326 lines
11 KiB
HTML
326 lines
11 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2021-01-04 lun. 14:44 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<title>Amplifier Piezoelectric Actuator APA300ML - Test Bench</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="Dehaeze Thomas" />
|
|
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
<script>MathJax = {
|
|
tex: {
|
|
tags: 'ams',
|
|
macros: {bm: ["\\boldsymbol{#1}",1],}
|
|
}
|
|
};
|
|
</script>
|
|
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href="../index.html"> UP </a>
|
|
|
|
|
<a accesskey="H" href="../index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Amplifier Piezoelectric Actuator APA300ML - Test Bench</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#org7de9329">1. Model of an Amplified Piezoelectric Actuator and Sensor</a></li>
|
|
<li><a href="#orgee5ee06">2. Test-Bench Description</a></li>
|
|
<li><a href="#org532e46b">3. Measurement Procedure</a>
|
|
<ul>
|
|
<li><a href="#org1fa2bb1">3.1. Stroke Measurement</a></li>
|
|
<li><a href="#orge53dfac">3.2. Stiffness Measurement</a></li>
|
|
<li><a href="#orgd7e3e7b">3.3. Hysteresis measurement</a></li>
|
|
<li><a href="#org444da20">3.4. Piezoelectric Actuator Constant</a></li>
|
|
<li><a href="#org027bf4a">3.5. Piezoelectric Sensor Constant</a></li>
|
|
<li><a href="#org0de7709">3.6. Capacitance Measurement</a></li>
|
|
<li><a href="#org66f2e6f">3.7. Dynamical Behavior</a></li>
|
|
<li><a href="#orgc275f3f">3.8. Compare the results obtained for all 7 APA300ML</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org4ce78ab">4. Measurement Results</a></li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<p>
|
|
The goal of this test bench is to extract all the important parameters of the Amplified Piezoelectric Actuator APA300ML.
|
|
</p>
|
|
|
|
<p>
|
|
This include:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>Stroke</li>
|
|
<li>Stiffness</li>
|
|
<li>Hysteresis</li>
|
|
<li>Gain from the applied voltage \(V_a\) to the generated Force \(F_a\)</li>
|
|
<li>Gain from the sensor stack strain \(\delta L\) to the generated voltage \(V_s\)</li>
|
|
<li>Dynamical behavior</li>
|
|
</ul>
|
|
|
|
|
|
<div id="org084a571" class="figure">
|
|
<p><img src="figs/apa300ML.png" alt="apa300ML.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 1: </span>Picture of the APA300ML</p>
|
|
</div>
|
|
|
|
<div id="outline-container-org7de9329" class="outline-2">
|
|
<h2 id="org7de9329"><span class="section-number-2">1</span> Model of an Amplified Piezoelectric Actuator and Sensor</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
<p>
|
|
Consider a schematic of the Amplified Piezoelectric Actuator in Figure <a href="#org2231a2d">2</a>.
|
|
</p>
|
|
|
|
|
|
<div id="org2231a2d" class="figure">
|
|
<p><img src="figs/apa_model_schematic.png" alt="apa_model_schematic.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 2: </span>Amplified Piezoelectric Actuator Schematic</p>
|
|
</div>
|
|
|
|
<p>
|
|
A voltage \(V_a\) applied to the actuator stacks will induce an actuator force \(F_a\):
|
|
</p>
|
|
\begin{equation}
|
|
F_a = g_a \cdot V_a
|
|
\end{equation}
|
|
|
|
<p>
|
|
A change of length \(dl\) of the sensor stack will induce a voltage \(V_s\):
|
|
</p>
|
|
\begin{equation}
|
|
V_s = g_s \cdot dl
|
|
\end{equation}
|
|
|
|
<p>
|
|
We wish here to experimental measure \(g_a\) and \(g_s\).
|
|
</p>
|
|
|
|
<p>
|
|
The block-diagram model of the piezoelectric actuator is then as shown in Figure <a href="#orge718081">3</a>.
