Changed the zoom figure

This commit is contained in:
Thomas Dehaeze 2020-11-10 13:46:22 +01:00
parent 2deaf3b512
commit f61fe73924
7 changed files with 115 additions and 93 deletions

View File

@ -15,7 +15,7 @@
viewBox="0 0 406.60148 227.37745"
sodipodi:docname="exp_setup_schematic.svg"
inkscape:version="1.0.1 (3bc2e813f5, 2020-09-07)"
inkscape:export-filename="/home/thomas/Cloud/thesis/matlab/encoder-test-bench/figs/exp_setup_schematic.png"
inkscape:export-filename="/home/thomas/Cloud/thesis/matlab/test-bench-force-sensor/figs/exp_setup_schematic.png"
inkscape:export-xdpi="252"
inkscape:export-ydpi="252">
<metadata

Before

Width:  |  Height:  |  Size: 218 KiB

After

Width:  |  Height:  |  Size: 218 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 134 KiB

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 92 KiB

After

Width:  |  Height:  |  Size: 102 KiB

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-11-10 mar. 13:41 -->
<!-- 2020-11-10 mar. 13:46 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Piezoelectric Force Sensor - Test Bench</title>
<meta name="generator" content="Org mode" />
@ -34,29 +34,29 @@
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orga887666">1. Change of Stiffness due to Sensors stack being open/closed circuit</a>
<li><a href="#orgc978fd7">1. Change of Stiffness due to Sensors stack being open/closed circuit</a>
<ul>
<li><a href="#org632bb0b">1.1. Load Data</a></li>
<li><a href="#org06862e1">1.2. Transfer Functions</a></li>
<li><a href="#org806a9c3">1.1. Load Data</a></li>
<li><a href="#orgd3a8e11">1.2. Transfer Functions</a></li>
</ul>
</li>
<li><a href="#orgd3fb351">2. Effect of a Resistor in Parallel with the Stack Sensor</a>
<li><a href="#org12cffb3">2. Effect of a Resistor in Parallel with the Stack Sensor</a>
<ul>
<li><a href="#orgf3e29cf">2.1. Excitation steps and measured generated voltage</a></li>
<li><a href="#org93b0595">2.2. Estimation of the voltage offset and discharge time constant</a></li>
<li><a href="#orgc749ef4">2.3. Estimation of the ADC input impedance</a></li>
<li><a href="#org66bf743">2.4. Explanation of the Voltage offset</a></li>
<li><a href="#org3c86684">2.5. Effect of an additional Parallel Resistor</a></li>
<li><a href="#org4ae0b53">2.6. Obtained voltage offset and time constant with the added resistor</a></li>
<li><a href="#org3d3c9c5">2.1. Excitation steps and measured generated voltage</a></li>
<li><a href="#orge91c0f3">2.2. Estimation of the voltage offset and discharge time constant</a></li>
<li><a href="#org45317a1">2.3. Estimation of the ADC input impedance</a></li>
<li><a href="#orgbdebc17">2.4. Explanation of the Voltage offset</a></li>
<li><a href="#orgaf9774b">2.5. Effect of an additional Parallel Resistor</a></li>
<li><a href="#org0931a42">2.6. Obtained voltage offset and time constant with the added resistor</a></li>
</ul>
</li>
<li><a href="#org81c5db6">3. Generated Number of Charge / Voltage</a>
<li><a href="#orgf8de1e8">3. Generated Number of Charge / Voltage</a>
<ul>
<li><a href="#org55eecf7">3.1. Data Loading</a></li>
<li><a href="#org46592d5">3.2. Excitation signal and corresponding displacement</a></li>
<li><a href="#org6e6b1f7">3.3. Generated Voltage</a></li>
<li><a href="#org4ed9610">3.4. Generated Charge</a></li>
<li><a href="#org69bd84e">3.5. Generated Voltage/Charge as a function of the displacement</a></li>
<li><a href="#org1378faa">3.1. Data Loading</a></li>
<li><a href="#org18bda16">3.2. Excitation signal and corresponding displacement</a></li>
<li><a href="#org2647e0c">3.3. Generated Voltage</a></li>
<li><a href="#org74ab9f0">3.4. Generated Charge</a></li>
<li><a href="#org4241ea4">3.5. Generated Voltage/Charge as a function of the displacement</a></li>
</ul>
</li>
</ul>
@ -71,19 +71,19 @@ In this document is studied how a piezoelectric stack can be used to measured th
It is divided in the following sections:
</p>
<ul class="org-ul">
<li>Section <a href="#orgcbe0c6f">1</a>: the effect of the input impedance of the electronics connected to the force sensor stack on the stiffness of the stack is studied</li>
<li>Section <a href="#org72d0a53">2</a>: the effect of a resistor in parallel with the sensor stack is studied</li>
