Initial Commit

This commit is contained in:
2020-11-10 12:55:51 +01:00
commit bd06f66a2a
51 changed files with 9764 additions and 0 deletions

View File

@@ -0,0 +1,330 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Steps
load('force_sensor_steps.mat', 't', 'encoder', 'u', 'v');
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
nexttile;
plot(t, v);
xlabel('Time [s]'); ylabel('Measured voltage [V]');
nexttile;
plot(t, u);
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
% #+name: fig:force_sen_steps_time_domain
% #+caption: Time domain signal during the 3 actuator voltage steps
% #+RESULTS:
% [[file:figs/force_sen_steps_time_domain.png]]
% Three steps are performed at the following time intervals:
t_s = [ 2.5, 23;
23.8, 35;
35.8, 50];
% Fit function:
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
% We are interested by the =b(2)= term, which is the time constant of the exponential.
tau = zeros(size(t_s, 1),1);
V0 = zeros(size(t_s, 1),1);
for t_i = 1:size(t_s, 1)
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
t_cur = t_cur - t_cur(1);
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters B
tau(t_i) = 1/B(2);
V0(t_i) = B(3);
end
% #+RESULTS:
% | $tau$ [s] | $V_0$ [V] |
% |-----------+-----------|
% | 6.47 | 2.26 |
% | 6.76 | 2.26 |
% | 6.49 | 2.25 |
% With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedgoat ADC can be computed as follows:
Cp = 4.4e-6; % [F]
Rin = abs(mean(tau))/Cp;
ans = Rin
% #+RESULTS:
% : 1494100.0
% The input impedance of the Speedgoat's ADC should then be close to $1.5\,M\Omega$ (specified at $1\,M\Omega$).
% #+begin_important
% How can we explain the voltage offset?
% #+end_important
% As shown in Figure [[fig:force_sensor_model_electronics]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin), an input voltage offset is due to the input bias current $i_n$.
% #+name: fig:force_sensor_model_electronics
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right)
% [[file:figs/force_sensor_model_electronics.png]]
% The estimated input bias current is then:
in = mean(V0)/Rin;
ans = in
% #+RESULTS:
% : 1.5119e-06
% An additional resistor in parallel with $R_{in}$ would have two effects:
% - reduce the input voltage offset
% \[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]
% - increase the high pass corner frequency $f_c$
% \[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
% \[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]
% If we allow the high pass corner frequency to be equals to 3Hz:
fc = 3;
Ra = Rin/(fc*Cp*Rin - 1);
ans = Ra
% #+RESULTS:
% : 79804
% With this parallel resistance value, the voltage offset would be:
V_offset = Ra*Rin/(Ra + Rin) * in;
ans = V_offset
% Add Parallel Resistor
% A resistor $R_p \approx 100\,k\Omega$ is added in parallel with the force sensor as shown in Figure [[fig:force_sensor_model_electronics_without_R]].
% #+name: fig:force_sensor_model_electronics_without_R
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with added resistor $R_p$
% [[file:figs/force_sensor_model_electronics_without_R.png]]
load('force_sensor_steps_R_82k7.mat', 't', 'encoder', 'u', 'v');
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
nexttile;
plot(t, v);
xlabel('Time [s]'); ylabel('Measured voltage [V]');
nexttile;
plot(t, u);
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
% #+name: fig:force_sen_steps_time_domain_par_R
% #+caption: Time domain signal during the actuator voltage steps
% #+RESULTS:
% [[file:figs/force_sen_steps_time_domain_par_R.png]]
% Three steps are performed at the following time intervals:
t_s = [1.9, 6;
8.5, 13;
15.5, 21;
22.6, 26;
30.0, 36;
37.5, 41;
46.2, 49.5]
% Fit function:
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
% We are interested by the =b(2)= term, which is the time constant of the exponential.
tau = zeros(size(t_s, 1),1);
V0 = zeros(size(t_s, 1),1);
for t_i = 1:size(t_s, 1)
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
t_cur = t_cur - t_cur(1);
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
B0 = [0.5, -0.2, 0.2]; % Choose Appropriate Initial Estimates
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters B
tau(t_i) = 1/B(2);
V0(t_i) = B(3);
end
% #+RESULTS:
% | $tau$ [s] | $V_0$ [V] |
% |-----------+-----------|
% | 0.43 | 0.15 |
% | 0.45 | 0.16 |
% | 0.43 | 0.15 |
% | 0.43 | 0.15 |
% | 0.45 | 0.15 |
% | 0.46 | 0.16 |
% | 0.48 | 0.16 |
% Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of $\approx 1\,M\Omega$):
Cp = 4.4e-6; % [F]
Rin = abs(mean(tau))/Cp;
ans = Rin
% #+RESULTS:
% : 101200.0
% And we can verify that the bias current estimation stays the same:
in = mean(V0)/Rin;
ans = in
% Sinus
load('force_sensor_sin.mat', 't', 'encoder', 'u', 'v');
u = u(t>25);
v = v(t>25);
encoder = encoder(t>25) - mean(encoder(t>25));
t = t(t>25);
% The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure [[fig:force_sensor_sin_u]]).
figure;
plot(t, u)
xlabel('Time [s]'); ylabel('Control Voltage [V]');
% #+name: fig:force_sensor_sin_u
% #+caption: Driving Voltage
% #+RESULTS:
% [[file:figs/force_sensor_sin_u.png]]
% The full stroke as measured by the encoder is:
max(encoder)-min(encoder)
% #+RESULTS:
% : 5.005e-05
% Its signal is shown in Figure [[fig:force_sensor_sin_encoder]].
figure;
plot(t, encoder)
xlabel('Time [s]'); ylabel('Encoder [m]');
% #+name: fig:force_sensor_sin_encoder
% #+caption: Encoder measurement
% #+RESULTS:
% [[file:figs/force_sensor_sin_encoder.png]]
% The generated voltage by the stack is shown in Figure
figure;
plot(t, v)
xlabel('Time [s]'); ylabel('Force Sensor Output [V]');
% #+name: fig:force_sensor_sin_stack
% #+caption: Voltage measured on the stack used as a sensor
% #+RESULTS:
% [[file:figs/force_sensor_sin_stack.png]]
% The capacitance of the stack is
Cp = 4.4e-6; % [F]
% The corresponding generated charge is then shown in Figure [[fig:force_sensor_sin_charge]].
figure;
plot(t, 1e6*Cp*(v-mean(v)))
xlabel('Time [s]'); ylabel('Generated Charge [$\mu C$]');
% #+name: fig:force_sensor_sin_charge
% #+caption: Generated Charge
% #+RESULTS:
% [[file:figs/force_sensor_sin_charge.png]]
% The relation between the generated voltage and the measured displacement is almost linear as shown in Figure [[fig:force_sensor_linear_relation]].
b1 = encoder\(v-mean(v));
figure;
hold on;
plot(encoder, v-mean(v), 'DisplayName', 'Measured Voltage');
plot(encoder, encoder*b1, 'DisplayName', sprintf('Linear Fit: $U_s \\approx %.3f [V/\\mu m] \\cdot d$', 1e-6*abs(b1)));
hold off;
xlabel('Measured Displacement [m]'); ylabel('Generated Voltage [V]');
legend();
% #+name: fig:force_sensor_linear_relation
% #+caption: Almost linear relation between the relative displacement and the generated voltage
% #+RESULTS:
% [[file:figs/force_sensor_linear_relation.png]]
% With a 16bits ADC, the resolution will then be equals to (in [nm]):
abs((20/2^16)/(b1/1e9))

