test-bench-apa300ml/test-bench-apa300ml.html

645 lines
23 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2021-03-15 lun. 11:35 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Amplifier Piezoelectric Actuator APA300ML - Test Bench</title>
<meta name="author" content="Dehaeze Thomas" />
<meta name="generator" content="Org Mode" />
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<script>
MathJax = {
svg: {
scale: 1,
fontCache: "global"
},
tex: {
tags: "ams",
multlineWidth: "%MULTLINEWIDTH",
tagSide: "right",
macros: {bm: ["\\boldsymbol{#1}",1],},
tagIndent: ".8em"
}
};
</script>
<script id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Amplifier Piezoelectric Actuator APA300ML - Test Bench</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org0eb094b">1. Model of an Amplified Piezoelectric Actuator and Sensor</a></li>
<li><a href="#org6f9ba21">2. Geometrical Measurements</a>
<ul>
<li><a href="#org8044086">2.1. Measurement Setup</a></li>
<li><a href="#org4293145">2.2. Measurement Results</a></li>
</ul>
</li>
<li><a href="#org50d4352">3. Electrical Measurements</a></li>
<li><a href="#orgb8a1481">4. Stiffness measurement</a>
<ul>
<li><a href="#org21bc9b2">4.1. APA test</a></li>
</ul>
</li>
<li><a href="#orgb3154e0">5. Test-Bench Description</a></li>
<li><a href="#orgac581ad">6. Measurement Procedure</a>
<ul>
<li><a href="#orge00396f">6.1. Stroke Measurement</a></li>
<li><a href="#org66ac5bb">6.2. Stiffness Measurement</a></li>
<li><a href="#orgee2d3e8">6.3. Hysteresis measurement</a></li>
<li><a href="#orge6e89ca">6.4. Piezoelectric Actuator Constant</a></li>
<li><a href="#orge970d07">6.5. Piezoelectric Sensor Constant</a></li>
<li><a href="#org86b3954">6.6. Capacitance Measurement</a></li>
<li><a href="#orgc5205df">6.7. Dynamical Behavior</a></li>
<li><a href="#org2f73a1b">6.8. Compare the results obtained for all 7 APA300ML</a></li>
</ul>
</li>
<li><a href="#org175e8d0">7. Measurement Results</a></li>
</ul>
</div>
</div>
<hr>
<p>This report is also available as a <a href="./test-bench-apa300ml.pdf">pdf</a>.</p>
<hr>
<p>
The goal of this test bench is to extract all the important parameters of the Amplified Piezoelectric Actuator APA300ML.
</p>
<p>
This include:
</p>
<ul class="org-ul">
<li>Stroke</li>
<li>Stiffness</li>
<li>Hysteresis</li>
<li>Gain from the applied voltage \(V_a\) to the generated Force \(F_a\)</li>
<li>Gain from the sensor stack strain \(\delta L\) to the generated voltage \(V_s\)</li>
<li>Dynamical behavior</li>
</ul>
<div id="org664d1fb" class="figure">
<p><img src="figs/apa300ML.png" alt="apa300ML.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Picture of the APA300ML</p>
</div>
<div id="outline-container-org0eb094b" class="outline-2">
<h2 id="org0eb094b"><span class="section-number-2">1</span> Model of an Amplified Piezoelectric Actuator and Sensor</h2>
<div class="outline-text-2" id="text-1">
<p>
Consider a schematic of the Amplified Piezoelectric Actuator in Figure <a href="#orgc9df44d">2</a>.
</p>
<div id="orgc9df44d" class="figure">
<p><img src="figs/apa_model_schematic.png" alt="apa_model_schematic.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Amplified Piezoelectric Actuator Schematic</p>
</div>
<p>
A voltage \(V_a\) applied to the actuator stacks will induce an actuator force \(F_a\):
</p>
\begin{equation}
F_a = g_a \cdot V_a
\end{equation}
<p>
A change of length \(dl\) of the sensor stack will induce a voltage \(V_s\):
</p>
\begin{equation}
V_s = g_s \cdot dl
\end{equation}
<p>
We wish here to experimental measure \(g_a\) and \(g_s\).
