p>
</div>
</div>
<div id="outline-container-org96db33c" class="outline-3">
<h3 id="org96db33c"><span class="section-number-3">2.4</span> Explanation of the Voltage offset</h3>
<div class="outline-text-3" id="text-2-4">
<p>
As shown in Figure <a href="#orgf9c6d37">6</a>, the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
</p>
<p>
We can explain this offset by looking at the electrical model shown in Figure <a href="#org7c05634">7</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)).
</p>
<p>
The differential amplifier in the Speedgoat has some input bias current \(i_n\) that produces a voltage offset across its own internal resistance.
Note that the impedance of the piezoelectric stack is much larger that that at DC.
</p>
<div id="org7c05634" class="figure">
<p><img src="figs/force_sensor_model_electronics_without_R.png" alt="force_sensor_model_electronics_without_R.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right)</p>
</div>
<p>
The estimated input bias current is then:
</p>
<div class="org-src-container">
<pre class="src src-matlab">in = mean(V0)<span class="org-type">/</span>Rin;
</pre>
</div>
<pre class="example">
1.5119e-06
</pre>
</div>
</div>
<div id="outline-container-orgf987e1d" class="outline-3">
<h3 id="orgf987e1d"><span class="section-number-3">2.5</span> Effect of an additional Parallel Resistor</h3>
<div class="outline-text-3" id="text-2-5">
<p>
Be looking at Figure <a href="#org7c05634">7</a>, we can see that an additional resistor in parallel with \(R_{in}\) would have two effects:
</p>
<ul class="org-ul">
<li>reduce the input voltage offset
\[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]</li>
<li>increase the high pass corner frequency \(f_c\)
\[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
\[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]</li>
</ul>
<p>
If we allow the high pass corner frequency to be equals to 3Hz:
</p>
<div class="org-src-container">
<pre class="src src-matlab">fc = 3;
Ra = Rin<span class="org-type">/</span>(fc<span class="org-type">*</span>Cp<span class="org-type">*</span>Rin <span class="org-type">-</span> 1);
</pre>
</div>
<pre class="example">
79804
</pre>
<p>
With this parallel resistance value, the voltage offset would be:
</p>
<div class="org-src-container">
<pre class="src src-matlab">V_offset = Ra<span class="org-type">*</span>Rin<span class="org-type">/</span>(Ra <span class="org-type">+</span> Rin) <span class="org-type">*</span> in;
</pre>
</div>
<pre class="example">
0.11454
</pre>
<p>
Which is much more acceptable.
</p>
<p>
A resistor \(R_p \approx 100\,k\Omega\) is then added in parallel with the force sensor as shown in Figure <a href="#org435f6c8">8</a>.
</p>
<div id="org435f6c8" class="figure">
<p><img src="figs/force_sensor_model_electronics.png" alt="force_sensor_model_electronics.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with the additional resistor \(R_p\)</p>
</div>
</div>
</div>
<div id="outline-container-org1bfcf07" class="outline-3">
<h3 id="org1bfcf07"><span class="section-number-3">2.6</span> Obtained voltage offset and time constant with the added resistor</h3>
<div class="outline-text-3" id="text-2-6">
<p>
After the resistor is added, the same steps response is performed.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_steps_R_82k7.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
</pre>
</div>
<p>
The results are shown in Figure <a href="#org66a3445">9</a>.
</p>
<div id="org66a3445" class="figure">
<p><img src="figs/force_sen_steps_time_domain_par_R.png" alt="force_sen_steps_time_domain_par_R.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Time domain signal during the actuator voltage steps</p>
</div>
<p>
Three steps are performed at the following time intervals:
</p>
<div class="org-src-container">
<pre class="src src-matlab">t_s = [1.9, 6;
8.5, 13;
15.5, 21;
22.6, 26;
30.0, 36;
37.5, 41;
46.2, 49.5]
</pre>
</div>
<p>
The time constant and voltage offset are again estimated using a fit function.
And indeed, we obtain a much smaller offset voltage and a much faster time constant.
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">\(tau\) [s]</th>
<th scope="col" class="org-right">\(V_0\) [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">0.43</td>
<td class="org-right">0.15</td>
</tr>
<tr>
<td class="org-right">0.45</td>
<td class="org-right">0.16</td>
</tr>
<tr>
<td class="org-right">0.43</td>
<td class="org-right">0.15</td>
</tr>
<tr>
<td class="org-right">0.43</td>
<td class="org-right">0.15</td>
</tr>
<tr>
<td class="org-right">0.45</td>
<td class="org-right">0.15</td>
</tr>
<tr>
<td class="org-right">0.46</td>
<td class="org-right">0.16</td>
</tr>
<tr>
<td class="org-right">0.48</td>
<td class="org-right">0.16</td>
</tr>
</tbody>
</table>
<p>
Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of \(\approx 1\,M\Omega\)):
</p>
<div class="org-src-container">
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
Rin = abs(mean(tau))<span class="org-type">/</span>Cp;
</pre>
</div>
<pre class="example">
101200.0
</pre>
<p>
And we can verify that the bias current estimation stays the same:
</p>
<div class="org-src-container">
<pre class="src src-matlab">in = mean(V0)<span class="org-type">/</span>Rin;
</pre>
</div>
<pre class="example">
1.5305e-06
</pre>
<p>
This validates the model of the ADC and the effectiveness of the added resistor.