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,67 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
oc = load('identification_open_circuit.mat', 't', 'encoder', 'u');
sc = load('identification_short_circuit.mat', 't', 'encoder', 'u');
% Transfer Functions
Ts = 1e-4; % Sampling Time [s]
win = hann(ceil(10/Ts));
[tf_oc_est, f] = tfestimate(oc.u, oc.encoder, win, [], [], 1/Ts);
[co_oc_est, ~] = mscohere( oc.u, oc.encoder, win, [], [], 1/Ts);
[tf_sc_est, ~] = tfestimate(sc.u, sc.encoder, win, [], [], 1/Ts);
[co_sc_est, ~] = mscohere( sc.u, sc.encoder, win, [], [], 1/Ts);
figure;
hold on;
plot(f, co_oc_est, '-')
plot(f, co_sc_est, '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([0.5, 5e3]);
% #+name: fig:stiffness_force_sensor_coherence
% #+caption:
% #+RESULTS:
% [[file:figs/stiffness_force_sensor_coherence.png]]
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(f, abs(tf_oc_est), '-', 'DisplayName', 'Open-Circuit')
plot(f, abs(tf_sc_est), '-', 'DisplayName', 'Short-Circuit')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-7, 3e-4]);
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_oc_est), '-')
plot(f, 180/pi*angle(tf_sc_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
yticks(-360:90:360);
axis padded 'auto x'
linkaxes([ax1,ax2], 'x');
xlim([0.5, 5e3]);

17
matlab/runtest.m Normal file
View File

@@ -0,0 +1,17 @@
tg = slrt;
%%
f = SimulinkRealTime.openFTP(tg);
mget(f, 'int_enc.dat', 'data');
close(f);
%% Convert the Data
data = SimulinkRealTime.utils.getFileScopeData('data/int_enc.dat').data;
interferometer = data(:, 1);
encoder = data(:, 2);
u = data(:, 3);
t = data(:, 4);
save('./mat/int_enc_id_noise_bis.mat', 'interferometer', 'encoder', 'u' , 't');

23
matlab/setup.m Normal file
View File

@@ -0,0 +1,23 @@
%%
s = tf('s');
Ts = 1e-4; % [s]
%% Pre-Filter
G_pf = 1/(1 + s/2/pi/20);
G_pf = c2d(G_pf, Ts, 'tustin');
% %% Force Sensor Filter (HPF)
% Gf_hpf = s/(s + 2*pi*2);
% Gf_hpf = tf(1);
% Gf_hpf = c2d(Gf_hpf, Ts, 'tustin');
%
% %% IFF Controller
% Kiff = 1/(s + 2*pi*2);
% Kiff = c2d(Kiff, Ts, 'tustin');
%
% %% Excitation Signal
Tsim = 100; % Excitation time + Measurement time [s]
t = 0:Ts:Tsim;
u_exc = timeseries(chirp(t, 10, Tsim, 40, 'logarithmic'), t);
% u_exc = timeseries(y_v, t);

Binary file not shown.

Binary file not shown.