</p>
<p>
The block-diagram model of the piezoelectric actuator is then as shown in Figure <a href="#orgc4bba98">3</a>.
</p>
<div id="orgc4bba98" class="figure">
<p><img src="figs/apa-model-simscape-schematic.png" alt="apa-model-simscape-schematic.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Model of the APA with Simscape/Simulink</p>
</div>
</div>
</div>
<div id="outline-container-org6f9ba21" class="outline-2">
<h2 id="org6f9ba21"><span class="section-number-2">2</span> Geometrical Measurements</h2>
<div class="outline-text-2" id="text-2">
<div id="org939ac64" class="figure">
<p><img src="figs/IMG_20210224_143500.jpg" alt="IMG_20210224_143500.jpg" />
</p>
<p><span class="figure-number">Figure 4: </span>Received APA</p>
</div>
</div>
<div id="outline-container-org8044086" class="outline-3">
<h3 id="org8044086"><span class="section-number-3">2.1</span> Measurement Setup</h3>
<div class="outline-text-3" id="text-2-1">
<div id="org43d857b" class="figure">
<p><img src="figs/IMG_20210224_143809.jpg" alt="IMG_20210224_143809.jpg" />
</p>
<p><span class="figure-number">Figure 5: </span>Measurement Setup</p>
</div>
</div>
</div>
<div id="outline-container-org4293145" class="outline-3">
<h3 id="org4293145"><span class="section-number-3">2.2</span> Measurement Results</h3>
<div class="outline-text-3" id="text-2-2">
<p>
Height (Z) measurements:
</p>
<div class="org-src-container">
<pre class="src src-matlab">apa1 = 1e<span class="org-type">-</span>6<span class="org-type">*</span>[0, <span class="org-type">-</span>0.5 , 3.5 , 3.5 , 42 , 45.5, 52.5 , 46];
apa2 = 1e<span class="org-type">-</span>6<span class="org-type">*</span>[0, <span class="org-type">-</span>2.5 , <span class="org-type">-</span>3 , 0 , <span class="org-type">-</span>1.5 , 1 , <span class="org-type">-</span>2 , <span class="org-type">-</span>4];
apa3 = 1e<span class="org-type">-</span>6<span class="org-type">*</span>[0, <span class="org-type">-</span>1.5 , 15 , 17.5 , 6.5 , 6.5 , 21 , 23];
apa4 = 1e<span class="org-type">-</span>6<span class="org-type">*</span>[0, 6.5 , 14.5 , 9 , 16 , 22 , 29.5 , 21];
apa5 = 1e<span class="org-type">-</span>6<span class="org-type">*</span>[0, <span class="org-type">-</span>12.5, 16.5 , 28.5 , <span class="org-type">-</span>43 , <span class="org-type">-</span>52 , <span class="org-type">-</span>22.5, <span class="org-type">-</span>13.5];
apa6 = 1e<span class="org-type">-</span>6<span class="org-type">*</span>[0, <span class="org-type">-</span>8 , <span class="org-type">-</span>2 , 5 , <span class="org-type">-</span>57.5, <span class="org-type">-</span>62 , <span class="org-type">-</span>55.5, <span class="org-type">-</span>52.5];
apa7 = 1e<span class="org-type">-</span>6<span class="org-type">*</span>[0, 19.5 , <span class="org-type">-</span>8 , <span class="org-type">-</span>29.5, 75 , 97.5, 70 , 48];
apa7b = 1e<span class="org-type">-</span>6<span class="org-type">*</span>[0, 9 , <span class="org-type">-</span>18.5, <span class="org-type">-</span>30 , 31 , 46.5, 16.5 , 7.5];
apa = {apa1, apa2, apa3, apa4, apa5, apa6, apa7b};
</pre>
</div>
<p>
X/Y Positions of the 8 measurement points:
</p>
<div class="org-src-container">
<pre class="src src-matlab">W = 20e<span class="org-type">-</span>3; <span class="org-comment">% Width [m]</span>
L = 61e<span class="org-type">-</span>3; <span class="org-comment">% Length [m]</span>
d = 1e<span class="org-type">-</span>3; <span class="org-comment">% Distance from border [m]</span>
