Measurement of the first APA

This commit is contained in:
Thomas Dehaeze 2021-06-01 18:24:01 +02:00
parent 78ce159236
commit 4f7f9c4721
7 changed files with 113 additions and 18 deletions

View File

@ -5,7 +5,89 @@
%% Load all the measurements %% Load all the measurements
meas_data = {}; % meas_data = {};
for i = 1:7 % for i = 1:7
meas_data(i) = {load(sprintf('mat/frf_data_%i.mat', i), 't', 'Va', 'Vs', 'd')}; % meas_data(i) = {load(sprintf('mat/frf_data_%i.mat', i), 't', 'Va', 'Vs', 'da', 'de')};
end % end
%%
load(sprintf('mat/frf_data_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'da', 'de')
%%
figure;
plot(t, de);
%%
figure;
plot(t, Va);
%%
Ts = (t(end) - t(1))/(length(t)-1);
Fs = 1/Ts;
win = hanning(ceil(5*Fs)); % Hannning Windows
%%
[G_dvf, f] = tfestimate(Va, de, win, [], [], 1/Ts);
[G_d, ~] = tfestimate(Va, da, win, [], [], 1/Ts);
[G_iff, ~] = tfestimate(Va, Vs, win, [], [], 1/Ts);
[coh_dvf, ~] = mscohere(Va, de, win, [], [], 1/Ts);
[coh_d, ~] = mscohere(Va, da, win, [], [], 1/Ts);
[coh_iff, ~] = mscohere(Va, Vs, win, [], [], 1/Ts);
%%
figure;
hold on;
plot(f, coh_dvf);
plot(f, coh_d);
plot(f, coh_iff);
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlim([1, 5e3]); ylim([0, 1]);
%%
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(f, abs(G_dvf));
plot(f, abs(G_d));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $V_{out}/V_{in}$ [V/V]'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(G_dvf));
plot(f, 180/pi*angle(G_d));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([5, 5e3]);
%%
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
plot(f, abs(G_iff));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $V_{out}/V_{in}$ [V/V]'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
plot(f, 180/pi*angle(G_iff));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
linkaxes([ax1,ax2],'x');
xlim([5, 5e3]);

BIN
matlab/frf_measure.slx Normal file

Binary file not shown.

View File

@ -17,10 +17,10 @@ close(f);
data = SimulinkRealTime.utils.getFileScopeData('data/data.dat').data; data = SimulinkRealTime.utils.getFileScopeData('data/data.dat').data;
Va = data(:, 1); % Excitation Voltage (input of PD200) [V] da = data(:, 1); % Excitation Voltage (input of PD200) [V]
Vs = data(:, 2); % Measured voltage (force sensor) [V] de = data(:, 2); % Measured voltage (force sensor) [V]
de = data(:, 3); % Measurment displacement (encoder) [m] Vs = data(:, 3); % Measurment displacement (encoder) [m]
da = data(:, 4); % Measurement displacement (attocube) [m] Va = data(:, 4); % Measurement displacement (attocube) [m]
t = data(:, end); % Time [s] t = data(:, end); % Time [s]
@ -29,4 +29,4 @@ t = data(:, end); % Time [s]
apa_number = 1; apa_number = 1;
save(sprintf('mat/frf_data_%i.mat', apa_number), 't', 'Va', 'Vs', 'de', 'da'); save(sprintf('mat/frf_data_%i_huddle.mat', apa_number), 't', 'Va', 'Vs', 'de', 'da');

View File

@ -1,20 +1,30 @@
s = tf('s');
addpath('src')
%%
Fs = 10e3; % Sampling Frequency [Hz] Fs = 10e3; % Sampling Frequency [Hz]
Ts = 1/Fs; % Sampling Time [s] Ts = 1/Fs; % Sampling Time [s]
Tsim = 110; % Simulation Time [s]
Trec_start = 5; % Start time for Recording [s] Trec_start = 5; % Start time for Recording [s]
Trec_dur = 100; % Recording Duration [s] Trec_dur = 100; % Recording Duration [s]
Tsim = 2*Trec_start + Trec_dur; % Simulation Time [s]
%% Sweep Sine %% Sweep Sine
gc = 0.1;
xi = 0.5;
wn = 2*pi*94.3;
G_sweep = 0.2*(s^2 + 2*gc*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2);
V_sweep = generateSweepExc('Ts', Ts, ... V_sweep = generateSweepExc('Ts', Ts, ...
'f_start', 10, ... 'f_start', 10, ...
'f_end', 1e3, ... 'f_end', 2e3, ...
'V_mean', 3.25, ... 'V_mean', 3.25, ...
't_start', Trec_start, ... 't_start', Trec_start, ...
'exc_duration', Trec_dur, ... 'exc_duration', Trec_dur, ...
'sweep_type', 'log', ... 'sweep_type', 'log', ...
'V_exc', 0.5/(1 + s/2/pi/100)); 'V_exc', G_sweep*1/(1 + s/2/pi/500));
%% Shaped Noise %% Shaped Noise
V_noise = generateShapedNoise('Ts', 1/Fs, ... V_noise = generateShapedNoise('Ts', 1/Fs, ...
@ -22,22 +32,25 @@ V_noise = generateShapedNoise('Ts', 1/Fs, ...
't_start', Trec_start, ... 't_start', Trec_start, ...
'exc_duration', Trec_dur, ... 'exc_duration', Trec_dur, ...
'smooth_ends', true, ... 'smooth_ends', true, ...
'V_exc', 0.05/(1 + s/2/pi/10)); 'V_exc', 0.00/(1 + s/2/pi/50));
%% Select the excitation signal %% Select the excitation signal
V_exc = V_noise; V_exc = timeseries(V_noise(2,:), V_noise(1,:));
figure; figure;
tiledlayout(1, 2, 'TileSpacing', 'Normal', 'Padding', 'None'); tiledlayout(1, 2, 'TileSpacing', 'Normal', 'Padding', 'None');
ax1 = nexttile; ax1 = nexttile;
plot(V_exc(1,:), V_exc(2,:)); plot(V_exc.Time, squeeze(V_exc.Data));
xlabel('Time [s]'); ylabel('Amplitude [V]'); xlabel('Time [s]'); ylabel('Amplitude [V]');
ax2 = nexttile; ax2 = nexttile;
win = hanning(floor(length(V_exc)/8)); win = hanning(floor(length(V_exc.Data)/8));
[pxx, f] = pwelch(V_exc(2,:), win, 0, [], Fs); [pxx, f] = pwelch(squeeze(V_exc.Data), win, 0, [], Fs);
plot(f, pxx) plot(f, pxx)
xlabel('Frequency [Hz]'); ylabel('Power Spectral Density [$V^2/Hz$]'); xlabel('Frequency [Hz]'); ylabel('Power Spectral Density [$V^2/Hz$]');
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlim([1, Fs/2]); ylim([1e-10, 1e0]); xlim([1, Fs/2]); ylim([1e-10, 1e0]);
%% Save
save('./frf_data.mat', 'Fs', 'Ts', 'Tsim', 'Trec_start', 'Trec_dur', 'V_exc');

Binary file not shown.

Binary file not shown.

Binary file not shown.