<li>Section <a href="#org22b743e">3</a>: the voltage / number of charge generated by the sensor as a function of the displacement is measured</li>
<li>Section <a href="#orgede3aab">1</a>: the effect of the input impedance of the electronics connected to the force sensor stack on the stiffness of the stack is studied</li>
<li>Section <a href="#orgb1a09bb">2</a>: the effect of a resistor in parallel with the sensor stack is studied</li>
<li>Section <a href="#org49d4bd9">3</a>: the voltage / number of charge generated by the sensor as a function of the displacement is measured</li>
</ul>
<div id="outline-container-orga887666" class="outline-2">
<h2 id="orga887666"><span class="section-number-2">1</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
<div id="outline-container-orgc978fd7" class="outline-2">
<h2 id="orgc978fd7"><span class="section-number-2">1</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="orgcbe0c6f"></a>
<a id="orgede3aab"></a>
</p>
<p>
The experimental Setup is schematically represented in Figure <a href="#org27d7f75">1</a>.
The experimental Setup is schematically represented in Figure <a href="#org874417a">1</a>.
</p>
<p>
@ -91,7 +91,7 @@ The dynamics from the voltage \(u\) used to drive the actuator stacks to the enc
</p>
<div id="org27d7f75" class="figure">
<div id="org874417a" class="figure">
<p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Schematic of the Experiment</p>
@ -106,7 +106,7 @@ When the switch is closed, this correspond of having a measurement electronics w
We wish here to see how the system dynamics is changing in the two extreme cases.
</p>
<div class="note" id="org4171ed0">
<div class="note" id="orgdfeaa4d">
<p>
The equipment used in the test bench are:
</p>
@ -120,8 +120,8 @@ The equipment used in the test bench are:
</div>
</div>
<div id="outline-container-org632bb0b" class="outline-3">
<h3 id="org632bb0b"><span class="section-number-3">1.1</span> Load Data</h3>
<div id="outline-container-org806a9c3" class="outline-3">
<h3 id="org806a9c3"><span class="section-number-3">1.1</span> Load Data</h3>
<div class="outline-text-3" id="text-1-1">
<div class="org-src-container">
<pre class="src src-matlab">oc = load(<span class="org-string">'identification_open_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
@ -131,8 +131,8 @@ sc = load(<span class="org-string">'identification_short_circuit.mat'</span>, <s
</div>
</div>
<div id="outline-container-org06862e1" class="outline-3">
<h3 id="org06862e1"><span class="section-number-3">1.2</span> Transfer Functions</h3>
<div id="outline-container-orgd3a8e11" class="outline-3">
<h3 id="orgd3a8e11"><span class="section-number-3">1.2</span> Transfer Functions</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
@ -150,26 +150,25 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
</div>
<div id="orgaafdea3" class="figure">
<div id="orga9fdab5" class="figure">
<p><img src="figs/stiffness_force_sensor_coherence.png" alt="stiffness_force_sensor_coherence.png" />
</p>
</div>
<div id="orgc2be608" class="figure">
<div id="org1ce5c9d" class="figure">
<p><img src="figs/stiffness_force_sensor_bode.png" alt="stiffness_force_sensor_bode.png" />
</p>
</div>
<div id="org59bf971" class="figure">
<div id="org2d932e9" class="figure">
<p><img src="figs/stiffness_force_sensor_bode_zoom.png" alt="stiffness_force_sensor_bode_zoom.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Zoom on the change of resonance</p>
</div>
<div class="important" id="org2d5ecc1">
<div class="important" id="org284d89a">
<p>
The change of resonance frequency / stiffness is very small and is not important here.
</p>
@ -179,25 +178,25 @@ The change of resonance frequency / stiffness is very small and is not important
</div>
</div>
<div id="outline-container-orgd3fb351" class="outline-2">
<h2 id="orgd3fb351"><span class="section-number-2">2</span> Effect of a Resistor in Parallel with the Stack Sensor</h2>
<div id="outline-container-org12cffb3" class="outline-2">
<h2 id="org12cffb3"><span class="section-number-2">2</span> Effect of a Resistor in Parallel with the Stack Sensor</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="org72d0a53"></a>
