Add test / doc / list of sections
This commit is contained in:
parent
73726c1b16
commit
2deaf3b512
BIN
doc/APA95ML.pdf
Normal file
BIN
doc/APA95ML.pdf
Normal file
Binary file not shown.
BIN
doc/IO130 IO131 OEM Datasheet.pdf
Normal file
BIN
doc/IO130 IO131 OEM Datasheet.pdf
Normal file
Binary file not shown.
BIN
doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf
Normal file
BIN
doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf
Normal file
Binary file not shown.
BIN
doc/LA75B.pdf
Normal file
BIN
doc/LA75B.pdf
Normal file
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 76 KiB After Width: | Height: | Size: 64 KiB |
@ -10,9 +10,9 @@
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
version="1.1"
|
||||
id="svg833"
|
||||
width="445.25269"
|
||||
height="309.88138"
|
||||
viewBox="0 0 445.25269 309.88137"
|
||||
width="406.60147"
|
||||
height="227.37746"
|
||||
viewBox="0 0 406.60148 227.37745"
|
||||
sodipodi:docname="exp_setup_schematic.svg"
|
||||
inkscape:version="1.0.1 (3bc2e813f5, 2020-09-07)"
|
||||
inkscape:export-filename="/home/thomas/Cloud/thesis/matlab/encoder-test-bench/figs/exp_setup_schematic.png"
|
||||
@ -188,21 +188,6 @@
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
|
||||
id="path31590" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:collect="always"
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible"
|
||||
id="marker31582"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow2Mend">
|
||||
<path
|
||||
transform="scale(-0.6)"
|
||||
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
|
||||
id="path31580" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible"
|
||||
@ -651,21 +636,6 @@
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
|
||||
id="path9173" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow2Send"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker2864"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path2862"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
|
||||
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
|
||||
transform="matrix(-0.3,0,0,-0.3,0.69,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow2Send"
|
||||
orient="auto"
|
||||
@ -2303,7 +2273,7 @@
|
||||
overflow="visible"
|
||||
id="symbol2922">
|
||||
<path
|
||||
style="stroke:none;"
|
||||
style="stroke:none"
|
||||
d=""
|
||||
id="path4764" />
|
||||
</symbol>
|
||||
@ -2311,56 +2281,56 @@
|
||||
overflow="visible"
|
||||
id="symbol4826">
|
||||
<path
|
||||
style="stroke:none;"
|
||||
d="M 1.359375 -0.78125 C 1.359375 -0.421875 1.328125 -0.3125 0.5625 -0.3125 L 0.328125 -0.3125 L 0.328125 0 L 6.078125 0 L 6.5 -2.578125 L 6.25 -2.578125 C 6 -1.03125 5.765625 -0.3125 4.0625 -0.3125 L 2.734375 -0.3125 C 2.265625 -0.3125 2.25 -0.375 2.25 -0.703125 L 2.25 -3.375 L 3.140625 -3.375 C 4.109375 -3.375 4.21875 -3.046875 4.21875 -2.203125 L 4.46875 -2.203125 L 4.46875 -4.84375 L 4.21875 -4.84375 C 4.21875 -3.984375 4.109375 -3.671875 3.140625 -3.671875 L 2.25 -3.671875 L 2.25 -6.078125 C 2.25 -6.40625 2.265625 -6.46875 2.734375 -6.46875 L 4.015625 -6.46875 C 5.546875 -6.46875 5.8125 -5.921875 5.96875 -4.53125 L 6.21875 -4.53125 L 5.9375 -6.78125 L 0.328125 -6.78125 L 0.328125 -6.46875 L 0.5625 -6.46875 C 1.328125 -6.46875 1.359375 -6.359375 1.359375 -6 Z M 1.359375 -0.78125 "
|
||||
style="stroke:none"
|
||||
d="m 1.359375,-0.78125 c 0,0.359375 -0.03125,0.46875 -0.796875,0.46875 H 0.328125 V 0 h 5.75 L 6.5,-2.578125 H 6.25 C 6,-1.03125 5.765625,-0.3125 4.0625,-0.3125 H 2.734375 C 2.265625,-0.3125 2.25,-0.375 2.25,-0.703125 V -3.375 h 0.890625 c 0.96875,0 1.078125,0.328125 1.078125,1.171875 h 0.25 V -4.84375 h -0.25 c 0,0.859375 -0.109375,1.171875 -1.078125,1.171875 H 2.25 v -2.40625 c 0,-0.328125 0.015625,-0.390625 0.484375,-0.390625 h 1.28125 c 1.53125,0 1.796875,0.546875 1.953125,1.9375 h 0.25 l -0.28125,-2.25 H 0.328125 v 0.3125 H 0.5625 c 0.765625,0 0.796875,0.109375 0.796875,0.46875 z m 0,0"
|
||||
id="path1073" />
|
||||
</symbol>
|
||||
<symbol
|
||||
overflow="visible"
|
||||
id="symbol2159">
|
||||
<path
|
||||
style="stroke:none;"
|
||||
d="M 1.09375 -3.421875 L 1.09375 -0.75 C 1.09375 -0.3125 0.984375 -0.3125 0.3125 -0.3125 L 0.3125 0 C 0.671875 -0.015625 1.171875 -0.03125 1.453125 -0.03125 C 1.703125 -0.03125 2.21875 -0.015625 2.5625 0 L 2.5625 -0.3125 C 1.890625 -0.3125 1.78125 -0.3125 1.78125 -0.75 L 1.78125 -2.59375 C 1.78125 -3.625 2.5 -4.1875 3.125 -4.1875 C 3.765625 -4.1875 3.875 -3.65625 3.875 -3.078125 L 3.875 -0.75 C 3.875 -0.3125 3.765625 -0.3125 3.09375 -0.3125 L 3.09375 0 C 3.4375 -0.015625 3.953125 -0.03125 4.21875 -0.03125 C 4.46875 -0.03125 5 -0.015625 5.328125 0 L 5.328125 -0.3125 C 4.8125 -0.3125 4.5625 -0.3125 4.5625 -0.609375 L 4.5625 -2.515625 C 4.5625 -3.375 4.5625 -3.671875 4.25 -4.03125 C 4.109375 -4.203125 3.78125 -4.40625 3.203125 -4.40625 C 2.46875 -4.40625 2 -3.984375 1.71875 -3.359375 L 1.71875 -4.40625 L 0.3125 -4.296875 L 0.3125 -3.984375 C 1.015625 -3.984375 1.09375 -3.921875 1.09375 -3.421875 Z M 1.09375 -3.421875 "
|
||||
style="stroke:none"
|
||||
d="M 1.09375,-3.421875 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.359375,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.25,0 0.765625,0.015625 1.109375,0.03125 v -0.3125 c -0.671875,0 -0.78125,0 -0.78125,-0.4375 V -2.59375 C 1.78125,-3.625 2.5,-4.1875 3.125,-4.1875 c 0.640625,0 0.75,0.53125 0.75,1.109375 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.34375,-0.015625 0.859375,-0.03125 1.125,-0.03125 0.25,0 0.78125,0.015625 1.109375,0.03125 v -0.3125 c -0.515625,0 -0.765625,0 -0.765625,-0.296875 v -1.90625 c 0,-0.859375 0,-1.15625 -0.3125,-1.515625 -0.140625,-0.171875 -0.46875,-0.375 -1.046875,-0.375 C 2.46875,-4.40625 2,-3.984375 1.71875,-3.359375 V -4.40625 L 0.3125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 z m 0,0"
|
||||
id="path9289" />
|
||||
</symbol>
|
||||
<symbol
|
||||
overflow="visible"
|
||||
id="symbol5760">
|
||||
<path
|
||||
style="stroke:none;"
|
||||
d="M 1.171875 -2.171875 C 1.171875 -3.796875 1.984375 -4.21875 2.515625 -4.21875 C 2.609375 -4.21875 3.234375 -4.203125 3.578125 -3.84375 C 3.171875 -3.8125 3.109375 -3.515625 3.109375 -3.390625 C 3.109375 -3.125 3.296875 -2.9375 3.5625 -2.9375 C 3.828125 -2.9375 4.03125 -3.09375 4.03125 -3.40625 C 4.03125 -4.078125 3.265625 -4.46875 2.5 -4.46875 C 1.25 -4.46875 0.34375 -3.390625 0.34375 -2.15625 C 0.34375 -0.875 1.328125 0.109375 2.484375 0.109375 C 3.8125 0.109375 4.140625 -1.09375 4.140625 -1.1875 C 4.140625 -1.28125 4.03125 -1.28125 4 -1.28125 C 3.921875 -1.28125 3.890625 -1.25 3.875 -1.1875 C 3.59375 -0.265625 2.9375 -0.140625 2.578125 -0.140625 C 2.046875 -0.140625 1.171875 -0.5625 1.171875 -2.171875 Z M 1.171875 -2.171875 "
|
||||
style="stroke:none"
|
||||
d="m 1.171875,-2.171875 c 0,-1.625 0.8125,-2.046875 1.34375,-2.046875 0.09375,0 0.71875,0.015625 1.0625,0.375 -0.40625,0.03125 -0.46875,0.328125 -0.46875,0.453125 0,0.265625 0.1875,0.453125 0.453125,0.453125 0.265625,0 0.46875,-0.15625 0.46875,-0.46875 0,-0.671875 -0.765625,-1.0625 -1.53125,-1.0625 -1.25,0 -2.15625,1.078125 -2.15625,2.3125 0,1.28125 0.984375,2.265625 2.140625,2.265625 1.328125,0 1.65625,-1.203125 1.65625,-1.296875 0,-0.09375 -0.109375,-0.09375 -0.140625,-0.09375 -0.078125,0 -0.109375,0.03125 -0.125,0.09375 -0.28125,0.921875 -0.9375,1.046875 -1.296875,1.046875 -0.53125,0 -1.40625,-0.421875 -1.40625,-2.03125 z m 0,0"
|
||||
id="path577" />
|
||||
</symbol>
|
||||
<symbol
|
||||
overflow="visible"
|
||||
id="symbol4145">
|
||||
<path
|
||||
style="stroke:none;"
|
||||
d="M 4.6875 -2.140625 C 4.6875 -3.40625 3.703125 -4.46875 2.5 -4.46875 C 1.25 -4.46875 0.28125 -3.375 0.28125 -2.140625 C 0.28125 -0.84375 1.3125 0.109375 2.484375 0.109375 C 3.6875 0.109375 4.6875 -0.875 4.6875 -2.140625 Z M 2.5 -0.140625 C 2.0625 -0.140625 1.625 -0.34375 1.359375 -0.8125 C 1.109375 -1.25 1.109375 -1.859375 1.109375 -2.21875 C 1.109375 -2.609375 1.109375 -3.140625 1.34375 -3.578125 C 1.609375 -4.03125 2.078125 -4.25 2.484375 -4.25 C 2.921875 -4.25 3.34375 -4.03125 3.609375 -3.59375 C 3.875 -3.171875 3.875 -2.59375 3.875 -2.21875 C 3.875 -1.859375 3.875 -1.3125 3.65625 -0.875 C 3.421875 -0.421875 2.984375 -0.140625 2.5 -0.140625 Z M 2.5 -0.140625 "
|
||||
style="stroke:none"
|
||||
d="M 4.6875,-2.140625 C 4.6875,-3.40625 3.703125,-4.46875 2.5,-4.46875 c -1.25,0 -2.21875,1.09375 -2.21875,2.328125 0,1.296875 1.03125,2.25 2.203125,2.25 1.203125,0 2.203125,-0.984375 2.203125,-2.25 z m -2.1875,2 c -0.4375,0 -0.875,-0.203125 -1.140625,-0.671875 -0.25,-0.4375 -0.25,-1.046875 -0.25,-1.40625 0,-0.390625 0,-0.921875 0.234375,-1.359375 C 1.609375,-4.03125 2.078125,-4.25 2.484375,-4.25 c 0.4375,0 0.859375,0.21875 1.125,0.65625 0.265625,0.421875 0.265625,1 0.265625,1.375 0,0.359375 0,0.90625 -0.21875,1.34375 C 3.421875,-0.421875 2.984375,-0.140625 2.5,-0.140625 Z m 0,0"
|
||||
id="path4287" />
|
||||
</symbol>
|
||||
<symbol
|
||||
overflow="visible"
|
||||
id="symbol3110">
|
||||
<path
|
||||
style="stroke:none;"
|
||||
d="M 3.78125 -0.546875 L 3.78125 0.109375 L 5.25 0 L 5.25 -0.3125 C 4.5625 -0.3125 4.46875 -0.375 4.46875 -0.875 L 4.46875 -6.921875 L 3.046875 -6.8125 L 3.046875 -6.5 C 3.734375 -6.5 3.8125 -6.4375 3.8125 -5.9375 L 3.8125 -3.78125 C 3.53125 -4.140625 3.09375 -4.40625 2.5625 -4.40625 C 1.390625 -4.40625 0.34375 -3.421875 0.34375 -2.140625 C 0.34375 -0.875 1.3125 0.109375 2.453125 0.109375 C 3.09375 0.109375 3.53125 -0.234375 3.78125 -0.546875 Z M 3.78125 -3.21875 L 3.78125 -1.171875 C 3.78125 -1 3.78125 -0.984375 3.671875 -0.8125 C 3.375 -0.328125 2.9375 -0.109375 2.5 -0.109375 C 2.046875 -0.109375 1.6875 -0.375 1.453125 -0.75 C 1.203125 -1.15625 1.171875 -1.71875 1.171875 -2.140625 C 1.171875 -2.5 1.1875 -3.09375 1.46875 -3.546875 C 1.6875 -3.859375 2.0625 -4.1875 2.609375 -4.1875 C 2.953125 -4.1875 3.375 -4.03125 3.671875 -3.59375 C 3.78125 -3.421875 3.78125 -3.40625 3.78125 -3.21875 Z M 3.78125 -3.21875 "
|
||||
style="stroke:none"
|
||||
d="m 3.78125,-0.546875 v 0.65625 L 5.25,0 v -0.3125 c -0.6875,0 -0.78125,-0.0625 -0.78125,-0.5625 V -6.921875 L 3.046875,-6.8125 V -6.5 c 0.6875,0 0.765625,0.0625 0.765625,0.5625 v 2.15625 c -0.28125,-0.359375 -0.71875,-0.625 -1.25,-0.625 -1.171875,0 -2.21875,0.984375 -2.21875,2.265625 0,1.265625 0.96875,2.25 2.109375,2.25 0.640625,0 1.078125,-0.34375 1.328125,-0.65625 z m 0,-2.671875 v 2.046875 c 0,0.171875 0,0.1875 -0.109375,0.359375 C 3.375,-0.328125 2.9375,-0.109375 2.5,-0.109375 2.046875,-0.109375 1.6875,-0.375 1.453125,-0.75 1.203125,-1.15625 1.171875,-1.71875 1.171875,-2.140625 1.171875,-2.5 1.1875,-3.09375 1.46875,-3.546875 1.6875,-3.859375 2.0625,-4.1875 2.609375,-4.1875 c 0.34375,0 0.765625,0.15625 1.0625,0.59375 0.109375,0.171875 0.109375,0.1875 0.109375,0.375 z m 0,0"
|
||||