l = 15.5e<span class="org-type">-</span>3; <span class="org-comment">% [m]</span>
pos = [[<span class="org-type">-</span>L<span class="org-type">/</span>2 <span class="org-type">+</span> d; W<span class="org-type">/</span>2 <span class="org-type">-</span> d], [<span class="org-type">-</span>L<span class="org-type">/</span>2 <span class="org-type">+</span> l <span class="org-type">-</span> d; W<span class="org-type">/</span>2 <span class="org-type">-</span> d], [<span class="org-type">-</span>L<span class="org-type">/</span>2 <span class="org-type">+</span> l <span class="org-type">-</span> d; <span class="org-type">-</span>W<span class="org-type">/</span>2 <span class="org-type">+</span> d], [<span class="org-type">-</span>L<span class="org-type">/</span>2 <span class="org-type">+</span> d; <span class="org-type">-</span>W<span class="org-type">/</span>2 <span class="org-type">+</span> d], [L<span class="org-type">/</span>2 <span class="org-type">-</span> l <span class="org-type">+</span> d; W<span class="org-type">/</span>2 <span class="org-type">-</span> d], [L<span class="org-type">/</span>2 <span class="org-type">-</span> d; W<span class="org-type">/</span>2 <span class="org-type">-</span> d], [L<span class="org-type">/</span>2 <span class="org-type">-</span> d; <span class="org-type">-</span>W<span class="org-type">/</span>2 <span class="org-type">+</span> d], [L<span class="org-type">/</span>2 <span class="org-type">-</span> l <span class="org-type">+</span> d; <span class="org-type">-</span>W<span class="org-type">/</span>2 <span class="org-type">+</span> d]];
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">apa_d = zeros(1, 7);
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:7</span>
fun = @(x)max(abs(([pos; apa{<span class="org-constant">i</span>}]<span class="org-type">-</span>[0;0;x(1)])<span class="org-type">'*</span>([x(2<span class="org-type">:</span>3);1]<span class="org-type">/</span>norm([x(2<span class="org-type">:</span>3);1]))));
x0 = [0;0;0];
[x, min_d] = fminsearch(fun,x0);
apa_d(<span class="org-constant">i</span>) = min_d;
<span class="org-keyword">end</span>
</pre>
</div>
<table id="org2443ab1" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 1:</span> Estimated flatness</caption>
<colgroup>
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">Flatness [um]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">8.9</td>
</tr>
<tr>
<td class="org-right">3.1</td>
</tr>
<tr>
<td class="org-right">9.1</td>
</tr>
<tr>
<td class="org-right">3.0</td>
</tr>
<tr>
<td class="org-right">1.9</td>
</tr>
<tr>
<td class="org-right">7.1</td>
</tr>
<tr>
<td class="org-right">18.7</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
<div id="outline-container-org50d4352" class="outline-2">
<h2 id="org50d4352"><span class="section-number-2">3</span> Electrical Measurements</h2>
<div class="outline-text-2" id="text-3">
<div class="note" id="org262a984">
<p>
The capacitance of the stacks is measure with the <a href="https://www.gwinstek.com/en-global/products/detail/LCR-800">LCR-800 Meter</a> (<a href="doc/DS_LCR-800_Series_V2_E.pdf">doc</a>)
</p>
</div>
<div id="orgdaa55e5" class="figure">
<p><img src="figs/IMG_20210312_120337.jpg" alt="IMG_20210312_120337.jpg" />
</p>
<p><span class="figure-number">Figure 6: </span>LCR Meter used for the measurements</p>
</div>
<p>
The excitation frequency is set to be 1kHz.