|
|
</p>
|
|
|
|
|
|
<div id="orge718081" class="figure">
|
|
<p><img src="figs/apa-model-simscape-schematic.png" alt="apa-model-simscape-schematic.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 3: </span>Model of the APA with Simscape/Simulink</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgee5ee06" class="outline-2">
|
|
<h2 id="orgee5ee06"><span class="section-number-2">2</span> Test-Bench Description</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
<div class="note" id="org5799347">
|
|
<p>
|
|
Here are the documentation of the equipment used for this test bench:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>Voltage Amplifier: <a href="doc/PD200-V7-R1.pdf">PD200</a></li>
|
|
<li>Amplified Piezoelectric Actuator: <a href="doc/APA300ML.pdf">APA300ML</a></li>
|
|
<li>DAC/ADC: Speedgoat <a href="doc/IO131-OEM-Datasheet.pdf">IO313</a></li>
|
|
<li>Encoder: <a href="doc/L-9517-9678-05-A_Data_sheet_VIONiC_series_en.pdf">Renishaw Vionic</a> and used <a href="doc/L-9517-9862-01-C_Data_sheet_RKLC_EN.pdf">Ruler</a></li>
|
|
<li>Interferometer: <a href="https://www.attocube.com/en/products/laser-displacement-sensor/displacement-measuring-interferometer">Attocube IDS3010</a></li>
|
|
</ul>
|
|
|
|
</div>
|
|
|
|
|
|
<div id="org6705e31" class="figure">
|
|
<p><img src="figs/test_bench_apa_alone.png" alt="test_bench_apa_alone.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 4: </span>Schematic of the Test Bench</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org532e46b" class="outline-2">
|
|
<h2 id="org532e46b"><span class="section-number-2">3</span> Measurement Procedure</h2>
|
|
<div class="outline-text-2" id="text-3">
|
|
</div>
|
|
<div id="outline-container-org1fa2bb1" class="outline-3">
|
|
<h3 id="org1fa2bb1"><span class="section-number-3">3.1</span> Stroke Measurement</h3>
|
|
<div class="outline-text-3" id="text-3-1">
|
|
<p>
|
|
Using the PD200 amplifier, output a voltage:
|
|
\[ V_a = 65 + 85 \sin(2\pi \cdot t) \]
|
|
To have a quasi-static excitation between -80 and 150V.
|
|
</p>
|
|
|
|
<p>
|
|
As the gain of the PD200 amplifier is 20, the DAC output voltage should be:
|
|
\[ V_{dac}(t) = 3.25 + 4.25\sin(2\pi \cdot t) \]
|
|
</p>
|
|
|
|
<p>
|
|
Verify that the voltage offset is zero!
|
|
</p>
|
|
|
|
<p>
|
|
Measure the output vertical displacement \(d\) using the interferometer.
|
|
</p>
|
|
|
|
<p>
|
|
Then, plot \(d\) as a function of \(V_a\), and perform a linear regression.
|
|
Conclude on the obtained stroke.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orge53dfac" class="outline-3">
|
|
<h3 id="orge53dfac"><span class="section-number-3">3.2</span> Stiffness Measurement</h3>
|
|
<div class="outline-text-3" id="text-3-2">
|
|
<p>
|
|
Add some (known) weight \(\delta m g\) on the suspended mass and measure the deflection \(\delta d\).
|
|
This can be tested when the piezoelectric stacks are open-circuit.
|
|
</p>
|
|
|
|
<p>
|
|
As the stiffness will be around \(k \approx 10^6 N/m\), an added mass of \(m \approx 100g\) will induce a static deflection of \(\approx 1\mu m\) which should be large enough for a precise measurement using the interferometer.
|
|
</p>
|
|
|
|
<p>
|
|
Then the obtained stiffness is:
|
|
</p>
|
|
\begin{equation}
|
|
k = \frac{\delta m g}{\delta d}
|
|
\end{equation}
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgd7e3e7b" class="outline-3">
|
|
<h3 id="orgd7e3e7b"><span class="section-number-3">3.3</span> Hysteresis measurement</h3>
|
|
<div class="outline-text-3" id="text-3-3">
|
|
<p>
|
|
Supply a quasi static sinusoidal excitation \(V_a\) at different voltages.
|
|
</p>
|
|
|
|
<p>
|
|
The offset should be 65V, and the sin amplitude can range from 1V up to 85V.
|
|
</p>
|
|
|
|
<p>
|
|
For each excitation amplitude, the vertical displacement \(d\) of the mass is measured.