id="path9647" />
|
||||
</symbol>
|
||||
<symbol
|
||||
overflow="visible"
|
||||
id="symbol6990">
|
||||
<path
|
||||
style="stroke:none;"
|
||||
d="M 1.109375 -2.515625 C 1.171875 -4 2.015625 -4.25 2.359375 -4.25 C 3.375 -4.25 3.484375 -2.90625 3.484375 -2.515625 Z M 1.109375 -2.296875 L 3.890625 -2.296875 C 4.109375 -2.296875 4.140625 -2.296875 4.140625 -2.515625 C 4.140625 -3.5 3.59375 -4.46875 2.359375 -4.46875 C 1.203125 -4.46875 0.28125 -3.4375 0.28125 -2.1875 C 0.28125 -0.859375 1.328125 0.109375 2.46875 0.109375 C 3.6875 0.109375 4.140625 -1 4.140625 -1.1875 C 4.140625 -1.28125 4.0625 -1.3125 4 -1.3125 C 3.921875 -1.3125 3.890625 -1.25 3.875 -1.171875 C 3.53125 -0.140625 2.625 -0.140625 2.53125 -0.140625 C 2.03125 -0.140625 1.640625 -0.4375 1.40625 -0.8125 C 1.109375 -1.28125 1.109375 -1.9375 1.109375 -2.296875 Z M 1.109375 -2.296875 "
|
||||
style="stroke:none"
|
||||
d="M 1.109375,-2.515625 C 1.171875,-4 2.015625,-4.25 2.359375,-4.25 c 1.015625,0 1.125,1.34375 1.125,1.734375 z m 0,0.21875 h 2.78125 c 0.21875,0 0.25,0 0.25,-0.21875 0,-0.984375 -0.546875,-1.953125 -1.78125,-1.953125 -1.15625,0 -2.078125,1.03125 -2.078125,2.28125 0,1.328125 1.046875,2.296875 2.1875,2.296875 C 3.6875,0.109375 4.140625,-1 4.140625,-1.1875 4.140625,-1.28125 4.0625,-1.3125 4,-1.3125 c -0.078125,0 -0.109375,0.0625 -0.125,0.140625 -0.34375,1.03125 -1.25,1.03125 -1.34375,1.03125 -0.5,0 -0.890625,-0.296875 -1.125,-0.671875 -0.296875,-0.46875 -0.296875,-1.125 -0.296875,-1.484375 z m 0,0"
|
||||
id="path7638" />
|
||||
</symbol>
|
||||
<symbol
|
||||
overflow="visible"
|
||||
id="symbol102">
|
||||
<path
|
||||
style="stroke:none;"
|
||||
d="M 1.671875 -3.3125 L 1.671875 -4.40625 L 0.28125 -4.296875 L 0.28125 -3.984375 C 0.984375 -3.984375 1.0625 -3.921875 1.0625 -3.421875 L 1.0625 -0.75 C 1.0625 -0.3125 0.953125 -0.3125 0.28125 -0.3125 L 0.28125 0 C 0.671875 -0.015625 1.140625 -0.03125 1.421875 -0.03125 C 1.8125 -0.03125 2.28125 -0.03125 2.6875 0 L 2.6875 -0.3125 L 2.46875 -0.3125 C 1.734375 -0.3125 1.71875 -0.421875 1.71875 -0.78125 L 1.71875 -2.3125 C 1.71875 -3.296875 2.140625 -4.1875 2.890625 -4.1875 C 2.953125 -4.1875 2.984375 -4.1875 3 -4.171875 C 2.96875 -4.171875 2.765625 -4.046875 2.765625 -3.78125 C 2.765625 -3.515625 2.984375 -3.359375 3.203125 -3.359375 C 3.375 -3.359375 3.625 -3.484375 3.625 -3.796875 C 3.625 -4.109375 3.3125 -4.40625 2.890625 -4.40625 C 2.15625 -4.40625 1.796875 -3.734375 1.671875 -3.3125 Z M 1.671875 -3.3125 "
|
||||
style="stroke:none"
|
||||
d="M 1.671875,-3.3125 V -4.40625 L 0.28125,-4.296875 v 0.3125 c 0.703125,0 0.78125,0.0625 0.78125,0.5625 V -0.75 c 0,0.4375 -0.109375,0.4375 -0.78125,0.4375 V 0 c 0.390625,-0.015625 0.859375,-0.03125 1.140625,-0.03125 0.390625,0 0.859375,0 1.265625,0.03125 V -0.3125 H 2.46875 c -0.734375,0 -0.75,-0.109375 -0.75,-0.46875 V -2.3125 c 0,-0.984375 0.421875,-1.875 1.171875,-1.875 0.0625,0 0.09375,0 0.109375,0.015625 -0.03125,0 -0.234375,0.125 -0.234375,0.390625 0,0.265625 0.21875,0.421875 0.4375,0.421875 0.171875,0 0.421875,-0.125 0.421875,-0.4375 0,-0.3125 -0.3125,-0.609375 -0.734375,-0.609375 -0.734375,0 -1.09375,0.671875 -1.21875,1.09375 z m 0,0"
|
||||
id="path9919" />
|
||||
</symbol>
|
||||
</g>
|
||||
@ -2380,16 +2350,16 @@
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
inkscape:current-layer="layer4"
|
||||
inkscape:current-layer="layer3"
|
||||
inkscape:window-maximized="1"
|
||||
inkscape:window-y="39"
|
||||
inkscape:window-y="57"
|
||||
inkscape:window-x="12"
|
||||
inkscape:cy="175.13135"
|
||||
inkscape:cx="202.04518"
|
||||
inkscape:cy="121.03458"
|
||||
inkscape:cx="227.31961"
|
||||
inkscape:zoom="2.8284272"
|
||||
showgrid="false"
|
||||
id="namedview835"
|
||||
inkscape:window-height="1389"
|
||||
inkscape:window-height="1371"
|
||||
inkscape:window-width="2536"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:pageopacity="0"
|
||||
@ -2403,7 +2373,7 @@
|
||||
inkscape:snap-smooth-nodes="true"
|
||||
inkscape:snap-midpoints="true" />
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline;opacity:1"
|
||||
id="g841"
|
||||
inkscape:label="Mass"
|
||||
@ -2414,28 +2384,39 @@
|
||||
height="79.375725"
|
||||
width="6.9419894"
|
||||
id="rect4450-2"
|
||||
style="display:inline;fill:#0072bc;fill-opacity:0.360784;fill-rule:evenodd;stroke:none;stroke-width:0.500001;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000" />
|
||||
style="display:inline;fill:#0072bc;fill-opacity:0.360784;fill-rule:evenodd;stroke:none;stroke-width:0.500001;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<rect
|
||||
style="fill:#0072bc;fill-opacity:0.360784;fill-rule:evenodd;stroke:none;stroke-width:0.500001;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
id="rect4450"
|
||||
width="6.9419894"
|
||||
height="79.375725"
|
||||
x="160.63268"
|
||||
y="120.83063" />
|
||||
y="120.83063"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
id="rect1205"
|
||||
style="fill:#000000;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.00157;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stop-color:#000000"
|
||||
d="M 5.53125,18.996094 V 321.31055 H 178.39453 V 18.996094 Z M 16.947266,32.023438 H 167.77539 V 309.35547 H 16.947266 Z" />
|
||||
d="M 5.53125,94.996094 V 321.31055 H 178.39453 V 94.996094 Z M 16.947266,108.02344 H 167.77539 V 309.35547 H 16.947266 Z"
|
||||
sodipodi:nodetypes="cccccccccc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<rect
|
||||
y="120.83063"
|
||||
x="24.021605"
|
||||
height="79.269318"
|
||||
width="136.61108"
|
||||
id="rect939"
|
||||
style="fill:#000000;fill-opacity:0.36;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000" />
|
||||
style="fill:#000000;fill-opacity:0.36;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<g
|
||||
id="g4814"
|
||||
style="fill:#9e9e9e;fill-opacity:1">
|
||||
style="fill:#9e9e9e;fill-opacity:1"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<circle
|
||||
r="3.1455901"
|
||||
cy="125.68189"
|
||||
@ -2481,7 +2462,9 @@
|
||||
</g>
|
||||
<g
|
||||
id="g4823"
|
||||
style="fill:#9e9e9e;fill-opacity:1">
|
||||
style="fill:#9e9e9e;fill-opacity:1"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<circle
|
||||
style="fill:#9e9e9e;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
id="circle1077"
|
||||
@ -2527,169 +2510,167 @@
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline"
|
||||
inkscape:label="APA"
|
||||
id="layer3"
|
||||
inkscape:groupmode="layer">
|
||||
<path
|
||||
style="display:inline;fill:#0072bd;stroke:#000000;stroke-width:1.00157;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 19.501051,248.48118 C 7.4597409,248.29639 -10.03723,242.94823 -18.48451,243.12009"
|
||||
id="path1188-6"
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
d="m 83.449219,200.08398 v 3.08204 H 80.5625 L 23.591797,240.9043 c -1.637268,1.32067 -3.717899,4.97718 -3.990235,6.71484 v 6.99414 6.99414 c 0.272336,1.73766 2.352967,5.39222 3.990235,6.71289 L 80.5625,306.05859 h 2.886719 v 3.08203 h 8.878906 8.876955 v -3.08203 h 2.88672 l 56.9707,-37.73828 c 1.63727,-1.32067 3.7179,-4.97523 3.99023,-6.71289 v -6.99414 -6.99414 c -0.27234,-1.73766 -2.35296,-5.39417 -3.99023,-6.71484 l -56.9707,-37.73828 h -2.88672 v -3.08204 h -8.876955 z m -1.101563,8.71094 h 9.980469 9.980465 l 53.66993,36.06055 v 1.91406 h -4.53907 v 7.84375 7.8418 h 4.53907 v 1.91406 l -53.66993,36.0625 h -9.980465 -9.980469 l -53.671875,-36.0625 v -1.91406 h 4.539063 v -7.8418 -7.84375 h -4.539063 v -1.91406 z"
|
||||
style="fill:#000000;fill-opacity:0.36;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="path845" />
|
||||
id="path845"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<rect
|
||||
y="246.76953"
|
||||
x="33.214844"
|
||||
height="15.685547"
|
||||
width="39.087189"
|
||||
id="rect875"
|
||||
style="fill:#0072bd;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000" />
|
||||
style="fill:#0072bd;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<rect
|
||||
style="fill:#d95218;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
id="rect875-5"
|
||||
width="39.087189"
|
||||
height="15.685547"
|
||||
x="72.302032"
|
||||
y="246.76952" />
|
||||
y="246.76952"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<rect
|
||||
style="fill:#d95218;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
id="rect875-6"
|
||||
width="40.050232"
|
||||
height="15.685562"
|
||||
x="111.38922"
|
||||
y="246.76952" />
|
||||
y="246.76952"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<circle
|
||||
r="2.102088"
|
||||
cy="258.59708"
|
||||
cx="76.53064"
|
||||
id="circle1145"
|
||||
style="fill:#ffffff;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000" />
|
||||
style="fill:#ffffff;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<circle
|
||||
style="fill:#ffffff;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
id="path1141"
|
||||
cx="115.95758"
|
||||
cy="258.59708"
|
||||
r="2.102088" />
|
||||
r="2.102088"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
id="path1188-1-2-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.00157;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 115.88256,258.68674 c -11.6739,2.21375 -27.548596,-0.31541 -39.411633,-0.11186 -11.863037,0.20355 -24.033957,27.31791 -33.198481,27.66884"
|
||||
sodipodi:nodetypes="czc" />
|
||||
sodipodi:nodetypes="czc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<circle
|
||||
r="2.102088"
|
||||
cy="258.35443"
|
||||
cx="37.182087"
|
||||
id="circle1143"
|
||||
style="fill:#ffffff;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000" />
|
||||
style="fill:#ffffff;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1.00157;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 37.063386,258.34636 c -12.041309,-0.18479 -23.986662,3.47376 -32.4339381,3.64562"
|
||||
style="fill:#0072bd;stroke:#000000;stroke-width:1.00157;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 37.063386,258.34636 c -12.041309,-0.18479 -47.10062,-7.39813 -55.547896,-7.22627"
|
||||
id="path1188"
|
||||
sodipodi:nodetypes="cc" />
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<circle
|
||||
r="2.102088"
|
||||
cy="258.59708"
|
||||
cx="115.95758"
|
||||
id="circle1147"
|
||||
style="fill:#ffffff;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000" />
|
||||
style="fill:#ffffff;fill-opacity:0.361354;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;stop-color:#000000"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m -37.54009,250.717 v 5.34691 h 19.05576 v -4.94382"
|
||||
id="path3218"
|
||||
sodipodi:nodetypes="cccc" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m -18.48433,243.12009 v -5.24534 h -19.05576 v 4.6079"
|
||||
id="path3220"
|
||||
sodipodi:nodetypes="cccc" />
|
||||
<circle