</p>
<table id="org9d7793d" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 2:</span> Capacitance measured with the LCR meter. The excitation signal is a sinus at 1kHz</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right"><b>APA Number</b></th>
<th scope="col" class="org-right"><b>Sensor Stack</b></th>
<th scope="col" class="org-right"><b>Actuator Stacks</b></th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">1</td>
<td class="org-right">5.10</td>
<td class="org-right">10.03</td>
</tr>
<tr>
<td class="org-right">2</td>
<td class="org-right">4.99</td>
<td class="org-right">9.85</td>
</tr>
<tr>
<td class="org-right">3</td>
<td class="org-right">1.72</td>
<td class="org-right">5.18</td>
</tr>
<tr>
<td class="org-right">4</td>
<td class="org-right">4.94</td>
<td class="org-right">9.82</td>
</tr>
<tr>
<td class="org-right">5</td>
<td class="org-right">4.90</td>
<td class="org-right">9.66</td>
</tr>
<tr>
<td class="org-right">6</td>
<td class="org-right">4.99</td>
<td class="org-right">9.91</td>
</tr>
<tr>
<td class="org-right">7</td>
<td class="org-right">4.85</td>
<td class="org-right">9.85</td>
</tr>
</tbody>
</table>
<div class="warning" id="org5042148">
<p>
There is clearly a problem with APA300ML number 3
</p>
</div>
</div>
</div>
<div id="outline-container-orgb8a1481" class="outline-2">
<h2 id="orgb8a1481"><span class="section-number-2">4</span> Stiffness measurement</h2>
<div class="outline-text-2" id="text-4">
</div>
<div id="outline-container-org21bc9b2" class="outline-3">
<h3 id="org21bc9b2"><span class="section-number-3">4.1</span> APA test</h3>
<div class="outline-text-3" id="text-4-1">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'meas_stiff_apa_1_x.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'F'</span>, <span class="org-string">'d'</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
plot(t, F)
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Automatic Zero of the force</span></span>
F = F <span class="org-type">-</span> mean(F(t <span class="org-type">&gt;</span> 0.1 <span class="org-type">&amp;</span> t <span class="org-type">&lt;</span> 0.3));
<span class="org-matlab-cellbreak"><span class="org-comment">%% Start measurement at t = 0.2 s</span></span>
d = d(t <span class="org-type">&gt;</span> 0.2);
F = F(t <span class="org-type">&gt;</span> 0.2);
t = t(t <span class="org-type">&gt;</span> 0.2); t = t <span class="org-type">-</span> t(1);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">i_l_start = find(F <span class="org-type">&gt;</span> 0.3, 1, <span class="org-string">'first'</span>);
[<span class="org-type">~</span>, i_l_stop] = max(F);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">F_l = F(i_l_start<span class="org-type">:</span>i_l_stop);
d_l = d(i_l_start<span class="org-type">:</span>i_l_stop);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">fit_l = polyfit(F_l, d_l, 1);
<span class="org-comment">% %% Reset displacement based on fit</span>
<span class="org-comment">% d = d - fit_l(2);</span>
<span class="org-comment">% fit_s(2) = fit_s(2) - fit_l(2);</span>
<span class="org-comment">% fit_l(2) = 0;</span>
<span class="org-comment">% %% Estimated Stroke</span>
<span class="org-comment">% F_max = fit_s(2)/(fit_l(1) - fit_s(1));</span>
<span class="org-comment">% d_max = fit_l(1)*F_max;</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">h<span class="org-type">^</span>2<span class="org-type">/</span>fit_l(1)
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
hold on;
plot(F,d,<span class="org-string">'k'</span>)
plot(F_l, d_l)
plot(F_l, F_l<span class="org-type">*</span>fit_l(1) <span class="org-type">+</span> fit_l(2), <span class="org-string">'--'</span>)
</pre>
</div>
</div>
</div>
</div>
<div id="outline-container-orgb3154e0" class="outline-2">
<h2 id="orgb3154e0"><span class="section-number-2">5</span> Test-Bench Description</h2>
<div class="outline-text-2" id="text-5">