<a id="orgb1a09bb"></a>
</p>
<p>
The setup is shown in Figure <a href="#org21d0104">5</a> where two stacks are used as actuator (in parallel) and one stack is used as sensor.
The setup is shown in Figure <a href="#orgfcaafb7">5</a> where two stacks are used as actuator (in parallel) and one stack is used as sensor.
The voltage amplifier used has a gain of 20 [V/V] (Cedrat LA75B).
</p>
<div id="org21d0104" class="figure">
<div id="orgfcaafb7" class="figure">
<p><img src="figs/force_sensor_setup.png" alt="force_sensor_setup.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Schematic of the setup</p>
</div>
<div class="note" id="orgdd0ed7a">
<div class="note" id="org3904317">
<p>
The equipment used in the test bench are:
</p>
@ -211,8 +210,8 @@ The equipment used in the test bench are:
</div>
</div>
<div id="outline-container-orgf3e29cf" class="outline-3">
<h3 id="orgf3e29cf"><span class="section-number-3">2.1</span> Excitation steps and measured generated voltage</h3>
<div id="outline-container-org3d3c9c5" class="outline-3">
<h3 id="org3d3c9c5"><span class="section-number-3">2.1</span> Excitation steps and measured generated voltage</h3>
<div class="outline-text-3" id="text-2-1">
<p>
The measured data is loaded.
@ -223,10 +222,10 @@ The measured data is loaded.
</div>
<p>
The excitation signal (steps) and measured voltage across the sensor stack are shown in Figure <a href="#org8a7c66b">6</a>.
The excitation signal (steps) and measured voltage across the sensor stack are shown in Figure <a href="#orgbed6888">6</a>.
</p>
<div id="org8a7c66b" class="figure">
<div id="orgbed6888" class="figure">
<p><img src="figs/force_sen_steps_time_domain.png" alt="force_sen_steps_time_domain.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Time domain signal during the 3 actuator voltage steps</p>
@ -234,8 +233,8 @@ The excitation signal (steps) and measured voltage across the sensor stack are s
</div>
</div>
<div id="outline-container-org93b0595" class="outline-3">
<h3 id="org93b0595"><span class="section-number-3">2.2</span> Estimation of the voltage offset and discharge time constant</h3>
<div id="outline-container-orge91c0f3" class="outline-3">
<h3 id="orge91c0f3"><span class="section-number-3">2.2</span> Estimation of the voltage offset and discharge time constant</h3>
<div class="outline-text-3" id="text-2-2">
<p>
The measured voltage shows an exponential decay which indicates that the charge across the capacitor formed by the stack is discharging into a resistor.
@ -324,8 +323,8 @@ The obtained values are shown below.
</div>
</div>
<div id="outline-container-orgc749ef4" class="outline-3">
<h3 id="orgc749ef4"><span class="section-number-3">2.3</span> Estimation of the ADC input impedance</h3>
<div id="outline-container-org45317a1" class="outline-3">
<h3 id="org45317a1"><span class="section-number-3">2.3</span> Estimation of the ADC input impedance</h3>
<div class="outline-text-3" id="text-2-3">
<p>
With the capacitance being \(C = 4.4 \mu F\), the internal impedance of the Speedgoat ADC can be computed as follows:
@ -347,15 +346,15 @@ The input impedance of the Speedgoat&rsquo;s ADC should then be close to \(1.5\,
</div>
</div>
<div id="outline-container-org66bf743" class="outline-3">
<h3 id="org66bf743"><span class="section-number-3">2.4</span> Explanation of the Voltage offset</h3>
<div id="outline-container-orgbdebc17" class="outline-3">
<h3 id="orgbdebc17"><span class="section-number-3">2.4</span> Explanation of the Voltage offset</h3>
<div class="outline-text-3" id="text-2-4">
<p>
As shown in Figure <a href="#org8a7c66b">6</a>, the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
As shown in Figure <a href="#orgbed6888">6</a>, the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
</p>
<p>
We can explain this offset by looking at the electrical model shown in Figure <a href="#orgc43b1a9">7</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)).
We can explain this offset by looking at the electrical model shown in Figure <a href="#orgb1098d2">7</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)).
</p>
<p>
@ -364,7 +363,7 @@ Note that the impedance of the piezoelectric stack is much larger that that at D
</p>