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;paint-order:markers fill stroke;stop-color:#000000"
|
||||
id="circle3224"
|
||||
cx="-37.522888"
|
||||
cy="250.88495"
|
||||
r="1.0994899" />
|
||||
<circle
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.002;stroke-linecap:round;stroke-linejoin:round;paint-order:markers fill stroke;stop-color:#000000"
|
||||
id="path3222"
|
||||
cx="-37.53627"
|
||||
cy="242.7222"
|
||||
r="1.0994899" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m -37.54009,250.717 -4.59563,-7.95986"
|
||||
id="path3226" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:10.6667px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';letter-spacing:0px;word-spacing:0px"
|
||||
x="-44.292812"
|
||||
y="233.28917"
|
||||
id="text3230"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3228"
|
||||
x="-44.292812"
|
||||
y="233.28917"
|
||||
style="font-size:10.6667px">Switch</tspan></text>
|
||||
</g>
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline"
|
||||
inkscape:label="Interferometer"
|
||||
id="layer5"
|
||||
inkscape:groupmode="layer">
|
||||
<path
|
||||
style="display:inline;fill:none;stroke:#fe0000;stroke-width:0.7;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 92.361507,34.705219 V 120.00244"
|
||||
id="path32140" />
|
||||
<rect
|
||||
style="display:inline;fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000"
|
||||
id="rect3944"
|
||||
width="8.7006111"
|
||||
height="19.105049"
|
||||
x="88.013573"
|
||||
y="15.723319"
|
||||
rx="0.28769675"
|
||||
ry="0" />
|
||||
<path
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1.00157;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 92.36388,15.723319 C 92.680262,5.6074586 71.508959,25.795815 58.607649,25.795815"
|
||||
id="path1188-1-5"
|
||||
sodipodi:nodetypes="cc" />
|
||||
</g>
|
||||
inkscape:groupmode="layer" />
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline"
|
||||
inkscape:label="Inertial Sensors"
|
||||
id="layer2"
|
||||
inkscape:groupmode="layer" />
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline"
|
||||
inkscape:label="Control"
|
||||
id="layer1"
|
||||
inkscape:groupmode="layer">
|
||||
<rect
|
||||
y="12.429955"
|
||||
x="-195.98674"
|
||||
height="295.94153"
|
||||
width="136.91495"
|
||||
y="205.3092"
|
||||
x="-168.99736"
|
||||
height="116.06357"
|
||||
width="109.92557"
|
||||
id="rect32658"
|
||||
style="fill:#000000;fill-opacity:0.077859;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000" />
|
||||
<g
|
||||
transform="translate(69.293978,52.335204)"
|
||||
id="g32470">
|
||||
<g
|
||||
id="g32222"
|
||||
transform="matrix(3.7795276,0,0,3.7795276,-572.70368,-225.38707)">
|
||||
<g
|
||||
transform="matrix(0.26458333,0,0,0.26458333,132.32352,99.448509)"
|
||||
id="g10537-9">
|
||||
<path
|
||||
id="path9430-8-0"
|
||||
style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000"
|
||||
inkscape:transform-center-x="3.4358697"
|
||||
d="m -94.059313,50.70563 -10.199207,8.438058 10.199207,8.438057 h 28.734381 V 50.70563 Z"
|
||||
sodipodi:nodetypes="cccccc" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
inkscape:label=""
|
||||
transform="translate(-256.30994,131.12294)"
|
||||
id="g9974-88">
|
||||
<g
|
||||
id="g2114-5">
|
||||
<g
|
||||
id="g9743-09"
|
||||
style="fill:#000000;fill-opacity:1">
|
||||
<use
|
||||
height="100%"
|
||||
width="100%"
|
||||
id="use3254-63"
|
||||
y="81.962997"
|
||||
x="91.925003"
|
||||
xlink:href="#symbol9683" />
|
||||
<use
|
||||
height="100%"
|
||||
width="100%"
|
||||
id="use852-8"
|
||||
y="81.962997"
|
||||
x="99.39695"
|
||||
xlink:href="#symbol3334" />
|
||||
<use
|
||||
height="100%"
|
||||
width="100%"
|
||||
id="use7824-56"
|
||||
y="81.962997"
|
||||
x="107.00738"
|
||||
xlink:href="#symbol5395" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
style="fill:#000000;fill-opacity:0.077859;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<g
|
||||
transform="matrix(3.7795276,0,0,3.7795276,-146.20534,80.712679)"
|
||||
id="g32287">
|
||||
id="g32287"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
transform="translate(-95.936032,-62.696092)"
|
||||
id="g32222-6">
|
||||
@ -2755,55 +2736,29 @@
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline"
|
||||
inkscape:label="Wires + Electronics"
|
||||
id="layer6"
|
||||
inkscape:groupmode="layer">
|
||||
<path
|
||||
id="path30332"
|
||||
d="M -43.364384,261.9506 H -67.095843"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker31582)"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-start:url(#Arrow2Mstart)"
|
||||
d="M -17.171959,261.99198 H 4.6294479"
|
||||
id="path8013" />
|
||||
<path
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m -20.611506,286.24371 63.883952,10e-6"
|
||||
id="path8021"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<g
|
||||
transform="translate(3.0833787)"
|
||||
id="g10552"
|
||||
style="display:inline">
|
||||
<rect
|
||||
style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000"
|
||||
id="rect7958-6"
|
||||
width="24.834122"
|
||||
height="16.926834"
|
||||
x="-46.419579"
|
||||
y="253.48718"
|
||||
rx="0.28769699" />
|
||||
<path
|
||||
id="path9045"
|
||||
d="m -43.197473,267.84892 5.076147,-8.79214 h 13.135141"
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
</g>
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker31592)"
|
||||
d="m -68.523585,286.2341 25.499848,0.01"
|
||||
id="path30344"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker31542-7)"
|
||||
d="M 58.607649,25.795815 H -66.723211"
|
||||
id="path30324-3" />
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<g
|
||||
id="g32045">
|
||||
id="g32045"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<path
|
||||
inkscape:transform-center-x="-3.4358696"
|
||||
d="m -20.611506,286.24371 -20.615217,11.9022 0,-23.8044 z"
|
||||
@ -2849,7 +2804,9 @@
|
||||
</g>
|
||||
<g
|
||||
id="g1235"
|
||||
transform="matrix(3.7795276,0,0,3.7795276,-304.43154,-119.90901)">
|
||||
transform="matrix(3.7795276,0,0,3.7795276,-304.43154,-119.90901)"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<path
|
||||
sodipodi:nodetypes="ccccc"
|
||||
id="path863-3"
|
||||
@ -2934,11 +2891,13 @@
|
||||
<path
|
||||
sodipodi:nodetypes="ccc"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker31542-7-3)"
|
||||
d="M 57.633613,314.21418 C -22.203919,314.0545 11.654059,235.74374 -25.235157,237.41077 H -66.723211"
|
||||
id="path30324-3-7" />
|
||||
d="m 57.633613,314.21418 c -79.837532,-0.15968 -45.979554,-5.95242 -82.86877,-4.28539 h -41.488054"
|
||||
id="path30324-3-7"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
</g>
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline"
|
||||
inkscape:label="IFF Identification"
|
||||
id="layer8"
|
||||
@ -2947,11 +2906,15 @@
|
||||
sodipodi:nodetypes="cc"
|
||||
id="path32905"
|
||||
d="m -125.161,286.2341 h 16.41191"
|
||||
style="font-variation-settings:normal;display:inline;opacity:1;vector-effect:none;fill:none;fill-opacity:1;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;marker-end:url(#marker33181-3);stop-color:#000000;stop-opacity:1" />
|
||||
style="font-variation-settings:normal;display:inline;opacity:1;vector-effect:none;fill:none;fill-opacity:1;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;marker-end:url(#marker33181-3);stop-color:#000000;stop-opacity:1"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<g
|
||||
transform="translate(-103.61534,22.792684)"
|
||||
id="g32882"
|
||||
style="display:inline">
|
||||
style="display:inline"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<rect
|
||||
style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000"
|
||||
id="rect7958-6-4"
|
||||
@ -2968,7 +2931,7 @@
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:none"
|
||||
inkscape:label="IFF Control"
|
||||
id="layer9"
|
||||
@ -3139,41 +3102,17 @@
|
||||
transform="translate(64.146394,-303.03939)" />
|
||||
</g>
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline"
|
||||
inkscape:label="Signal Names"
|
||||
id="layer7"
|
||||
inkscape:groupmode="layer">
|
||||
<g
|
||||
id="g8241"
|
||||
transform="translate(-357.18695,164.81256)">
|
||||
<g
|
||||
id="g2494"
|
||||
style="fill:#000000;fill-opacity:1">
|
||||
<use
|
||||
height="100%"
|
||||
width="100%"
|
||||
id="use3740"
|
||||
y="93.917999"
|
||||
x="299.013"
|
||||
xlink:href="#symbol9225" />
|
||||
</g>
|
||||
<g
|
||||
id="g8232"
|
||||
style="fill:#000000;fill-opacity:1">
|
||||
<use
|
||||
height="100%"
|
||||
width="100%"
|
||||
id="use9356"
|
||||
y="95.412003"
|
||||
x="305.41901"
|
||||
xlink:href="#symbol2027" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
inkscape:label=""
|
||||
transform="translate(-358.69038,140.31252)"
|
||||
id="g3387">
|
||||
transform="translate(-358.69038,211.17806)"
|
||||
id="g3387"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
id="g7063">
|
||||
<g
|
||||
@ -3200,41 +3139,13 @@
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
inkscape:label=""
|
||||
transform="translate(-358.93576,-70.161925)"
|
||||
id="g4165">
|
||||
<g
|
||||
id="g8992">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1909">
|
||||
<use
|
||||
xlink:href="#symbol761"
|
||||
x="301.74899"
|
||||
y="93.917999"
|
||||
id="use8093"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g6049">
|
||||
<use
|
||||
xlink:href="#symbol3062"
|
||||
x="306.93399"
|
||||
y="95.412003"
|
||||
id="use1809"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
inkscape:label=""
|
||||
transform="translate(-359.32752,189.1475)"
|
||||
id="g9922"
|
||||
style="display:inline">
|
||||
style="display:inline"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
id="g6494">
|
||||
<g
|
||||
@ -3252,7 +3163,7 @@
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
transform="translate(196.48674,-11.929955)"
|
||||
transform="translate(169.49736,-94.495309)"
|
||||
style="display:inline"
|
||||
inkscape:label="Legend"
|
||||
id="layer4"
|
||||
@ -3260,7 +3171,9 @@
|
||||
<g
|
||||
id="g3223"
|
||||
transform="translate(95.422282,137.75814)"
|
||||
inkscape:label="">
|
||||
inkscape:label=""
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
id="g3511">
|
||||
<g
|
||||
@ -3322,124 +3235,12 @@
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g3503"
|
||||
transform="translate(94.77136,-53.226216)"
|
||||
inkscape:label="">
|
||||
<g
|
||||
id="g8686">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g3704">
|
||||
<use
|
||||
xlink:href="#symbol5257"
|
||||
x="91.925003"
|
||||
y="81.962997"
|
||||
id="use7628"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol466"
|
||||
x="95.522491"
|
||||
y="81.962997"
|
||||
id="use9927"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g30">
|
||||
<use
|
||||