|
|
</p>
|
|
|
|
<p>
|
|
Then, \(d\) is plotted as a function of \(V_a\) for all the amplitudes.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org444da20" class="outline-3">
|
|
<h3 id="org444da20"><span class="section-number-3">3.4</span> Piezoelectric Actuator Constant</h3>
|
|
<div class="outline-text-3" id="text-3-4">
|
|
<p>
|
|
Using the measurement test-bench, it is rather easy the determine the static gain between the applied voltage \(V_a\) to the induced displacement \(d\).
|
|
Use a quasi static (1Hz) excitation signal \(V_a\) on the piezoelectric stack and measure the vertical displacement \(d\).
|
|
Perform a linear regression to obtain:
|
|
</p>
|
|
\begin{equation}
|
|
d = g_{d/V_a} \cdot V_a
|
|
\end{equation}
|
|
|
|
<p>
|
|
Using the Simscape model of the APA, it is possible to determine the static gain between the actuator force \(F_a\) to the induced displacement \(d\):
|
|
</p>
|
|
\begin{equation}
|
|
d = g_{d/F_a} \cdot F_a
|
|
\end{equation}
|
|
|
|
<p>
|
|
From the two gains, it is then easy to determine \(g_a\):
|
|
</p>
|
|
\begin{equation}
|
|
g_a = \frac{F_a}{V_a} = \frac{F_a}{d} \cdot \frac{d}{V_a} = \frac{g_{d/V_a}}{g_{d/F_a}}
|
|
\end{equation}
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org027bf4a" class="outline-3">
|
|
<h3 id="org027bf4a"><span class="section-number-3">3.5</span> Piezoelectric Sensor Constant</h3>
|
|
<div class="outline-text-3" id="text-3-5">
|
|
<p>
|
|
From a quasi static (1Hz) excitation of the piezoelectric stack, measure the gain from \(V_a\) to \(V_s\):
|
|
</p>
|
|
\begin{equation}
|
|
V_s = g_{V_s/V_a} V_a
|
|
\end{equation}
|
|
|
|
<p>
|
|
Using the simscape model, compute the static gain from the actuator force \(F_a\) to the strain of the sensor stack \(dl\):
|
|
</p>
|
|
\begin{equation}
|
|
dl = g_{dl/F_a} F_a
|
|
\end{equation}
|
|
|
|
<p>
|
|
Then, the static gain from the sensor stack strain \(dl\) to the general voltage \(V_s\) is:
|
|
</p>
|
|
\begin{equation}
|
|
g_s = \frac{V_s}{dl} = \frac{V_s}{V_a} \cdot \frac{V_a}{F_a} \cdot \frac{F_a}{dl} = \frac{g_{V_s/V_a}}{g_a \cdot g_{dl/F_a}}
|
|
\end{equation}
|
|
|
|
<p>
|
|
Alternatively, we could impose an external force to add strain in the APA that should be equally present in all the 3 stacks and equal to 1/5 of the vertical strain.
|
|
This external force can be some weight added, or a piezo in parallel.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org0de7709" class="outline-3">
|
|
<h3 id="org0de7709"><span class="section-number-3">3.6</span> Capacitance Measurement</h3>
|
|
<div class="outline-text-3" id="text-3-6">
|
|
<p>
|
|
Measure the capacitance of the 3 stacks individually using a precise multi-meter.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org66f2e6f" class="outline-3">
|
|
<h3 id="org66f2e6f"><span class="section-number-3">3.7</span> Dynamical Behavior</h3>
|
|
<div class="outline-text-3" id="text-3-7">
|
|
<p>
|
|
Perform a system identification from \(V_a\) to the measured displacement \(d\) by the interferometer and by the encoder, and to the general voltage \(V_s\).
|
|
</p>
|
|
|
|
<p>
|
|
This can be performed using different excitation signals.
|
|
</p>
|
|
|
|
<p>
|
|
This can also be performed with and without the encoder fixed to the APA.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc275f3f" class="outline-3">
|
|
<h3 id="orgc275f3f"><span class="section-number-3">3.8</span> Compare the results obtained for all 7 APA300ML</h3>
|
|
<div class="outline-text-3" id="text-3-8">
|
|
<p>
|
|
Compare all the obtained parameters for all the test APA.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org4ce78ab" class="outline-2">
|
|
<h2 id="org4ce78ab"><span class="section-number-2">4</span> Measurement Results</h2>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: Dehaeze Thomas</p>
|
|
<p class="date">Created: 2021-01-04 lun. 14:44</p>
|
|
</div>
|
|
</body>
|
|
</html>
|