Add test / doc / list of sections
This commit is contained in:
@@ -6,224 +6,9 @@ s = zpk('s');
|
||||
|
||||
addpath('./mat/');
|
||||
|
||||
% Steps
|
||||
% Data Loading
|
||||
% The measured data is loaded and the first 25 seconds of data corresponding to transient data are removed.
|
||||
|
||||
load('force_sensor_steps.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sen_steps_time_domain
|
||||
% #+caption: Time domain signal during the 3 actuator voltage steps
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sen_steps_time_domain.png]]
|
||||
|
||||
% Three steps are performed at the following time intervals:
|
||||
|
||||
t_s = [ 2.5, 23;
|
||||
23.8, 35;
|
||||
35.8, 50];
|
||||
|
||||
|
||||
|
||||
% Fit function:
|
||||
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
|
||||
|
||||
|
||||
% We are interested by the =b(2)= term, which is the time constant of the exponential.
|
||||
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||||
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||||
|
||||
tau(t_i) = 1/B(2);
|
||||
V0(t_i) = B(3);
|
||||
end
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% | $tau$ [s] | $V_0$ [V] |
|
||||
% |-----------+-----------|
|
||||
% | 6.47 | 2.26 |
|
||||
% | 6.76 | 2.26 |
|
||||
% | 6.49 | 2.25 |
|
||||
|
||||
% With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedgoat ADC can be computed as follows:
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
Rin = abs(mean(tau))/Cp;
|
||||
|
||||
ans = Rin
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 1494100.0
|
||||
|
||||
% The input impedance of the Speedgoat's ADC should then be close to $1.5\,M\Omega$ (specified at $1\,M\Omega$).
|
||||
|
||||
% #+begin_important
|
||||
% How can we explain the voltage offset?
|
||||
% #+end_important
|
||||
|
||||
% As shown in Figure [[fig:force_sensor_model_electronics]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin), an input voltage offset is due to the input bias current $i_n$.
|
||||
|
||||
% #+name: fig:force_sensor_model_electronics
|
||||
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right)
|
||||
% [[file:figs/force_sensor_model_electronics.png]]
|
||||
|
||||
% The estimated input bias current is then:
|
||||
|
||||
in = mean(V0)/Rin;
|
||||
|
||||
ans = in
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 1.5119e-06
|
||||
|
||||
% An additional resistor in parallel with $R_{in}$ would have two effects:
|
||||
% - reduce the input voltage offset
|
||||
% \[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]
|
||||
% - increase the high pass corner frequency $f_c$
|
||||
% \[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
|
||||
% \[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]
|
||||
|
||||
|
||||
% If we allow the high pass corner frequency to be equals to 3Hz:
|
||||
|
||||
fc = 3;
|
||||
Ra = Rin/(fc*Cp*Rin - 1);
|
||||
|
||||
ans = Ra
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 79804
|
||||
|
||||
% With this parallel resistance value, the voltage offset would be:
|
||||
|
||||
V_offset = Ra*Rin/(Ra + Rin) * in;
|
||||
|
||||
ans = V_offset
|
||||
|
||||
% Add Parallel Resistor
|
||||
% A resistor $R_p \approx 100\,k\Omega$ is added in parallel with the force sensor as shown in Figure [[fig:force_sensor_model_electronics_without_R]].
|
||||
|
||||
% #+name: fig:force_sensor_model_electronics_without_R
|
||||
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with added resistor $R_p$
|
||||
% [[file:figs/force_sensor_model_electronics_without_R.png]]
|
||||
|
||||
|
||||
load('force_sensor_steps_R_82k7.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sen_steps_time_domain_par_R
|
||||
% #+caption: Time domain signal during the actuator voltage steps
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sen_steps_time_domain_par_R.png]]
|
||||
|
||||
% Three steps are performed at the following time intervals:
|
||||
|
||||
t_s = [1.9, 6;
|
||||
8.5, 13;
|
||||
15.5, 21;
|
||||
22.6, 26;
|
||||
30.0, 36;
|
||||
37.5, 41;
|
||||
46.2, 49.5]
|
||||
|
||||
|
||||
|
||||
% Fit function:
|
||||
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
|
||||
|
||||
|
||||
% We are interested by the =b(2)= term, which is the time constant of the exponential.