xlink:href="#symbol3046"
|
||||
x="100.77876"
|
||||
y="81.962997"
|
||||
id="use1703"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol9052"
|
||||
x="104.65322"
|
||||
y="81.962997"
|
||||
id="use366"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol262"
|
||||
x="109.0806"
|
||||
y="81.962997"
|
||||
id="use8353"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol5016"
|
||||
x="112.98295"
|
||||
y="81.962997"
|
||||
id="use9055"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol9052"
|
||||
x="116.02752"
|
||||
y="81.962997"
|
||||
id="use4817"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol262"
|
||||
x="120.4549"
|
||||
y="81.962997"
|
||||
id="use1563"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol6140"
|
||||
x="124.35725"
|
||||
y="81.962997"
|
||||
id="use8334"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol7983"
|
||||
x="129.33855"
|
||||
y="81.962997"
|
||||
id="use7434"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol9052"
|
||||
x="137.64038"
|
||||
y="81.962997"
|
||||
id="use9833"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol3046"
|
||||
x="142.06776"
|
||||
y="81.962997"
|
||||
id="use2738"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol9052"
|
||||
x="145.94221"
|
||||
y="81.962997"
|
||||
id="use896"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
<use
|
||||
xlink:href="#symbol262"
|
||||
x="150.3696"
|
||||
y="81.962997"
|
||||
id="use9184"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g4439"
|
||||
transform="translate(95.764947,157.53135)"
|
||||
inkscape:label="">
|
||||
inkscape:label=""
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
id="g4808">
|
||||
<g
|
||||
@ -3557,7 +3358,9 @@
|
||||
</g>
|
||||
<g
|
||||
transform="translate(92.81362,1.1275329)"
|
||||
id="g2508">
|
||||
id="g2508"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
inkscape:label=""
|
||||
transform="translate(1.2240502,189.50795)"
|
||||
@ -3630,7 +3433,9 @@
|
||||
<g
|
||||
id="g8984"
|
||||
transform="translate(94.221171,81.049164)"
|
||||
inkscape:label="">
|
||||
inkscape:label=""
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
id="g1776">
|
||||
<g
|
||||
@ -3716,7 +3521,9 @@
|
||||
<g
|
||||
id="g1470"
|
||||
transform="translate(-213.62833,68.984787)"
|
||||
inkscape:label="">
|
||||
inkscape:label=""
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
id="g7335">
|
||||
<g
|
||||
@ -3776,29 +3583,12 @@
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g1970"
|
||||
transform="translate(-115.89994,220.81298)"
|
||||
inkscape:label="">
|
||||
<g
|
||||
id="g7893">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g4285">
|
||||
<use
|
||||
xlink:href="#symbol3619"
|
||||
x="302.29999"
|
||||
y="93.917999"
|
||||
id="use8503"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g2143"
|
||||
transform="translate(-116.80868,100.10782)"
|
||||
inkscape:label="">
|
||||
inkscape:label=""
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
id="g3562">
|
||||
<g
|
||||
@ -3814,53 +3604,26 @@
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:2, 2;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="m 178.39453,321.31055 h 9.98857"
|
||||
id="path2338"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:2, 2;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="m 160.63269,200.09995 h 27.60476"
|
||||
id="path2340"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker2864)"
|
||||
d="m 184.3831,321.31055 v -9.63949"
|
||||
id="path2860" />
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
id="path2860-3"
|
||||
d="m 184.23745,200.09995 v -9.63949"
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker2864-0)" />
|
||||
<g
|
||||
id="g2325"
|
||||
transform="translate(-207.22243,-47.44047)"
|
||||
inkscape:label="">
|
||||
<g
|
||||
id="g3219">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g6142">
|
||||
<use
|
||||
xlink:href="#symbol4227"
|
||||
x="303.40701"
|
||||
y="93.917999"
|
||||
id="use7870"
|
||||
width="100%"
|
||||
height="100%" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:3, 3;stroke-dashoffset:0;stroke-opacity:1;marker-start:url(#Arrow2Sstart);marker-end:url(#Arrow2Send)"
|
||||
d="M 94.373661,36.775207 V 116.03324"
|
||||
id="path2342"
|
||||
sodipodi:nodetypes="cc" />
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker2864-0)"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<g
|
||||
inkscape:label=""
|
||||
transform="translate(-243.15158,-58.479716)"
|
||||
transform="translate(-229.75223,137.05397)"
|
||||
id="g7435"
|
||||
style="display:inline">
|
||||
style="display:inline"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252">
|
||||
<g
|
||||
id="g8430">
|
||||
<g
|
||||
@ -3939,31 +3702,36 @@
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1991)"
|
||||
d="m 183.11211,269.90508 h -44.9953 l -12.07243,-12.07243"
|
||||
id="path1987" />
|
||||
id="path1987"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
id="path1987-2"
|
||||
d="M 183.11211,237.52323 H 72.974028 l -12.07243,14.72116"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1991-9)"
|
||||
sodipodi:nodetypes="ccc" />
|
||||
sodipodi:nodetypes="ccc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
id="path1987-7"
|
||||
d="M 183.11211,215.59199 H 119.48649"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1991-2)"
|
||||
sodipodi:nodetypes="cc" />
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
id="path1987-7-6-6"
|
||||
d="M 183.11211,159.90145 H 165.71339"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1991-2-0-6)"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
id="path1987-7-6-2"
|
||||
d="M 183.11211,26.180335 H 95.682815"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1991-2-0-64)"
|
||||
sodipodi:nodetypes="cc" />
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
id="path1987-7-5"
|
||||
d="m 183.11211,254.24434 -82.31359,0"
|
||||
d="M 183.11211,254.24434 H 100.79852"
|
||||
style="display:inline;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1991-2-5)"
|
||||
sodipodi:nodetypes="cc" />
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 225 KiB After Width: | Height: | Size: 218 KiB |
394
index.html
394
index.html
@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-11-10 mar. 13:00 -->
|
||||
<!-- 2020-11-10 mar. 13:41 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Piezoelectric Force Sensor - Test Bench</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
@ -34,17 +34,29 @@
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#orgfa4ffe0">1. Change of Stiffness due to Sensors stack being open/closed circuit</a>
|
||||
<li><a href="#orga887666">1. Change of Stiffness due to Sensors stack being open/closed circuit</a>
|
||||
<ul>
|
||||
<li><a href="#org664356d">1.1. Load Data</a></li>
|
||||
<li><a href="#orgb329298">1.2. Transfer Functions</a></li>
|
||||
<li><a href="#org632bb0b">1.1. Load Data</a></li>
|
||||
<li><a href="#org06862e1">1.2. Transfer Functions</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgcc12929">2. Generated Number of Charge / Voltage</a>
|
||||
<li><a href="#orgd3fb351">2. Effect of a Resistor in Parallel with the Stack Sensor</a>
|
||||
<ul>
|
||||
<li><a href="#org7a46587">2.1. Steps</a></li>
|
||||
<li><a href="#org9938615">2.2. Add Parallel Resistor</a></li>
|
||||
<li><a href="#org3e71d2e">2.3. Sinus</a></li>
|
||||
<li><a href="#orgf3e29cf">2.1. Excitation steps and measured generated voltage</a></li>
|
||||
<li><a href="#org93b0595">2.2. Estimation of the voltage offset and discharge time constant</a></li>
|
||||
<li><a href="#orgc749ef4">2.3. Estimation of the ADC input impedance</a></li>
|
||||
<li><a href="#org66bf743">2.4. Explanation of the Voltage offset</a></li>
|
||||
<li><a href="#org3c86684">2.5. Effect of an additional Parallel Resistor</a></li>
|
||||
<li><a href="#org4ae0b53">2.6. Obtained voltage offset and time constant with the added resistor</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org81c5db6">3. Generated Number of Charge / Voltage</a>
|
||||
<ul>
|
||||
<li><a href="#org55eecf7">3.1. Data Loading</a></li>
|
||||
<li><a href="#org46592d5">3.2. Excitation signal and corresponding displacement</a></li>
|
||||
<li><a href="#org6e6b1f7">3.3. Generated Voltage</a></li>
|
||||
<li><a href="#org4ed9610">3.4. Generated Charge</a></li>
|
||||
<li><a href="#org69bd84e">3.5. Generated Voltage/Charge as a function of the displacement</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@ -55,21 +67,61 @@
|
||||
In this document is studied how a piezoelectric stack can be used to measured the force.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
It is divided in the following sections:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>Section <a href="#org574ce5b">1</a>: the effect of the input impedance of the electronics connected to the force sensor stack on the stiffness of the stack is studied</li>
|
||||
<li>Section <a href="#org3d96d6c">2</a>:</li>
|
||||
<li>Section <a href="#orgcbe0c6f">1</a>: the effect of the input impedance of the electronics connected to the force sensor stack on the stiffness of the stack is studied</li>
|
||||
<li>Section <a href="#org72d0a53">2</a>: the effect of a resistor in parallel with the sensor stack is studied</li>
|
||||
<li>Section <a href="#org22b743e">3</a>: the voltage / number of charge generated by the sensor as a function of the displacement is measured</li>
|
||||
</ul>
|
||||
|
||||
<div id="outline-container-orgfa4ffe0" class="outline-2">
|
||||
<h2 id="orgfa4ffe0"><span class="section-number-2">1</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
|
||||
<div id="outline-container-orga887666" class="outline-2">
|
||||
<h2 id="orga887666"><span class="section-number-2">1</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
<p>
|
||||
<a id="org574ce5b"></a>
|
||||
<a id="orgcbe0c6f"></a>
|
||||
</p>
|
||||
<p>
|
||||
The experimental Setup is schematically represented in Figure <a href="#org27d7f75">1</a>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The dynamics from the voltage \(u\) used to drive the actuator stacks to the encoder displacement \(d_e\) is identified when the switch connected to the sensor stack is either open or closed.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org27d7f75" class="figure">
|
||||
<p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>Schematic of the Experiment</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org664356d" class="outline-3">
|
||||
<h3 id="org664356d"><span class="section-number-3">1.1</span> Load Data</h3>
|
||||
<p>
|
||||
When the switch is opened, this correspond of having a measurement electronics with an high input impedance such as a <b>voltage</b> amplifier.