<div id="orgc43b1a9" class="figure">
<div id="orgb1098d2" class="figure">
<p><img src="figs/force_sensor_model_electronics_without_R.png" alt="force_sensor_model_electronics_without_R.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right)</p>
@ -384,11 +383,11 @@ The estimated input bias current is then:
</div>
</div>
<div id="outline-container-org3c86684" class="outline-3">
<h3 id="org3c86684"><span class="section-number-3">2.5</span> Effect of an additional Parallel Resistor</h3>
<div id="outline-container-orgaf9774b" class="outline-3">
<h3 id="orgaf9774b"><span class="section-number-3">2.5</span> Effect of an additional Parallel Resistor</h3>
<div class="outline-text-3" id="text-2-5">
<p>
Be looking at Figure <a href="#orgc43b1a9">7</a>, we can see that an additional resistor in parallel with \(R_{in}\) would have two effects:
Be looking at Figure <a href="#orgb1098d2">7</a>, we can see that an additional resistor in parallel with \(R_{in}\) would have two effects:
</p>
<ul class="org-ul">
<li>reduce the input voltage offset
@ -431,11 +430,11 @@ Which is much more acceptable.
<p>
A resistor \(R_p \approx 100\,k\Omega\) is then added in parallel with the force sensor as shown in Figure <a href="#org98410d2">8</a>.
A resistor \(R_p \approx 100\,k\Omega\) is then added in parallel with the force sensor as shown in Figure <a href="#orga7065ec">8</a>.
</p>
<div id="org98410d2" class="figure">
<div id="orga7065ec" class="figure">
<p><img src="figs/force_sensor_model_electronics.png" alt="force_sensor_model_electronics.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with the additional resistor \(R_p\)</p>
@ -443,8 +442,8 @@ A resistor \(R_p \approx 100\,k\Omega\) is then added in parallel with the force
</div>
</div>
<div id="outline-container-org4ae0b53" class="outline-3">
<h3 id="org4ae0b53"><span class="section-number-3">2.6</span> Obtained voltage offset and time constant with the added resistor</h3>
<div id="outline-container-org0931a42" class="outline-3">
<h3 id="org0931a42"><span class="section-number-3">2.6</span> Obtained voltage offset and time constant with the added resistor</h3>
<div class="outline-text-3" id="text-2-6">
<p>
After the resistor is added, the same steps response is performed.
@ -456,11 +455,11 @@ After the resistor is added, the same steps response is performed.
</div>
<p>
The results are shown in Figure <a href="#org3c913c7">9</a>.
The results are shown in Figure <a href="#org162f5d0">9</a>.
</p>
<div id="org3c913c7" class="figure">
<div id="org162f5d0" class="figure">
<p><img src="figs/force_sen_steps_time_domain_par_R.png" alt="force_sen_steps_time_domain_par_R.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Time domain signal during the actuator voltage steps</p>
@ -572,19 +571,19 @@ This validates the model of the ADC and the effectiveness of the added resistor.
</div>
</div>
<div id="outline-container-org81c5db6" class="outline-2">
<h2 id="org81c5db6"><span class="section-number-2">3</span> Generated Number of Charge / Voltage</h2>
<div id="outline-container-orgf8de1e8" class="outline-2">
<h2 id="orgf8de1e8"><span class="section-number-2">3</span> Generated Number of Charge / Voltage</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="org22b743e"></a>
<a id="org49d4bd9"></a>
</p>
<p>
In this section, we wish to estimate the relation between the displacement performed by the stack actuator and the generated voltage/charge on the sensor stack.
</p>
</div>
<div id="outline-container-org55eecf7" class="outline-3">
<h3 id="org55eecf7"><span class="section-number-3">3.1</span> Data Loading</h3>
<div id="outline-container-org1378faa" class="outline-3">
<h3 id="org1378faa"><span class="section-number-3">3.1</span> Data Loading</h3>
<div class="outline-text-3" id="text-3-1">
<p>
The measured data is loaded and the first 25 seconds of data corresponding to transient data are removed.
@ -602,22 +601,22 @@ t = t(t<span class="org-type">&gt;</span>25);
</div>
</div>
<div id="outline-container-org46592d5" class="outline-3">
<h3 id="org46592d5"><span class="section-number-3">3.2</span> Excitation signal and corresponding displacement</h3>
<div id="outline-container-org18bda16" class="outline-3">