<div class="note" id="orgc87eff8">
<p>
Here are the documentation of the equipment used for this test bench:
</p>
<ul class="org-ul">
<li>Voltage Amplifier: <a href="doc/PD200-V7-R1.pdf">PD200</a></li>
<li>Amplified Piezoelectric Actuator: <a href="doc/APA300ML.pdf">APA300ML</a></li>
<li>DAC/ADC: Speedgoat <a href="doc/IO131-OEM-Datasheet.pdf">IO313</a></li>
<li>Encoder: <a href="doc/L-9517-9678-05-A_Data_sheet_VIONiC_series_en.pdf">Renishaw Vionic</a> and used <a href="doc/L-9517-9862-01-C_Data_sheet_RKLC_EN.pdf">Ruler</a></li>
<li>Interferometer: <a href="https://www.attocube.com/en/products/laser-displacement-sensor/displacement-measuring-interferometer">Attocube IDS3010</a></li>
</ul>
</div>
<div id="orgfd15602" class="figure">
<p><img src="figs/test_bench_apa_alone.png" alt="test_bench_apa_alone.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Schematic of the Test Bench</p>
</div>
</div>
</div>
<div id="outline-container-orgac581ad" class="outline-2">
<h2 id="orgac581ad"><span class="section-number-2">6</span> Measurement Procedure</h2>
<div class="outline-text-2" id="text-6">
</div>
<div id="outline-container-orge00396f" class="outline-3">
<h3 id="orge00396f"><span class="section-number-3">6.1</span> Stroke Measurement</h3>
<div class="outline-text-3" id="text-6-1">
<p>
Using the PD200 amplifier, output a voltage:
\[ V_a = 65 + 85 \sin(2\pi \cdot t) \]
To have a quasi-static excitation between -20 and 150V.
</p>
<p>
As the gain of the PD200 amplifier is 20, the DAC output voltage should be:
\[ V_{dac}(t) = 3.25 + 4.25\sin(2\pi \cdot t) \]
</p>
<p>
Verify that the voltage offset of the PD200 is zero!
</p>
<p>
Measure the output vertical displacement \(d\) using the interferometer.
</p>
<p>
Then, plot \(d\) as a function of \(V_a\), and perform a linear regression.
Conclude on the obtained stroke.
</p>
</div>
</div>
<div id="outline-container-org66ac5bb" class="outline-3">
<h3 id="org66ac5bb"><span class="section-number-3">6.2</span> Stiffness Measurement</h3>
<div class="outline-text-3" id="text-6-2">
<p>
Add some (known) weight \(\delta m g\) on the suspended mass and measure the deflection \(\delta d\).
This can be tested when the piezoelectric stacks are open-circuit.
</p>
<p>
As the stiffness will be around \(k \approx 10^6 N/m\), an added mass of \(m \approx 100g\) will induce a static deflection of \(\approx 1\mu m\) which should be large enough for a precise measurement using the interferometer.
</p>
<p>
Then the obtained stiffness is:
</p>
\begin{equation}
k = \frac{\delta m g}{\delta d}
\end{equation}
</div>
</div>
<div id="outline-container-orgee2d3e8" class="outline-3">
<h3 id="orgee2d3e8"><span class="section-number-3">6.3</span> Hysteresis measurement</h3>
<div class="outline-text-3" id="text-6-3">
<p>
Supply a quasi static sinusoidal excitation \(V_a\) at different voltages.
</p>
<p>
The offset should be 65V, and the sin amplitude can range from 1V up to 85V.
</p>
<p>
For each excitation amplitude, the vertical displacement \(d\) of the mass is measured.
</p>
<p>
Then, \(d\) is plotted as a function of \(V_a\) for all the amplitudes.
</p>
<div id="org7123135" class="figure">
<p><img src="figs/expected_hysteresis.png" alt="expected_hysteresis.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Expected Hysteresis (<a class='org-ref-reference' href="#poel10_explor_activ_hard_mount_vibrat">poel10_explor_activ_hard_mount_vibrat</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orge6e89ca" class="outline-3">
<h3 id="orge6e89ca"><span class="section-number-3">6.4</span> Piezoelectric Actuator Constant</h3>
<div class="outline-text-3" id="text-6-4">
<p>
Using the measurement test-bench, it is rather easy the determine the static gain between the applied voltage \(V_a\) to the induced displacement \(d\).
Use a quasi static (1Hz) excitation signal \(V_a\) on the piezoelectric stack and measure the vertical displacement \(d\).