|
||||
When the switch is closed, this correspond of having a measurement electronics with an small input impedance such as a <b>charge</b> amplifier.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
We wish here to see how the system dynamics is changing in the two extreme cases.
|
||||
</p>
|
||||
|
||||
<div class="note" id="org4171ed0">
|
||||
<p>
|
||||
The equipment used in the test bench are:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>Renishaw Resolution Encoder with 1nm resolution (<a href="doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf">doc</a>)</li>
|
||||
<li>Cedrat Amplified Piezoelectric Actuator APA95ML (<a href="doc/APA95ML.pdf">doc</a>)</li>
|
||||
<li>Voltage Amplifier LA75B (<a href="doc/LA75B.pdf">doc</a>)</li>
|
||||
<li>Speedgoat IO131 with 16bits ADC and DAC (<a href="doc/IO130 IO131 OEM Datasheet.pdf">doc</a>)</li>
|
||||
</ul>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org632bb0b" class="outline-3">
|
||||
<h3 id="org632bb0b"><span class="section-number-3">1.1</span> Load Data</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">oc = load(<span class="org-string">'identification_open_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
|
||||
@ -79,8 +131,8 @@ sc = load(<span class="org-string">'identification_short_circuit.mat'</span>, <s
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgb329298" class="outline-3">
|
||||
<h3 id="orgb329298"><span class="section-number-3">1.2</span> Transfer Functions</h3>
|
||||
<div id="outline-container-org06862e1" class="outline-3">
|
||||
<h3 id="org06862e1"><span class="section-number-3">1.2</span> Transfer Functions</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
|
||||
@ -98,26 +150,26 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org07156da" class="figure">
|
||||
<div id="orgaafdea3" class="figure">
|
||||
<p><img src="figs/stiffness_force_sensor_coherence.png" alt="stiffness_force_sensor_coherence.png" />
|
||||
</p>
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
<div id="org4e249d7" class="figure">
|
||||
<div id="orgc2be608" class="figure">
|
||||
<p><img src="figs/stiffness_force_sensor_bode.png" alt="stiffness_force_sensor_bode.png" />
|
||||
</p>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org503058b" class="figure">
|
||||
<div id="org59bf971" class="figure">
|
||||
<p><img src="figs/stiffness_force_sensor_bode_zoom.png" alt="stiffness_force_sensor_bode_zoom.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 3: </span>Zoom on the change of resonance</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Zoom on the change of resonance</p>
|
||||
</div>
|
||||
|
||||
<div class="important" id="org93bdd08">
|
||||
<div class="important" id="org2d5ecc1">
|
||||
<p>
|
||||
The change of resonance frequency / stiffness is very small and is not important here.
|
||||
</p>
|
||||
@ -127,46 +179,76 @@ The change of resonance frequency / stiffness is very small and is not important
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgcc12929" class="outline-2">
|
||||
<h2 id="orgcc12929"><span class="section-number-2">2</span> Generated Number of Charge / Voltage</h2>
|
||||
<div id="outline-container-orgd3fb351" class="outline-2">
|
||||
<h2 id="orgd3fb351"><span class="section-number-2">2</span> Effect of a Resistor in Parallel with the Stack Sensor</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
<p>
|
||||
<a id="org3d96d6c"></a>
|
||||
<a id="org72d0a53"></a>
|
||||
</p>
|
||||
<p>
|
||||
Two stacks are used as actuator (in parallel) and one stack is used as sensor.
|
||||
The setup is shown in Figure <a href="#org21d0104">5</a> where two stacks are used as actuator (in parallel) and one stack is used as sensor.
|
||||
The voltage amplifier used has a gain of 20 [V/V] (Cedrat LA75B).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The amplifier gain is 20V/V (Cedrat LA75B).
|
||||
|
||||
<div id="org21d0104" class="figure">
|
||||
<p><img src="figs/force_sensor_setup.png" alt="force_sensor_setup.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Schematic of the setup</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org7a46587" class="outline-3">
|
||||
<h3 id="org7a46587"><span class="section-number-3">2.1</span> Steps</h3>
|
||||
<div class="note" id="orgdd0ed7a">
|
||||
<p>
|
||||
The equipment used in the test bench are:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>Renishaw Resolution Encoder with 1nm resolution (<a href="doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf">doc</a>)</li>
|
||||
<li>Cedrat Amplified Piezoelectric Actuator APA95ML (<a href="doc/APA95ML.pdf">doc</a>)</li>
|
||||
<li>Voltage Amplifier LA75B (<a href="doc/LA75B.pdf">doc</a>)</li>
|
||||
<li>Speedgoat IO131 with 16bits ADC and DAC (<a href="doc/IO130 IO131 OEM Datasheet.pdf">doc</a>)</li>
|
||||
</ul>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgf3e29cf" class="outline-3">
|
||||
<h3 id="orgf3e29cf"><span class="section-number-3">2.1</span> Excitation steps and measured generated voltage</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
The measured data is loaded.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_steps.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
tiledlayout(2, 1, <span class="org-string">'TileSpacing'</span>, <span class="org-string">'None'</span>, <span class="org-string">'Padding'</span>, <span class="org-string">'None'</span>);
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Measured voltage [V]'</span>);
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Actuator Voltage [V]'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
<p>
|
||||
The excitation signal (steps) and measured voltage across the sensor stack are shown in Figure <a href="#org8a7c66b">6</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgda3ef57" class="figure">
|
||||
<div id="org8a7c66b" class="figure">
|
||||
<p><img src="figs/force_sen_steps_time_domain.png" alt="force_sen_steps_time_domain.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Time domain signal during the 3 actuator voltage steps</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Time domain signal during the 3 actuator voltage steps</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org93b0595" class="outline-3">
|
||||
<h3 id="org93b0595"><span class="section-number-3">2.2</span> Estimation of the voltage offset and discharge time constant</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<p>
|
||||
The measured voltage shows an exponential decay which indicates that the charge across the capacitor formed by the stack is discharging into a resistor.
|
||||
This corresponds to an RC circuit with a time constant \(\tau = RC\).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
In order to estimate the time domain, we fit the data with an exponential.
|
||||
The fit function is:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">f = @(b,x) b(1)<span class="org-type">.*</span>exp(b(2)<span class="org-type">.*</span>x) <span class="org-type">+</span> b(3);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@ -179,14 +261,6 @@ Three steps are performed at the following time intervals:
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Fit function:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">f = @(b,x) b(1)<span class="org-type">.*</span>exp(b(2)<span class="org-type">.*</span>x) <span class="org-type">+</span> b(3);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
We are interested by the <code>b(2)</code> term, which is the time constant of the exponential.
|
||||
</p>
|
||||
@ -212,6 +286,10 @@ V0 = zeros(size(t_s, 1),1);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
The obtained values are shown below.
|
||||
</p>
|
||||
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
|
||||
@ -243,7 +321,12 @@ V0 = zeros(size(t_s, 1),1);
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc749ef4" class="outline-3">
|
||||
<h3 id="orgc749ef4"><span class="section-number-3">2.3</span> Estimation of the ADC input impedance</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<p>
|
||||
With the capacitance being \(C = 4.4 \mu F\), the internal impedance of the Speedgoat ADC can be computed as follows:
|
||||
</p>
|
||||
@ -261,23 +344,30 @@ Rin = abs(mean(tau))<span class="org-type">/</span>Cp;
|
||||
<p>
|
||||
The input impedance of the Speedgoat’s ADC should then be close to \(1.5\,M\Omega\) (specified at \(1\,M\Omega\)).
|
||||
</p>
|
||||
|
||||
<div class="important" id="org7c6e263">
|
||||
<p>
|
||||
How can we explain the voltage offset?
|
||||
</p>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org66bf743" class="outline-3">
|
||||
<h3 id="org66bf743"><span class="section-number-3">2.4</span> Explanation of the Voltage offset</h3>
|
||||
<div class="outline-text-3" id="text-2-4">
|
||||
<p>
|
||||
As shown in Figure <a href="#org1036a3b">5</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)), an input voltage offset is due to the input bias current \(i_n\).
|
||||
As shown in Figure <a href="#org8a7c66b">6</a>, the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
We can explain this offset by looking at the electrical model shown in Figure <a href="#orgc43b1a9">7</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The differential amplifier in the Speedgoat has some input bias current \(i_n\) that produces a voltage offset across its own internal resistance.
|
||||
Note that the impedance of the piezoelectric stack is much larger that that at DC.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org1036a3b" class="figure">
|
||||
<div id="orgc43b1a9" class="figure">
|
||||
<p><img src="figs/force_sensor_model_electronics_without_R.png" alt="force_sensor_model_electronics_without_R.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right)</p>
|
||||
<p><span class="figure-number">Figure 7: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right)</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@ -291,10 +381,14 @@ The estimated input bias current is then:
|
||||
<pre class="example">
|
||||
1.5119e-06
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-org3c86684" class="outline-3">
|
||||
<h3 id="org3c86684"><span class="section-number-3">2.5</span> Effect of an additional Parallel Resistor</h3>
|
||||
<div class="outline-text-3" id="text-2-5">
|
||||
<p>
|
||||
An additional resistor in parallel with \(R_{in}\) would have two effects:
|
||||
Be looking at Figure <a href="#orgc43b1a9">7</a>, we can see that an additional resistor in parallel with \(R_{in}\) would have two effects:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>reduce the input voltage offset
|
||||
@ -304,7 +398,6 @@ An additional resistor in parallel with \(R_{in}\) would have two effects:
|
||||
\[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]</li>
|
||||
</ul>
|
||||
|
||||
|
||||
<p>
|
||||
If we allow the high pass corner frequency to be equals to 3Hz:
|
||||
</p>
|
||||
@ -335,45 +428,42 @@ With this parallel resistance value, the voltage offset would be:
|
||||
<p>
|
||||
Which is much more acceptable.