</p>
</div>
</div>
</div>
<div id="outline-container-orge72ac2b" class="outline-2">
<h2 id="orge72ac2b"><span class="section-number-2">3</span> Generated Number of Charge / Voltage</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="org50b540e"></a>
</p>
<p>
In this section, we wish to estimate the relation between the displacement performed by the stack actuator and the generated voltage/charge on the sensor stack.
</p>
</div>
<div id="outline-container-orgd28174f" class="outline-3">
<h3 id="orgd28174f"><span class="section-number-3">3.1</span> Data Loading</h3>
<div class="outline-text-3" id="text-3-1">
<p>
The measured data is loaded and the first 25 seconds of data corresponding to transient data are removed.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_sin.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
u = u(t<span class="org-type">&gt;</span>25);
v = v(t<span class="org-type">&gt;</span>25);
encoder = encoder(t<span class="org-type">&gt;</span>25) <span class="org-type">-</span> mean(encoder(t<span class="org-type">&gt;</span>25));
t = t(t<span class="org-type">&gt;</span>25);
</pre>
</div>
</div>
</div>
<div id="outline-container-orgd39b262" class="outline-3">
<h3 id="orgd39b262"><span class="section-number-3">3.2</span> Excitation signal and corresponding displacement</h3>
<div class="outline-text-3" id="text-3-2">
<p>
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#orge3dbfb8">10</a>).
</p>
<div id="orge3dbfb8" class="figure">
<p><img src="figs/force_sensor_sin_u.png" alt="force_sensor_sin_u.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Driving Voltage</p>
</div>
<p>
The corresponding displacement as measured by the encoder is shown in Figure <a href="#orgb0594c1">11</a>.
</p>
<p>
The full stroke is:
</p>
<div class="org-src-container">
<pre class="src src-matlab">max(encoder)<span class="org-type">-</span>min(encoder)
</pre>
</div>
<pre class="example">
5.005e-05
</pre>
<div id="orgb0594c1" class="figure">
<p><img src="figs/force_sensor_sin_encoder.png" alt="force_sensor_sin_encoder.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Encoder measurement</p>
</div>
</div>
</div>
<div id="outline-container-org0aaf282" class="outline-3">
<h3 id="org0aaf282"><span class="section-number-3">3.3</span> Generated Voltage</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The generated voltage by the stack is shown in Figure <a href="#orgc89ecbd">12</a>.
</p>
<div id="orgc89ecbd" class="figure">
<p><img src="figs/force_sensor_sin_stack.png" alt="force_sensor_sin_stack.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Voltage measured on the stack used as a sensor</p>
</div>
</div>
</div>
<div id="outline-container-orgb349423" class="outline-3">
<h3 id="orgb349423"><span class="section-number-3">3.4</span> Generated Charge</h3>
<div class="outline-text-3" id="text-3-4">
<p>
The capacitance of the stack is
</p>
<div class="org-src-container">
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
</pre>
</div>
<p>
The voltage and charge across a capacitor are related through the following equation:
</p>
\begin{equation}
U_C = \frac{Q}{C}
\end{equation}
<p>
where \(U_C\) is the voltage in Volts, \(Q\) the charge in Coulombs and \(C\) the capacitance in Farads.
</p>
<p>
The corresponding generated charge is then shown in Figure <a href="#orgea72e89">13</a>.
</p>
<div id="orgea72e89" class="figure">
<p><img src="figs/force_sensor_sin_charge.png" alt="force_sensor_sin_charge.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Generated Charge</p>
</div>
</div>
</div>
<div id="outline-container-org16c85ae" class="outline-3">
<h3 id="org16c85ae"><span class="section-number-3">3.5</span> Generated Voltage/Charge as a function of the displacement</h3>
<div class="outline-text-3" id="text-3-5">
<p>
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#org2c4050d">14</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">b1 = encoder<span class="org-type">\</span>(v<span class="org-type">-</span>mean(v));
</pre>
</div>
<div id="org2c4050d" class="figure">
<p><img src="figs/force_sensor_linear_relation.png" alt="force_sensor_linear_relation.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Almost linear relation between the relative displacement and the generated voltage</p>
</div>
<p>
With a 16bits ADC, the resolution will then be equals to (in [nm]):
</p>
<div class="org-src-container">
<pre class="src src-matlab">abs((20<span class="org-type">/</span>2<span class="org-type">^</span>16)<span class="org-type">/</span>(b1<span class="org-type">/</span>1e9))
</pre>
</div>
<pre class="example">
3.9838
</pre>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
<div class="csl-bib-body">
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Reza, Moheimani, and Fleming Andrew. 2006. <i>Piezoelectric Transducers for Vibration Control and Damping</i>. London: Springer.</div>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-12 jeu. 10:16</p>
</div>
</body>
</html>