Perform a linear regression to obtain:
</p>
\begin{equation}
d = g_{d/V_a} \cdot V_a
\end{equation}
<p>
Using the Simscape model of the APA, it is possible to determine the static gain between the actuator force \(F_a\) to the induced displacement \(d\):
</p>
\begin{equation}
d = g_{d/F_a} \cdot F_a
\end{equation}
<p>
From the two gains, it is then easy to determine \(g_a\):
</p>
\begin{equation}
g_a = \frac{F_a}{V_a} = \frac{F_a}{d} \cdot \frac{d}{V_a} = \frac{g_{d/V_a}}{g_{d/F_a}}
\end{equation}
</div>
</div>
<div id="outline-container-orge970d07" class="outline-3">
<h3 id="orge970d07"><span class="section-number-3">6.5</span> Piezoelectric Sensor Constant</h3>
<div class="outline-text-3" id="text-6-5">
<p>
From a quasi static excitation of the piezoelectric stack, measure the gain from \(V_a\) to \(V_s\):
</p>
\begin{equation}
V_s = g_{V_s/V_a} V_a
\end{equation}
<p>
Note here that there is an high pass filter formed by the piezo capacitor and parallel resistor.
The excitation frequency should then be in between the cut-off frequency of this high pass filter and the first resonance.
</p>
<p>
Alternatively, the gain can be computed from the dynamical identification and taking the gain at the wanted frequency.
</p>
<p>
Using the simscape model, compute the static gain from the actuator force \(F_a\) to the strain of the sensor stack \(dl\):
</p>
\begin{equation}
dl = g_{dl/F_a} F_a
\end{equation}
<p>
Then, the static gain from the sensor stack strain \(dl\) to the general voltage \(V_s\) is:
</p>
\begin{equation}
g_s = \frac{V_s}{dl} = \frac{V_s}{V_a} \cdot \frac{V_a}{F_a} \cdot \frac{F_a}{dl} = \frac{g_{V_s/V_a}}{g_a \cdot g_{dl/F_a}}
\end{equation}
<p>
Alternatively, we could impose an external force to add strain in the APA that should be equally present in all the 3 stacks and equal to 1/5 of the vertical strain.
This external force can be some weight added, or a piezo in parallel.
</p>
</div>
</div>
<div id="outline-container-org86b3954" class="outline-3">
<h3 id="org86b3954"><span class="section-number-3">6.6</span> Capacitance Measurement</h3>
<div class="outline-text-3" id="text-6-6">
<p>
Measure the capacitance of the 3 stacks individually using a precise multi-meter.
</p>
</div>
</div>
<div id="outline-container-orgc5205df" class="outline-3">
<h3 id="orgc5205df"><span class="section-number-3">6.7</span> Dynamical Behavior</h3>
<div class="outline-text-3" id="text-6-7">
<p>
Perform a system identification from \(V_a\) to the measured displacement \(d\) by the interferometer and by the encoder, and to the generated voltage \(V_s\).
</p>
<p>
This can be performed using different excitation signals.
</p>
<p>
This can also be performed with and without the encoder fixed to the APA.
</p>
</div>
</div>
<div id="outline-container-org2f73a1b" class="outline-3">
<h3 id="org2f73a1b"><span class="section-number-3">6.8</span> Compare the results obtained for all 7 APA300ML</h3>
<div class="outline-text-3" id="text-6-8">
<p>
Compare all the obtained parameters for all the test APA.
</p>
</div>
</div>
</div>
<div id="outline-container-org175e8d0" class="outline-2">
<h2 id="org175e8d0"><span class="section-number-2">7</span> Measurement Results</h2>
</div>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
<div class="csl-bib-body">
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Souleille, Adrien, Thibault Lampert, V Lafarga, Sylvain Hellegouarch, Alan Rondineau, Gonçalo Rodrigues, and Christophe Collette. 2018. “A Concept of Active Mount for Space Applications.” <i>CEAS Space Journal</i> 10 (2). Springer:15765.</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2021-03-15 lun. 11:35</p>
</div>
</body>
</html>