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org9938615" class="outline-3">
|
||||
<h3 id="org9938615"><span class="section-number-3">2.2</span> Add Parallel Resistor</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
|
||||
<p>
|
||||
A resistor \(R_p \approx 100\,k\Omega\) is added in parallel with the force sensor as shown in Figure <a href="#orgbf8a90f">6</a>.
|
||||
A resistor \(R_p \approx 100\,k\Omega\) is then added in parallel with the force sensor as shown in Figure <a href="#org98410d2">8</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgbf8a90f" class="figure">
|
||||
<div id="org98410d2" class="figure">
|
||||
<p><img src="figs/force_sensor_model_electronics.png" alt="force_sensor_model_electronics.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with the additional resistor \(R_p\)</p>
|
||||
<p><span class="figure-number">Figure 8: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with the additional resistor \(R_p\)</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4ae0b53" class="outline-3">
|
||||
<h3 id="org4ae0b53"><span class="section-number-3">2.6</span> Obtained voltage offset and time constant with the added resistor</h3>
|
||||
<div class="outline-text-3" id="text-2-6">
|
||||
<p>
|
||||
After the resistor is added, the same steps response is performed.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_steps_R_82k7.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
tiledlayout(2, 1, <span class="org-string">'TileSpacing'</span>, <span class="org-string">'None'</span>, <span class="org-string">'Padding'</span>, <span class="org-string">'None'</span>);
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Measured voltage [V]'</span>);
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Actuator Voltage [V]'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
<p>
|
||||
The results are shown in Figure <a href="#org3c913c7">9</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgf9378d8" class="figure">
|
||||
<div id="org3c913c7" class="figure">
|
||||
<p><img src="figs/force_sen_steps_time_domain_par_R.png" alt="force_sen_steps_time_domain_par_R.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 7: </span>Time domain signal during the actuator voltage steps</p>
|
||||
<p><span class="figure-number">Figure 9: </span>Time domain signal during the actuator voltage steps</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@ -391,40 +481,7 @@ Three steps are performed at the following time intervals:
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Fit function:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">f = @(b,x) b(1)<span class="org-type">.*</span>exp(b(2)<span class="org-type">.*</span>x) <span class="org-type">+</span> b(3);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
We are interested by the <code>b(2)</code> term, which is the time constant of the exponential.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name">t_i</span> = <span class="org-constant">1:size(t_s, 1)</span>
|
||||
t_cur = t(t_s(t_i, 1) <span class="org-type"><</span> t <span class="org-type">&</span> t <span class="org-type"><</span> t_s(t_i, 2));
|
||||
t_cur = t_cur <span class="org-type">-</span> t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) <span class="org-type"><</span> t <span class="org-type">&</span> t <span class="org-type"><</span> t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur <span class="org-type">-</span> f(b,t_cur)); <span class="org-comment">% Residual Norm Cost Function</span>
|
||||
B0 = [0.5, <span class="org-type">-</span>0.2, 0.2]; <span class="org-comment">% Choose Appropriate Initial Estimates</span>
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); <span class="org-comment">% Estimate Parameters ‘B’</span>
|
||||
|
||||
tau(t_i) = 1<span class="org-type">/</span>B(2);
|
||||
V0(t_i) = B(3);
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
The time constant and voltage offset are again estimated using a fit function.
|
||||
And indeed, we obtain a much smaller offset voltage and a much faster time constant.
|
||||
</p>
|
||||
|
||||
@ -513,10 +570,26 @@ This validates the model of the ADC and the effectiveness of the added resistor.
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org81c5db6" class="outline-2">
|
||||
<h2 id="org81c5db6"><span class="section-number-2">3</span> Generated Number of Charge / Voltage</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
<a id="org22b743e"></a>
|
||||
</p>
|
||||
<p>
|
||||
In this section, we wish to estimate the relation between the displacement performed by the stack actuator and the generated voltage/charge on the sensor stack.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org55eecf7" class="outline-3">
|
||||
<h3 id="org55eecf7"><span class="section-number-3">3.1</span> Data Loading</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<p>
|
||||
The measured data is loaded and the first 25 seconds of data corresponding to transient data are removed.
|
||||
</p>
|
||||
|
||||
<div id="outline-container-org3e71d2e" class="outline-3">
|
||||
<h3 id="org3e71d2e"><span class="section-number-3">2.3</span> Sinus</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_sin.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
|
||||
|
||||
@ -526,20 +599,29 @@ encoder = encoder(t<span class="org-type">></span>25) <span class="org-type">
|
||||
t = t(t<span class="org-type">></span>25);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org46592d5" class="outline-3">
|
||||
<h3 id="org46592d5"><span class="section-number-3">3.2</span> Excitation signal and corresponding displacement</h3>
|
||||
<div class="outline-text-3" id="text-3-2">
|
||||
<p>
|
||||
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#org2ae5f53">8</a>).
|
||||
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#org4706469">10</a>).
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org2ae5f53" class="figure">
|
||||
<div id="org4706469" class="figure">
|
||||
<p><img src="figs/force_sensor_sin_u.png" alt="force_sensor_sin_u.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 8: </span>Driving Voltage</p>
|
||||
<p><span class="figure-number">Figure 10: </span>Driving Voltage</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
The full stroke as measured by the encoder is:
|
||||
The corresponding displacement as measured by the encoder is shown in Figure <a href="#org1d38208">11</a>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The full stroke is:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">max(encoder)<span class="org-type">-</span>min(encoder)
|
||||
@ -551,28 +633,34 @@ The full stroke as measured by the encoder is:
|
||||
</pre>
|
||||
|
||||
|
||||
<p>
|
||||
Its signal is shown in Figure <a href="#org3458f57">9</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org3458f57" class="figure">
|
||||
<div id="org1d38208" class="figure">
|
||||
<p><img src="figs/force_sensor_sin_encoder.png" alt="force_sensor_sin_encoder.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 9: </span>Encoder measurement</p>
|
||||
<p><span class="figure-number">Figure 11: </span>Encoder measurement</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org6e6b1f7" class="outline-3">
|
||||
<h3 id="org6e6b1f7"><span class="section-number-3">3.3</span> Generated Voltage</h3>
|
||||
<div class="outline-text-3" id="text-3-3">
|
||||
<p>
|
||||
The generated voltage by the stack is shown in Figure
|
||||
The generated voltage by the stack is shown in Figure <a href="#org267434e">12</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orga69980e" class="figure">
|
||||
<div id="org267434e" class="figure">
|
||||
<p><img src="figs/force_sensor_sin_stack.png" alt="force_sensor_sin_stack.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 10: </span>Voltage measured on the stack used as a sensor</p>
|
||||
<p><span class="figure-number">Figure 12: </span>Voltage measured on the stack used as a sensor</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4ed9610" class="outline-3">
|
||||
<h3 id="org4ed9610"><span class="section-number-3">3.4</span> Generated Charge</h3>
|
||||
<div class="outline-text-3" id="text-3-4">
|
||||
<p>
|
||||
The capacitance of the stack is
|
||||
</p>
|
||||
@ -582,18 +670,34 @@ The capacitance of the stack is
|
||||
</div>
|
||||
|
||||
<p>
|
||||
The corresponding generated charge is then shown in Figure <a href="#orgeafdaf5">11</a>.
|
||||
The voltage and charge across a capacitor are related through the following equation:
|
||||
</p>
|
||||
|
||||
<div id="orgeafdaf5" class="figure">
|
||||
<p><img src="figs/force_sensor_sin_charge.png" alt="force_sensor_sin_charge.png" />
|
||||
\begin{equation}
|
||||
U_C = \frac{Q}{C}
|
||||
\end{equation}
|
||||
<p>
|
||||
where \(U_C\) is the voltage in Volts, \(Q\) the charge in Coulombs and \(C\) the capacitance in Farads.
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 11: </span>Generated Charge</p>
|
||||
</div>
|
||||
|
||||
|
||||
<p>
|
||||
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#org83e4a49">12</a>.
|
||||
The corresponding generated charge is then shown in Figure <a href="#org0331333">13</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org0331333" class="figure">
|
||||
<p><img src="figs/force_sensor_sin_charge.png" alt="force_sensor_sin_charge.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 13: </span>Generated Charge</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org69bd84e" class="outline-3">
|
||||
<h3 id="org69bd84e"><span class="section-number-3">3.5</span> Generated Voltage/Charge as a function of the displacement</h3>
|
||||
<div class="outline-text-3" id="text-3-5">
|
||||
<p>
|
||||
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#org6b7aee0">14</a>.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
@ -602,10 +706,10 @@ The relation between the generated voltage and the measured displacement is almo
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org83e4a49" class="figure">
|
||||
<div id="org6b7aee0" class="figure">
|
||||
<p><img src="figs/force_sensor_linear_relation.png" alt="force_sensor_linear_relation.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 12: </span>Almost linear relation between the relative displacement and the generated voltage</p>
|
||||
<p><span class="figure-number">Figure 14: </span>Almost linear relation between the relative displacement and the generated voltage</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@ -631,7 +735,7 @@ With a 16bits ADC, the resolution will then be equals to (in [nm]):
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-11-10 mar. 13:00</p>
|
||||
<p class="date">Created: 2020-11-10 mar. 13:41</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
156
index.org
156
index.org
@ -38,8 +38,10 @@
|
||||
* Introduction :ignore:
|
||||
In this document is studied how a piezoelectric stack can be used to measured the force.
|
||||
|
||||
It is divided in the following sections:
|
||||
- Section [[sec:open_closed_circuit]]: the effect of the input impedance of the electronics connected to the force sensor stack on the stiffness of the stack is studied
|
||||
- Section [[sec:charge_voltage_estimation]]:
|
||||
- Section [[sec:parallel_resistor]]: the effect of a resistor in parallel with the sensor stack is studied
|
||||
- Section [[sec:charge_voltage_estimation]]: the voltage / number of charge generated by the sensor as a function of the displacement is measured
|
||||
|
||||
* Change of Stiffness due to Sensors stack being open/closed circuit
|
||||
:PROPERTIES:
|
||||
@ -48,6 +50,26 @@ In this document is studied how a piezoelectric stack can be used to measured th
|
||||
<<sec:open_closed_circuit>>
|
||||
|
||||
** Introduction :ignore:
|
||||
The experimental Setup is schematically represented in Figure [[fig:exp_setup_schematic]].
|
||||
|
||||
The dynamics from the voltage $u$ used to drive the actuator stacks to the encoder displacement $d_e$ is identified when the switch connected to the sensor stack is either open or closed.
|
||||
|
||||
#+name: fig:exp_setup_schematic
|
||||
#+caption: Schematic of the Experiment
|
||||
[[file:figs/exp_setup_schematic.png]]
|
||||
|
||||
When the switch is opened, this correspond of having a measurement electronics with an high input impedance such as a *voltage* amplifier.
|
||||
When the switch is closed, this correspond of having a measurement electronics with an small input impedance such as a *charge* amplifier.
|
||||
|
||||
We wish here to see how the system dynamics is changing in the two extreme cases.
|
||||
|
||||
#+begin_note
|
||||
The equipment used in the test bench are:
|
||||
- Renishaw Resolution Encoder with 1nm resolution ([[file:doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf][doc]])
|
||||
- Cedrat Amplified Piezoelectric Actuator APA95ML ([[file:doc/APA95ML.pdf][doc]])
|
||||
- Voltage Amplifier LA75B ([[file:doc/LA75B.pdf][doc]])
|
||||
- Speedgoat IO131 with 16bits ADC and DAC ([[file:doc/IO130 IO131 OEM Datasheet.pdf][doc]])
|
||||
#+end_note
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
@ -158,16 +180,27 @@ In this document is studied how a piezoelectric stack can be used to measured th
|
||||
The change of resonance frequency / stiffness is very small and is not important here.
|
||||
#+end_important
|
||||
|
||||
* Generated Number of Charge / Voltage
|
||||
* Effect of a Resistor in Parallel with the Stack Sensor
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/charge_voltage_estimation.m
|
||||
:header-args:matlab+: :tangle matlab/parallel_resistor.m
|
||||
:END:
|
||||
<<sec:charge_voltage_estimation>>
|
||||
<<sec:parallel_resistor>>
|
||||
|
||||
** Introduction :ignore:
|
||||
Two stacks are used as actuator (in parallel) and one stack is used as sensor.
|
||||
The setup is shown in Figure [[fig:force_sensor_setup]] where two stacks are used as actuator (in parallel) and one stack is used as sensor.
|
||||
The voltage amplifier used has a gain of 20 [V/V] (Cedrat LA75B).
|
||||
|
||||
The amplifier gain is 20V/V (Cedrat LA75B).
|
||||
#+name: fig:force_sensor_setup
|
||||
#+caption: Schematic of the setup
|
||||
[[file:figs/force_sensor_setup.png]]
|
||||
|
||||
#+begin_note
|
||||
The equipment used in the test bench are:
|
||||
- Renishaw Resolution Encoder with 1nm resolution ([[file:doc/L-9517-9448-05-B_Data_sheet_RESOLUTE_BiSS_en.pdf][doc]])
|
||||
- Cedrat Amplified Piezoelectric Actuator APA95ML ([[file:doc/APA95ML.pdf][doc]])
|
||||
- Voltage Amplifier LA75B ([[file:doc/LA75B.pdf][doc]])
|
||||
- Speedgoat IO131 with 16bits ADC and DAC ([[file:doc/IO130 IO131 OEM Datasheet.pdf][doc]])
|
||||
#+end_note
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
@ -186,12 +219,14 @@ The amplifier gain is 20V/V (Cedrat LA75B).
|
||||
addpath('./mat/');
|
||||
#+end_src
|
||||
|
||||
** Steps
|
||||
** Excitation steps and measured generated voltage
|
||||
The measured data is loaded.
|
||||
#+begin_src matlab
|
||||
load('force_sensor_steps.mat', 't', 'encoder', 'u', 'v');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
The excitation signal (steps) and measured voltage across the sensor stack are shown in Figure [[fig:force_sen_steps_time_domain]].