|
||||
|
||||
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||||
B0 = [0.5, -0.2, 0.2]; % Choose Appropriate Initial Estimates
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||||
|
||||
tau(t_i) = 1/B(2);
|
||||
V0(t_i) = B(3);
|
||||
end
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% | $tau$ [s] | $V_0$ [V] |
|
||||
% |-----------+-----------|
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.45 | 0.16 |
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.45 | 0.15 |
|
||||
% | 0.46 | 0.16 |
|
||||
% | 0.48 | 0.16 |
|
||||
|
||||
% Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of $\approx 1\,M\Omega$):
|
||||
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
Rin = abs(mean(tau))/Cp;
|
||||
|
||||
ans = Rin
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 101200.0
|
||||
|
||||
% And we can verify that the bias current estimation stays the same:
|
||||
|
||||
in = mean(V0)/Rin;
|
||||
|
||||
ans = in
|
||||
|
||||
% Sinus
|
||||
|
||||
load('force_sensor_sin.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
@@ -232,8 +17,7 @@ v = v(t>25);
|
||||
encoder = encoder(t>25) - mean(encoder(t>25));
|
||||
t = t(t>25);
|
||||
|
||||
|
||||
|
||||
% Excitation signal and corresponding displacement
|
||||
% The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure [[fig:force_sensor_sin_u]]).
|
||||
|
||||
|
||||
@@ -248,7 +32,9 @@ xlabel('Time [s]'); ylabel('Control Voltage [V]');
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sensor_sin_u.png]]
|
||||
|
||||
% The full stroke as measured by the encoder is:
|
||||
% The corresponding displacement as measured by the encoder is shown in Figure [[fig:force_sensor_sin_encoder]].
|
||||
|
||||
% The full stroke is:
|
||||
|
||||
max(encoder)-min(encoder)
|
||||
|
||||
@@ -257,54 +43,41 @@ max(encoder)-min(encoder)
|
||||
% #+RESULTS:
|
||||
% : 5.005e-05
|
||||
|
||||
% Its signal is shown in Figure [[fig:force_sensor_sin_encoder]].
|
||||
|
||||
|
||||
figure;
|
||||
plot(t, encoder)
|
||||
xlabel('Time [s]'); ylabel('Encoder [m]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sensor_sin_encoder
|
||||
% #+caption: Encoder measurement
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sensor_sin_encoder.png]]
|
||||
|
||||
% The generated voltage by the stack is shown in Figure
|
||||
% Generated Voltage
|
||||
% The generated voltage by the stack is shown in Figure [[fig:force_sensor_sin_stack]].
|
||||
|
||||
|
||||
figure;
|
||||
plot(t, v)
|
||||
xlabel('Time [s]'); ylabel('Force Sensor Output [V]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sensor_sin_stack
|
||||
% #+caption: Voltage measured on the stack used as a sensor
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sensor_sin_stack.png]]
|
||||
|
||||
% Generated Charge
|
||||
% The capacitance of the stack is
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
|
||||
|
||||
|
||||
% The voltage and charge across a capacitor are related through the following equation:
|
||||
% \begin{equation}
|
||||
% U_C = \frac{Q}{C}
|
||||
% \end{equation}
|
||||
% where $U_C$ is the voltage in Volts, $Q$ the charge in Coulombs and $C$ the capacitance in Farads.
|
||||
|
||||
|
||||
% The corresponding generated charge is then shown in Figure [[fig:force_sensor_sin_charge]].
|
||||
|
||||
|
||||
figure;
|
||||
plot(t, 1e6*Cp*(v-mean(v)))
|
||||
xlabel('Time [s]'); ylabel('Generated Charge [$\mu C$]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sensor_sin_charge
|
||||
% #+caption: Generated Charge
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sensor_sin_charge.png]]
|
||||
|
||||
|
||||
% Generated Voltage/Charge as a function of the displacement
|
||||
% The relation between the generated voltage and the measured displacement is almost linear as shown in Figure [[fig:force_sensor_linear_relation]].
|
||||
|
||||
|
||||
|
206
matlab/parallel_resistor.m
Normal file
206
matlab/parallel_resistor.m
Normal file
@@ -0,0 +1,206 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
addpath('./mat/');
|
||||
|
||||
% Excitation steps and measured generated voltage
|
||||
% The measured data is loaded.
|
||||
|
||||
load('force_sensor_steps.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
|
||||
|
||||
% The excitation signal (steps) and measured voltage across the sensor stack are shown in Figure [[fig:force_sen_steps_time_domain]].
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
||||
|
||||
% Estimation of the voltage offset and discharge time constant
|
||||
% The measured voltage shows an exponential decay which indicates that the charge across the capacitor formed by the stack is discharging into a resistor.
|
||||
% This corresponds to an RC circuit with a time constant $\tau = RC$.
|
||||
|
||||
% In order to estimate the time domain, we fit the data with an exponential.
|
||||
% The fit function is:
|
||||
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
|
||||
|
||||
|
||||
% Three steps are performed at the following time intervals:
|
||||
|
||||
t_s = [ 2.5, 23;
|
||||
23.8, 35;
|
||||
35.8, 50];
|
||||
|
||||
|
||||
|
||||
% We are interested by the =b(2)= term, which is the time constant of the exponential.
