207 lines
5.5 KiB
Mathematica
207 lines
5.5 KiB
Mathematica
|
%% Clear Workspace and Close figures
|
|||
|
clear; close all; clc;
|
|||
|
|
|||
|
%% Intialize Laplace variable
|
|||
|
s = zpk('s');
|
|||
|
|
|||
|
addpath('./mat/');
|
|||
|
|
|||
|
% Excitation steps and measured generated voltage
|
|||
|
% The measured data is loaded.
|
|||
|
|
|||
|
load('force_sensor_steps.mat', 't', 'encoder', 'u', 'v');
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% The excitation signal (steps) and measured voltage across the sensor stack are shown in Figure [[fig:force_sen_steps_time_domain]].
|
|||
|
|
|||
|
figure;
|
|||
|
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|||
|
nexttile;
|
|||
|
plot(t, v);
|
|||
|
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
|||
|
nexttile;
|
|||
|
plot(t, u);
|
|||
|
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
|||
|
|
|||
|
% Estimation of the voltage offset and discharge time constant
|
|||
|
% The measured voltage shows an exponential decay which indicates that the charge across the capacitor formed by the stack is discharging into a resistor.
|
|||
|
% This corresponds to an RC circuit with a time constant $\tau = RC$.
|
|||
|
|
|||
|
% In order to estimate the time domain, we fit the data with an exponential.
|
|||
|
% The fit function is:
|
|||
|
|
|||
|
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% Three steps are performed at the following time intervals:
|
|||
|
|
|||
|
t_s = [ 2.5, 23;
|
|||
|
23.8, 35;
|
|||
|
35.8, 50];
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% We are interested by the =b(2)= term, which is the time constant of the exponential.
|
|||
|
|
|||
|
tau = zeros(size(t_s, 1),1);
|
|||
|
V0 = zeros(size(t_s, 1),1);
|
|||
|
|
|||
|
for t_i = 1:size(t_s, 1)
|
|||
|
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
|||
|
t_cur = t_cur - t_cur(1);
|
|||
|
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
|||
|
|
|||
|
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
|||
|
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
|
|||
|
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
|||
|
|
|||
|
tau(t_i) = 1/B(2);
|
|||
|
V0(t_i) = B(3);
|
|||
|
end
|
|||
|
|
|||
|
% Estimation of the ADC input impedance
|
|||
|
|
|||
|
% With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedgoat ADC can be computed as follows:
|
|||
|
|
|||
|
Cp = 4.4e-6; % [F]
|
|||
|
Rin = abs(mean(tau))/Cp;
|
|||
|
|
|||
|
ans = Rin
|
|||
|
|
|||
|
% Explanation of the Voltage offset
|
|||
|
% As shown in Figure [[fig:force_sen_steps_time_domain]], the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
|
|||
|
|
|||
|
% We can explain this offset by looking at the electrical model shown in Figure [[fig:force_sensor_model_electronics_without_R]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin).
|
|||
|
|
|||
|
% The differential amplifier in the Speedgoat has some input bias current $i_n$ that produces a voltage offset across its own internal resistance.
|
|||
|
% Note that the impedance of the piezoelectric stack is much larger that that at DC.