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
@ -211,6 +246,16 @@ The amplifier gain is 20V/V (Cedrat LA75B).
|
||||
#+RESULTS:
|
||||
[[file:figs/force_sen_steps_time_domain.png]]
|
||||
|
||||
** Estimation of the voltage offset and discharge time constant
|
||||
The measured voltage shows an exponential decay which indicates that the charge across the capacitor formed by the stack is discharging into a resistor.
|
||||
This corresponds to an RC circuit with a time constant $\tau = RC$.
|
||||
|
||||
In order to estimate the time domain, we fit the data with an exponential.
|
||||
The fit function is:
|
||||
#+begin_src matlab
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
#+end_src
|
||||
|
||||
Three steps are performed at the following time intervals:
|
||||
#+begin_src matlab
|
||||
t_s = [ 2.5, 23;
|
||||
@ -218,11 +263,6 @@ Three steps are performed at the following time intervals:
|
||||
35.8, 50];
|
||||
#+end_src
|
||||
|
||||
Fit function:
|
||||
#+begin_src matlab
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
#+end_src
|
||||
|
||||
We are interested by the =b(2)= term, which is the time constant of the exponential.
|
||||
#+begin_src matlab
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
@ -244,6 +284,8 @@ We are interested by the =b(2)= term, which is the time constant of the exponent
|
||||
end
|
||||
#+end_src
|
||||
|
||||
The obtained values are shown below.
|
||||
|
||||
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
||||
data2orgtable([abs(tau), V0], {}, {'$tau$ [s]', '$V_0$ [V]'}, ' %.2f ');
|
||||
#+end_src
|
||||
@ -255,6 +297,8 @@ We are interested by the =b(2)= term, which is the time constant of the exponent
|
||||
| 6.76 | 2.26 |
|
||||
| 6.49 | 2.25 |
|
||||
|
||||
** Estimation of the ADC input impedance
|
||||
|
||||
With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedgoat ADC can be computed as follows:
|
||||
#+begin_src matlab
|
||||
Cp = 4.4e-6; % [F]
|
||||
@ -270,11 +314,13 @@ With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedg
|
||||
|
||||
The input impedance of the Speedgoat's ADC should then be close to $1.5\,M\Omega$ (specified at $1\,M\Omega$).
|
||||
|
||||
#+begin_important
|
||||
How can we explain the voltage offset?
|
||||
#+end_important
|
||||
** Explanation of the Voltage offset
|
||||
As shown in Figure [[fig:force_sen_steps_time_domain]], the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
|
||||
|
||||
As shown in Figure [[fig:force_sensor_model_electronics_without_R]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin), an input voltage offset is due to the input bias current $i_n$.
|
||||
We can explain this offset by looking at the electrical model shown in Figure [[fig:force_sensor_model_electronics_without_R]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin).
|
||||
|
||||
The differential amplifier in the Speedgoat has some input bias current $i_n$ that produces a voltage offset across its own internal resistance.
|
||||
Note that the impedance of the piezoelectric stack is much larger that that at DC.
|
||||
|
||||
#+name: fig:force_sensor_model_electronics_without_R
|
||||
#+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right)
|
||||
@ -292,14 +338,14 @@ The estimated input bias current is then:
|
||||
#+RESULTS:
|
||||
: 1.5119e-06
|
||||
|
||||
An additional resistor in parallel with $R_{in}$ would have two effects:
|
||||
** Effect of an additional Parallel Resistor
|
||||
Be looking at Figure [[fig:force_sensor_model_electronics_without_R]], we can see that an additional resistor in parallel with $R_{in}$ would have two effects:
|
||||
- reduce the input voltage offset
|
||||
\[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]
|
||||
- increase the high pass corner frequency $f_c$
|
||||
\[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
|
||||
\[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]
|
||||
|
||||
|
||||
If we allow the high pass corner frequency to be equals to 3Hz:
|
||||
#+begin_src matlab
|
||||
fc = 3;
|
||||
@ -327,18 +373,23 @@ With this parallel resistance value, the voltage offset would be:
|
||||
|
||||
Which is much more acceptable.
|
||||
|
||||
** Add Parallel Resistor
|
||||
A resistor $R_p \approx 100\,k\Omega$ is added in parallel with the force sensor as shown in Figure [[fig:force_sensor_model_electronics]].
|
||||
|
||||
A resistor $R_p \approx 100\,k\Omega$ is then added in parallel with the force sensor as shown in Figure [[fig:force_sensor_model_electronics]].
|
||||
|
||||
#+name: fig:force_sensor_model_electronics
|
||||
#+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with the additional resistor $R_p$
|
||||
[[file:figs/force_sensor_model_electronics.png]]
|
||||
|
||||
** Obtained voltage offset and time constant with the added resistor
|
||||
After the resistor is added, the same steps response is performed.
|
||||
|
||||
#+begin_src matlab
|
||||
load('force_sensor_steps_R_82k7.mat', 't', 'encoder', 'u', 'v');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
The results are shown in Figure [[fig:force_sen_steps_time_domain_par_R]].
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
@ -369,19 +420,13 @@ Three steps are performed at the following time intervals:
|
||||
46.2, 49.5]
|
||||
#+end_src
|
||||
|
||||
Fit function:
|
||||
#+begin_src matlab
|
||||
The time constant and voltage offset are again estimated using a fit function.
|
||||
#+begin_src matlab :exports none
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
#+end_src
|
||||
|
||||
We are interested by the =b(2)= term, which is the time constant of the exponential.
|
||||
|
||||
#+begin_src matlab
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
@ -441,7 +486,35 @@ And we can verify that the bias current estimation stays the same:
|
||||
|
||||
This validates the model of the ADC and the effectiveness of the added resistor.
|
||||
|
||||
** Sinus
|
||||
* Generated Number of Charge / Voltage
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/charge_voltage_estimation.m
|
||||
:END:
|
||||
<<sec:charge_voltage_estimation>>
|
||||
|
||||
** Introduction :ignore:
|
||||
In this section, we wish to estimate the relation between the displacement performed by the stack actuator and the generated voltage/charge on the sensor stack.
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no
|
||||
addpath('./matlab/mat/');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :eval no
|
||||
addpath('./mat/');
|
||||
#+end_src
|
||||
|
||||
** Data Loading
|
||||
The measured data is loaded and the first 25 seconds of data corresponding to transient data are removed.
|
||||
|
||||
#+begin_src matlab
|
||||
load('force_sensor_sin.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
@ -451,6 +524,7 @@ This validates the model of the ADC and the effectiveness of the added resistor.
|
||||
t = t(t>25);
|
||||
#+end_src
|
||||
|
||||
** Excitation signal and corresponding displacement
|
||||
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure [[fig:force_sensor_sin_u]]).
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
@ -468,7 +542,9 @@ The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of
|
||||
#+RESULTS:
|
||||
[[file:figs/force_sensor_sin_u.png]]
|
||||
|
||||
The full stroke as measured by the encoder is:
|
||||
The corresponding displacement as measured by the encoder is shown in Figure [[fig:force_sensor_sin_encoder]].
|
||||
|
||||
The full stroke is:
|
||||
#+begin_src matlab :results value replace
|
||||
max(encoder)-min(encoder)
|
||||
#+end_src
|
||||
@ -476,8 +552,6 @@ The full stroke as measured by the encoder is:
|
||||
#+RESULTS:
|
||||
: 5.005e-05
|
||||
|
||||
Its signal is shown in Figure [[fig:force_sensor_sin_encoder]].
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
plot(t, encoder)
|
||||
@ -493,7 +567,8 @@ Its signal is shown in Figure [[fig:force_sensor_sin_encoder]].
|
||||
#+RESULTS:
|
||||
[[file:figs/force_sensor_sin_encoder.png]]
|
||||
|
||||
The generated voltage by the stack is shown in Figure
|
||||
** Generated Voltage
|
||||
The generated voltage by the stack is shown in Figure [[fig:force_sensor_sin_stack]].
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
@ -510,12 +585,21 @@ The generated voltage by the stack is shown in Figure
|
||||
#+RESULTS:
|
||||
[[file:figs/force_sensor_sin_stack.png]]
|
||||
|
||||
** Generated Charge
|
||||
The capacitance of the stack is
|
||||
#+begin_src matlab
|
||||
Cp = 4.4e-6; % [F]
|
||||
#+end_src
|
||||
|
||||
The voltage and charge across a capacitor are related through the following equation:
|
||||
\begin{equation}
|
||||
U_C = \frac{Q}{C}
|
||||
\end{equation}
|
||||
where $U_C$ is the voltage in Volts, $Q$ the charge in Coulombs and $C$ the capacitance in Farads.
|
||||
|
||||
|
||||
The corresponding generated charge is then shown in Figure [[fig:force_sensor_sin_charge]].