|
||||
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||||
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||||
|
||||
tau(t_i) = 1/B(2);
|
||||
V0(t_i) = B(3);
|
||||
end
|
||||
|
||||
% Estimation of the ADC input impedance
|
||||
|
||||
% With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedgoat ADC can be computed as follows:
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
Rin = abs(mean(tau))/Cp;
|
||||
|
||||
ans = Rin
|
||||
|
||||
% Explanation of the Voltage offset
|
||||
% As shown in Figure [[fig:force_sen_steps_time_domain]], the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
|
||||
|
||||
% We can explain this offset by looking at the electrical model shown in Figure [[fig:force_sensor_model_electronics_without_R]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin).
|
||||
|
||||
% The differential amplifier in the Speedgoat has some input bias current $i_n$ that produces a voltage offset across its own internal resistance.
|
||||
% Note that the impedance of the piezoelectric stack is much larger that that at DC.
|
||||
|
||||
% #+name: fig:force_sensor_model_electronics_without_R
|
||||
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right)
|
||||
% [[file:figs/force_sensor_model_electronics_without_R.png]]
|
||||
|
||||
% The estimated input bias current is then:
|
||||
|
||||
in = mean(V0)/Rin;
|
||||
|
||||
ans = in
|
||||
|
||||
% Effect of an additional Parallel Resistor
|
||||
% Be looking at Figure [[fig:force_sensor_model_electronics_without_R]], we can see that an additional resistor in parallel with $R_{in}$ would have two effects:
|
||||
% - reduce the input voltage offset
|
||||
% \[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]
|
||||
% - increase the high pass corner frequency $f_c$
|
||||
% \[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
|
||||
% \[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]
|
||||
|
||||
% If we allow the high pass corner frequency to be equals to 3Hz:
|
||||
|
||||
fc = 3;
|
||||
Ra = Rin/(fc*Cp*Rin - 1);
|
||||
|
||||
ans = Ra
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 79804
|
||||
|
||||
% With this parallel resistance value, the voltage offset would be:
|
||||
|
||||
V_offset = Ra*Rin/(Ra + Rin) * in;
|
||||
|
||||
ans = V_offset
|
||||
|
||||
% Obtained voltage offset and time constant with the added resistor
|
||||
% After the resistor is added, the same steps response is performed.
|
||||
|
||||
|
||||
load('force_sensor_steps_R_82k7.mat', 't', 'encoder', 'u', 'v');
|
||||
|
||||
|
||||
|
||||
% The results are shown in Figure [[fig:force_sen_steps_time_domain_par_R]].
|
||||
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
nexttile;
|
||||
plot(t, v);
|
||||
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
||||
nexttile;
|
||||
plot(t, u);
|
||||
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
||||
|
||||
|
||||
|
||||
% #+name: fig:force_sen_steps_time_domain_par_R
|
||||
% #+caption: Time domain signal during the actuator voltage steps
|
||||
% #+RESULTS:
|
||||
% [[file:figs/force_sen_steps_time_domain_par_R.png]]
|
||||
|
||||
% Three steps are performed at the following time intervals:
|
||||
|
||||
t_s = [1.9, 6;
|
||||
8.5, 13;
|
||||
15.5, 21;
|
||||
22.6, 26;
|
||||
30.0, 36;
|
||||
37.5, 41;
|
||||
46.2, 49.5]
|
||||
|
||||
|
||||
|
||||
% The time constant and voltage offset are again estimated using a fit function.
|
||||
|
||||
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
||||
|
||||
tau = zeros(size(t_s, 1),1);
|
||||
V0 = zeros(size(t_s, 1),1);
|
||||
|
||||
for t_i = 1:size(t_s, 1)
|
||||
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
t_cur = t_cur - t_cur(1);
|
||||
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
||||
|
||||
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
||||
B0 = [0.5, -0.2, 0.2]; % Choose Appropriate Initial Estimates
|
||||
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
||||
|
||||
tau(t_i) = 1/B(2);
|
||||
V0(t_i) = B(3);
|
||||
end
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% | $tau$ [s] | $V_0$ [V] |
|
||||
% |-----------+-----------|
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.45 | 0.16 |
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.43 | 0.15 |
|
||||
% | 0.45 | 0.15 |
|
||||
% | 0.46 | 0.16 |
|
||||
% | 0.48 | 0.16 |
|
||||
|
||||
% Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of $\approx 1\,M\Omega$):
|
||||
|
||||
|
||||
Cp = 4.4e-6; % [F]
|
||||
Rin = abs(mean(tau))/Cp;
|
||||
|
||||
ans = Rin
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : 101200.0
|
||||
|
||||
% And we can verify that the bias current estimation stays the same:
|
||||
|
||||
in = mean(V0)/Rin;
|
||||
|
||||
ans = in
|
Reference in New Issue
Block a user