<h3 id="org18bda16"><span class="section-number-3">3.2</span> Excitation signal and corresponding displacement</h3>
<div class="outline-text-3" id="text-3-2">
<p>
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#org4706469">10</a>).
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#org2ddf80f">10</a>).
</p>
<div id="org4706469" class="figure">
<div id="org2ddf80f" class="figure">
<p><img src="figs/force_sensor_sin_u.png" alt="force_sensor_sin_u.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Driving Voltage</p>
</div>
<p>
The corresponding displacement as measured by the encoder is shown in Figure <a href="#org1d38208">11</a>.
The corresponding displacement as measured by the encoder is shown in Figure <a href="#org7dd9b3b">11</a>.
</p>
<p>
@ -634,7 +633,7 @@ The full stroke is:
<div id="org1d38208" class="figure">
<div id="org7dd9b3b" class="figure">
<p><img src="figs/force_sensor_sin_encoder.png" alt="force_sensor_sin_encoder.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Encoder measurement</p>
@ -642,15 +641,15 @@ The full stroke is:
</div>
</div>
<div id="outline-container-org6e6b1f7" class="outline-3">
<h3 id="org6e6b1f7"><span class="section-number-3">3.3</span> Generated Voltage</h3>
<div id="outline-container-org2647e0c" class="outline-3">
<h3 id="org2647e0c"><span class="section-number-3">3.3</span> Generated Voltage</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The generated voltage by the stack is shown in Figure <a href="#org267434e">12</a>.
The generated voltage by the stack is shown in Figure <a href="#orga623ff4">12</a>.
</p>
<div id="org267434e" class="figure">
<div id="orga623ff4" class="figure">
<p><img src="figs/force_sensor_sin_stack.png" alt="force_sensor_sin_stack.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Voltage measured on the stack used as a sensor</p>
@ -658,8 +657,8 @@ The generated voltage by the stack is shown in Figure <a href="#org267434e">12</
</div>
</div>
<div id="outline-container-org4ed9610" class="outline-3">
<h3 id="org4ed9610"><span class="section-number-3">3.4</span> Generated Charge</h3>
<div id="outline-container-org74ab9f0" class="outline-3">
<h3 id="org74ab9f0"><span class="section-number-3">3.4</span> Generated Charge</h3>
<div class="outline-text-3" id="text-3-4">
<p>
The capacitance of the stack is
@ -681,11 +680,11 @@ where \(U_C\) is the voltage in Volts, \(Q\) the charge in Coulombs and \(C\) th
<p>
The corresponding generated charge is then shown in Figure <a href="#org0331333">13</a>.
The corresponding generated charge is then shown in Figure <a href="#orgcf66ed5">13</a>.
</p>
<div id="org0331333" class="figure">
<div id="orgcf66ed5" class="figure">
<p><img src="figs/force_sensor_sin_charge.png" alt="force_sensor_sin_charge.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Generated Charge</p>
@ -693,11 +692,11 @@ The corresponding generated charge is then shown in Figure <a href="#org0331333"
</div>
</div>
<div id="outline-container-org69bd84e" class="outline-3">
<h3 id="org69bd84e"><span class="section-number-3">3.5</span> Generated Voltage/Charge as a function of the displacement</h3>
<div id="outline-container-org4241ea4" class="outline-3">
<h3 id="org4241ea4"><span class="section-number-3">3.5</span> Generated Voltage/Charge as a function of the displacement</h3>
<div class="outline-text-3" id="text-3-5">
<p>
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#org6b7aee0">14</a>.
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#org2f61fcf">14</a>.
</p>
<div class="org-src-container">
@ -706,7 +705,7 @@ The relation between the generated voltage and the measured displacement is almo
</div>
<div id="org6b7aee0" class="figure">
<div id="org2f61fcf" class="figure">
<p><img src="figs/force_sensor_linear_relation.png" alt="force_sensor_linear_relation.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Almost linear relation between the relative displacement and the generated voltage</p>
@ -735,7 +734,7 @@ With a 16bits ADC, the resolution will then be equals to (in [nm]):
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-10 mar. 13:41</p>
<p class="date">Created: 2020-11-10 mar. 13:46</p>
</div>
</body>
</html>