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
plot(t, 1e6*Cp*(v-mean(v)))
|
||||
@ -531,7 +615,7 @@ The corresponding generated charge is then shown in Figure [[fig:force_sensor_si
|
||||
#+RESULTS:
|
||||
[[file:figs/force_sensor_sin_charge.png]]
|
||||
|
||||
|
||||
** Generated Voltage/Charge as a function of the displacement
|
||||
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure [[fig:force_sensor_linear_relation]].
|
||||
|
||||
#+begin_src matlab
|
||||
|
@ -6,224 +6,9 @@ s = zpk('s');
|
||||
|
||||
addpath('./mat/');
|
||||
|
||||
% Steps
|
||||
% Data Loading
|
||||
% The measured data is loaded and the first 25 seconds of data corresponding to transient data are removed.
|
||||
|
||||
load('force_sensor_steps.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sen_steps_time_domain
|
||||
% #+caption: Time domain signal during the 3 actuator voltage steps
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sen_steps_time_domain.png]]
|
||||
|
||||
% Three steps are performed at the following time intervals:
|
||||
|
||||
t_s = [ 2.5, 23;
|
||||
23.8, 35;
|
||||
35.8, 50];
|
||||
|
||||
|
||||
|
||||
% Fit function:
|
||||
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
|
||||
|
||||
|
||||
% We are interested by the =b(2)= term, which is the time constant of the exponential.
|
||||
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||||
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||||
|
||||
tau(t_i) = 1/B(2);
|
||||
V0(t_i) = B(3);
|
||||
end
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% | $tau$ [s] | $V_0$ [V] |
|
||||
% |-----------+-----------|
|
||||
% | 6.47 | 2.26 |
|
||||
% | 6.76 | 2.26 |
|
||||
% | 6.49 | 2.25 |
|
||||
|
||||
% With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedgoat ADC can be computed as follows:
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
Rin = abs(mean(tau))/Cp;
|
||||
|
||||
ans = Rin
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 1494100.0
|
||||
|
||||
% The input impedance of the Speedgoat's ADC should then be close to $1.5\,M\Omega$ (specified at $1\,M\Omega$).
|
||||
|
||||
% #+begin_important
|
||||
% How can we explain the voltage offset?
|
||||
% #+end_important
|
||||
|
||||
% As shown in Figure [[fig:force_sensor_model_electronics]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin), an input voltage offset is due to the input bias current $i_n$.
|
||||
|
||||
% #+name: fig:force_sensor_model_electronics
|
||||
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right)
|
||||
% [[file:figs/force_sensor_model_electronics.png]]
|
||||
|
||||
% The estimated input bias current is then:
|
||||
|
||||
in = mean(V0)/Rin;
|
||||
|
||||
ans = in
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 1.5119e-06
|
||||
|
||||
% An additional resistor in parallel with $R_{in}$ would have two effects:
|
||||
% - reduce the input voltage offset
|
||||
% \[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]
|
||||
% - increase the high pass corner frequency $f_c$
|
||||
% \[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
|
||||
% \[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]
|
||||
|
||||
|
||||
% If we allow the high pass corner frequency to be equals to 3Hz:
|
||||
|
||||
fc = 3;
|
||||
Ra = Rin/(fc*Cp*Rin - 1);
|
||||
|
||||
ans = Ra
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 79804
|
||||
|
||||
% With this parallel resistance value, the voltage offset would be:
|
||||
|
||||
V_offset = Ra*Rin/(Ra + Rin) * in;
|
||||
|
||||
ans = V_offset
|
||||
|
||||
% Add Parallel Resistor
|
||||
% A resistor $R_p \approx 100\,k\Omega$ is added in parallel with the force sensor as shown in Figure [[fig:force_sensor_model_electronics_without_R]].
|
||||
|
||||
% #+name: fig:force_sensor_model_electronics_without_R
|
||||
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with added resistor $R_p$
|
||||
% [[file:figs/force_sensor_model_electronics_without_R.png]]
|
||||
|
||||
|
||||
load('force_sensor_steps_R_82k7.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sen_steps_time_domain_par_R
|
||||
% #+caption: Time domain signal during the actuator voltage steps
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sen_steps_time_domain_par_R.png]]
|
||||
|
||||
% Three steps are performed at the following time intervals:
|
||||
|
||||
t_s = [1.9, 6;
|
||||
8.5, 13;
|
||||
15.5, 21;
|
||||
22.6, 26;
|
||||
30.0, 36;
|
||||
37.5, 41;
|
||||
46.2, 49.5]
|
||||
|
||||
|
||||
|
||||
% Fit function:
|
||||
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
|
||||
|
||||
|
||||
% We are interested by the =b(2)= term, which is the time constant of the exponential.
|
||||
|
||||
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||||
B0 = [0.5, -0.2, 0.2]; % Choose Appropriate Initial Estimates
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||||
|
||||
tau(t_i) = 1/B(2);
|
||||
V0(t_i) = B(3);
|
||||
end
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% | $tau$ [s] | $V_0$ [V] |
|
||||
% |-----------+-----------|
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.45 | 0.16 |
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.45 | 0.15 |
|
||||
% | 0.46 | 0.16 |
|
||||
% | 0.48 | 0.16 |
|
||||
|
||||
% Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of $\approx 1\,M\Omega$):
|
||||
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
Rin = abs(mean(tau))/Cp;
|
||||
|
||||
ans = Rin
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 101200.0
|
||||
|
||||
% And we can verify that the bias current estimation stays the same:
|
||||
|
||||
in = mean(V0)/Rin;
|
||||
|
||||
ans = in
|
||||
|
||||
% Sinus
|
||||
|
||||
load('force_sensor_sin.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
@ -232,8 +17,7 @@ v = v(t>25);
|
||||
encoder = encoder(t>25) - mean(encoder(t>25));
|
||||
t = t(t>25);
|
||||
|
||||
|
||||
|
||||
% Excitation signal and corresponding displacement
|
||||
% The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure [[fig:force_sensor_sin_u]]).
|
||||
|
||||
|
||||
@ -248,7 +32,9 @@ xlabel('Time [s]'); ylabel('Control Voltage [V]');
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sensor_sin_u.png]]
|
||||
|
||||
% The full stroke as measured by the encoder is:
|
||||
% The corresponding displacement as measured by the encoder is shown in Figure [[fig:force_sensor_sin_encoder]].
|
||||
|
||||
% The full stroke is:
|
||||
|
||||
max(encoder)-min(encoder)
|
||||
|
||||
@ -257,54 +43,41 @@ max(encoder)-min(encoder)
|
||||
% #+RESULTS:
|
||||
% : 5.005e-05
|
||||
|
||||
% Its signal is shown in Figure [[fig:force_sensor_sin_encoder]].
|
||||
|
||||
|
||||
figure;
|
||||
plot(t, encoder)
|
||||
xlabel('Time [s]'); ylabel('Encoder [m]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sensor_sin_encoder
|
||||
% #+caption: Encoder measurement
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sensor_sin_encoder.png]]
|
||||
|
||||
% The generated voltage by the stack is shown in Figure
|
||||
% Generated Voltage
|
||||
% The generated voltage by the stack is shown in Figure [[fig:force_sensor_sin_stack]].
|
||||
|
||||
|
||||
figure;
|
||||
plot(t, v)
|
||||
xlabel('Time [s]'); ylabel('Force Sensor Output [V]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sensor_sin_stack
|
||||
% #+caption: Voltage measured on the stack used as a sensor
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sensor_sin_stack.png]]
|
||||
|
||||
% Generated Charge
|
||||
% The capacitance of the stack is
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
|
||||
|
||||
|
||||
% The voltage and charge across a capacitor are related through the following equation:
|
||||
% \begin{equation}
|
||||
% U_C = \frac{Q}{C}
|
||||
% \end{equation}
|
||||
% where $U_C$ is the voltage in Volts, $Q$ the charge in Coulombs and $C$ the capacitance in Farads.
|
||||
|
||||
|
||||
% The corresponding generated charge is then shown in Figure [[fig:force_sensor_sin_charge]].
|
||||
|
||||
|
||||
figure;
|
||||
plot(t, 1e6*Cp*(v-mean(v)))
|
||||
xlabel('Time [s]'); ylabel('Generated Charge [$\mu C$]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sensor_sin_charge
|
||||
% #+caption: Generated Charge
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sensor_sin_charge.png]]
|
||||
|
||||
|
||||
% Generated Voltage/Charge as a function of the displacement
|
||||
% The relation between the generated voltage and the measured displacement is almost linear as shown in Figure [[fig:force_sensor_linear_relation]].
|
||||
|
||||
|
||||
|
206
matlab/parallel_resistor.m
Normal file
206
matlab/parallel_resistor.m
Normal file
@ -0,0 +1,206 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
addpath('./mat/');
|
||||
|
||||
% Excitation steps and measured generated voltage
|
||||
% The measured data is loaded.
|
||||
|
||||
load('force_sensor_steps.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
|
||||
|
||||
% The excitation signal (steps) and measured voltage across the sensor stack are shown in Figure [[fig:force_sen_steps_time_domain]].
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
||||
|
||||
% Estimation of the voltage offset and discharge time constant
|
||||
% The measured voltage shows an exponential decay which indicates that the charge across the capacitor formed by the stack is discharging into a resistor.
|
||||
% This corresponds to an RC circuit with a time constant $\tau = RC$.
|
||||
|
||||
% In order to estimate the time domain, we fit the data with an exponential.
|
||||
% The fit function is:
|
||||
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
|
||||
|
||||
|
||||
% Three steps are performed at the following time intervals:
|
||||
|
||||
t_s = [ 2.5, 23;
|
||||
23.8, 35;
|
||||
35.8, 50];
|
||||
|
||||
|
||||
|
||||
% We are interested by the =b(2)= term, which is the time constant of the exponential.
|
||||
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||||
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||||
|
||||
tau(t_i) = 1/B(2);
|
||||
V0(t_i) = B(3);
|
||||
end
|
||||
|
||||
% Estimation of the ADC input impedance
|
||||
|
||||
% With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedgoat ADC can be computed as follows:
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
Rin = abs(mean(tau))/Cp;
|
||||
|
||||
ans = Rin
|
||||
|
||||
% Explanation of the Voltage offset
|
||||
% As shown in Figure [[fig:force_sen_steps_time_domain]], the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
|
||||
|
||||
% We can explain this offset by looking at the electrical model shown in Figure [[fig:force_sensor_model_electronics_without_R]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin).
|
||||
|
||||
% The differential amplifier in the Speedgoat has some input bias current $i_n$ that produces a voltage offset across its own internal resistance.
|
||||
% Note that the impedance of the piezoelectric stack is much larger that that at DC.
|
||||
|
||||
% #+name: fig:force_sensor_model_electronics_without_R
|
||||
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right)
|
||||
% [[file:figs/force_sensor_model_electronics_without_R.png]]
|
||||
|
||||
% The estimated input bias current is then:
|
||||
|
||||
in = mean(V0)/Rin;
|
||||
|
||||
ans = in
|
||||
|
||||
% Effect of an additional Parallel Resistor
|
||||
% Be looking at Figure [[fig:force_sensor_model_electronics_without_R]], we can see that an additional resistor in parallel with $R_{in}$ would have two effects:
|
||||
% - reduce the input voltage offset
|
||||
% \[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]
|
||||
% - increase the high pass corner frequency $f_c$
|
||||
% \[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
|
||||
% \[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]
|
||||
|
||||
% If we allow the high pass corner frequency to be equals to 3Hz:
|
||||
|
||||
fc = 3;
|
||||
Ra = Rin/(fc*Cp*Rin - 1);
|
||||
|
||||
ans = Ra
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 79804
|
||||
|
||||
% With this parallel resistance value, the voltage offset would be:
|
||||
|
||||
V_offset = Ra*Rin/(Ra + Rin) * in;
|
||||
|
||||
ans = V_offset
|
||||
|
||||
% Obtained voltage offset and time constant with the added resistor
|
||||
% After the resistor is added, the same steps response is performed.
|
||||
|
||||
|
||||
load('force_sensor_steps_R_82k7.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
|
||||
|
||||
% The results are shown in Figure [[fig:force_sen_steps_time_domain_par_R]].
|
||||
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sen_steps_time_domain_par_R
|
||||
% #+caption: Time domain signal during the actuator voltage steps
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sen_steps_time_domain_par_R.png]]
|
||||
|
||||
% Three steps are performed at the following time intervals:
|
||||
|
||||
t_s = [1.9, 6;
|
||||
8.5, 13;
|
||||
15.5, 21;
|
||||
22.6, 26;
|
||||
30.0, 36;
|
||||
37.5, 41;
|
||||
46.2, 49.5]
|
||||
|
||||
|
||||
|
||||
% The time constant and voltage offset are again estimated using a fit function.
|
||||
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||||
B0 = [0.5, -0.2, 0.2]; % Choose Appropriate Initial Estimates
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||||
|
||||
tau(t_i) = 1/B(2);
|
||||
V0(t_i) = B(3);
|
||||
end
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% | $tau$ [s] | $V_0$ [V] |
|
||||
% |-----------+-----------|
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.45 | 0.16 |
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.45 | 0.15 |
|
||||
% | 0.46 | 0.16 |
|
||||
% | 0.48 | 0.16 |
|
||||
|
||||
% Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of $\approx 1\,M\Omega$):
|
||||
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
Rin = abs(mean(tau))/Cp;
|
||||
|
||||
ans = Rin
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 101200.0
|
||||
|
||||
% And we can verify that the bias current estimation stays the same:
|
||||
|
||||
in = mean(V0)/Rin;
|
||||
|
||||
ans = in
|
Loading…
Reference in New Issue
Block a user