|
|||
|
|
|||
|
% #+name: fig:force_sensor_model_electronics_without_R
|
|||
|
% #+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right)
|
|||
|
% [[file:figs/force_sensor_model_electronics_without_R.png]]
|
|||
|
|
|||
|
% The estimated input bias current is then:
|
|||
|
|
|||
|
in = mean(V0)/Rin;
|
|||
|
|
|||
|
ans = in
|
|||
|
|
|||
|
% Effect of an additional Parallel Resistor
|
|||
|
% Be looking at Figure [[fig:force_sensor_model_electronics_without_R]], we can see that an additional resistor in parallel with $R_{in}$ would have two effects:
|
|||
|
% - reduce the input voltage offset
|
|||
|
% \[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]
|
|||
|
% - increase the high pass corner frequency $f_c$
|
|||
|
% \[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
|
|||
|
% \[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]
|
|||
|
|
|||
|
% If we allow the high pass corner frequency to be equals to 3Hz:
|
|||
|
|
|||
|
fc = 3;
|
|||
|
Ra = Rin/(fc*Cp*Rin - 1);
|
|||
|
|
|||
|
ans = Ra
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% #+RESULTS:
|
|||
|
% : 79804
|
|||
|
|
|||
|
% With this parallel resistance value, the voltage offset would be:
|
|||
|
|
|||
|
V_offset = Ra*Rin/(Ra + Rin) * in;
|
|||
|
|
|||
|
ans = V_offset
|
|||
|
|
|||
|
% Obtained voltage offset and time constant with the added resistor
|
|||
|
% After the resistor is added, the same steps response is performed.
|
|||
|
|
|||
|
|
|||
|
load('force_sensor_steps_R_82k7.mat', 't', 'encoder', 'u', 'v');
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% The results are shown in Figure [[fig:force_sen_steps_time_domain_par_R]].
|
|||
|
|
|||
|
|
|||
|
figure;
|
|||
|
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|||
|
nexttile;
|
|||
|
plot(t, v);
|
|||
|
xlabel('Time [s]'); ylabel('Measured voltage [V]');
|
|||
|
nexttile;
|
|||
|
plot(t, u);
|
|||
|
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% #+name: fig:force_sen_steps_time_domain_par_R
|
|||
|
% #+caption: Time domain signal during the actuator voltage steps
|
|||
|
% #+RESULTS:
|
|||
|
% [[file:figs/force_sen_steps_time_domain_par_R.png]]
|
|||
|
|
|||
|
% Three steps are performed at the following time intervals:
|
|||
|
|
|||
|
t_s = [1.9, 6;
|
|||
|
8.5, 13;
|
|||
|
15.5, 21;
|
|||
|
22.6, 26;
|
|||
|
30.0, 36;
|
|||
|
37.5, 41;
|
|||
|
46.2, 49.5]
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% The time constant and voltage offset are again estimated using a fit function.
|
|||
|
|
|||
|
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
|
|||
|
|
|||
|
tau = zeros(size(t_s, 1),1);
|
|||
|
V0 = zeros(size(t_s, 1),1);
|
|||
|
|
|||
|
for t_i = 1:size(t_s, 1)
|
|||
|
t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
|||
|
t_cur = t_cur - t_cur(1);
|
|||
|
y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2));
|
|||
|
|
|||
|
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
|
|||
|
B0 = [0.5, -0.2, 0.2]; % Choose Appropriate Initial Estimates
|
|||
|
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
|
|||
|
|
|||
|
tau(t_i) = 1/B(2);
|
|||
|
V0(t_i) = B(3);
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% #+RESULTS:
|
|||
|
% | $tau$ [s] | $V_0$ [V] |
|
|||
|
% |-----------+-----------|
|
|||
|
% | 0.43 | 0.15 |
|
|||
|
% | 0.45 | 0.16 |
|
|||
|
% | 0.43 | 0.15 |
|
|||
|
% | 0.43 | 0.15 |
|
|||
|
% | 0.45 | 0.15 |
|
|||
|
% | 0.46 | 0.16 |
|
|||
|
% | 0.48 | 0.16 |
|
|||
|
|
|||
|
% Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of $\approx 1\,M\Omega$):
|
|||
|
|
|||
|
|
|||
|
Cp = 4.4e-6; % [F]
|
|||
|
Rin = abs(mean(tau))/Cp;
|
|||
|
|
|||
|
ans = Rin
|
|||
|
|
|||
|
|
|||
|
|
|||
|
% #+RESULTS:
|
|||
|
% : 101200.0
|
|||
|
|
|||
|
% And we can verify that the bias current estimation stays the same:
|
|||
|
|
|||
|
in = mean(V0)/Rin;
|
|||
|
|
|||
|
ans = in
|