View File

@ -128,12 +128,11 @@ The equipment used in the test bench are:
#+RESULTS:
[[file:figs/stiffness_force_sensor_coherence.png]]
#+begin_src matlab :exports none
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_oc_est), '-', 'DisplayName', 'Open-Circuit')
plot(f, abs(tf_sc_est), '-', 'DisplayName', 'Short-Circuit')
@ -166,9 +165,33 @@ The equipment used in the test bench are:
#+RESULTS:
[[file:figs/stiffness_force_sensor_bode.png]]
#+begin_src matlab :exports none
figure;
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(f, abs(tf_oc_est), '-', 'DisplayName', 'Open-Circuit')
plot(f, abs(tf_sc_est), '-', 'DisplayName', 'Short-Circuit')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
hold off;
xlim([200, 280]);
legend('location', 'southwest');
ax3 = nexttile;
hold on;
plot(f, abs(tf_oc_est), '-', 'DisplayName', 'Open-Circuit')
plot(f, abs(tf_sc_est), '-', 'DisplayName', 'Short-Circuit')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
hold off;
xlim([800, 950]);
legend('location', 'southwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
xlim([180, 280]);
exportFig('figs/stiffness_force_sensor_bode_zoom.pdf', 'width', 'small', 'height', 'tall');
exportFig('figs/stiffness_force_sensor_bode_zoom.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:stiffness_force_sensor_bode_zoom