Add tangled matlab scripts
This commit is contained in:
parent
f890951c48
commit
31d71c3d4d
247
matlab/apa_meas_analysis_1.m
Normal file
247
matlab/apa_meas_analysis_1.m
Normal file
@ -0,0 +1,247 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
colors = colororder;
|
||||
Fs = 1e4; % Sampling Frequency [Hz]
|
||||
Ts = 1/Fs; % Sampling Time [s]
|
||||
|
||||
addpath('./mat/');
|
||||
addpath('./src/');
|
||||
|
||||
%% Load data
|
||||
apa_sweep = load(sprintf('mat/frf_data_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'da', 'de');
|
||||
|
||||
%% Time vector
|
||||
t = apa_sweep.t - apa_sweep.t(1) ; % Time vector [s]
|
||||
|
||||
%% Plot the excitation signal
|
||||
figure;
|
||||
plot(t, apa_sweep.Va)
|
||||
xlabel('Time [s]'); ylabel('Excitation Voltage $V_a$ [V]');
|
||||
|
||||
%% Sampling Frequency / Time
|
||||
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
|
||||
Fs = 1/Ts; % Sampling Frequency [Hz]
|
||||
|
||||
win = hanning(ceil(1*Fs)); % Hannning Windows
|
||||
|
||||
% Only used to have the frequency vector "f"
|
||||
[~, f] = tfestimate(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);
|
||||
|
||||
%% Compute the coherence
|
||||
[enc_coh, ~] = mscohere(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);
|
||||
[int_coh, ~] = mscohere(apa_sweep.Va, apa_sweep.da, win, [], [], 1/Ts);
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, enc_coh, 'DisplayName', '$d_e/V_a$');
|
||||
plot(f, int_coh, 'DisplayName', '$d_a/V_a$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
xlim([5, 5e3]); ylim([0, 1]);
|
||||
|
||||
%% TF - Encoder and interferometer
|
||||
[frf_enc, ~] = tfestimate(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);
|
||||
[frf_int, ~] = tfestimate(apa_sweep.Va, apa_sweep.da, win, [], [], 1/Ts);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(frf_enc), 'color', colors(1, :), ...
|
||||
'DisplayName', 'Encoder');
|
||||
plot(f, abs(frf_int), 'color', colors(2, :), ...
|
||||
'DisplayName', 'Interferometer');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast');
|
||||
ylim([1e-9, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(frf_enc), 'color', colors(1, :));
|
||||
plot(f, 180/pi*angle(frf_int), 'color', colors(2, :));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Compute the coherence from Va to Vs
|
||||
[iff_coh, ~] = mscohere(apa_sweep.Va, apa_sweep.Vs, win, [], [], 1/Ts);
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, iff_coh, 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
xlim([5, 5e3]); ylim([0, 1]);
|
||||
|
||||
%% Compute the TF from Va to Vs
|
||||
[iff_sweep, ~] = tfestimate(apa_sweep.Va, apa_sweep.Vs, win, [], [], 1/Ts);
|
||||
|
||||
%% Plot the TF
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(iff_sweep), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(iff_sweep), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Load measured data - hysteresis
|
||||
apa_hyst = load('frf_data_1_hysteresis.mat', 't', 'Va', 'de');
|
||||
% Initial time set to zero
|
||||
apa_hyst.t = apa_hyst.t - apa_hyst.t(1);
|
||||
|
||||
ampls = [0.1, 0.2, 0.4, 1, 2, 4]; % Excitation voltage amplitudes
|
||||
|
||||
%% Plot the excitation voltages and measured displacements
|
||||
figure;
|
||||
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile;
|
||||
plot(apa_hyst.t, apa_hyst.Va)
|
||||
xlabel('Time [s]'); ylabel('Output Voltage [V]');
|
||||
|
||||
ax2 = nexttile;
|
||||
plot(apa_hyst.t, apa_hyst.de)
|
||||
xlabel('Time [s]'); ylabel('Measured Displacement [m]');
|
||||
|
||||
%% Measured displacement as a function of the output voltage
|
||||
figure;
|
||||
tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([1,2]);
|
||||
hold on;
|
||||
for i = flip(1:6)
|
||||
i_lim = apa_hyst.t > i*5-1 & apa_hyst.t < i*5;
|
||||
plot(apa_hyst.Va(i_lim) - mean(apa_hyst.Va(i_lim)), apa_hyst.de(i_lim) - mean(apa_hyst.de(i_lim)), ...
|
||||
'DisplayName', sprintf('$V_a = %.1f [V]$', ampls(i)))
|
||||
end
|
||||
hold off;
|
||||
xlabel('Output Voltage [V]'); ylabel('Measured Displacement [m]');
|
||||
legend('location', 'northeast');
|
||||
xlim([-4, 4]); ylim([-1.2e-4, 1.2e-4]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = flip(1:6)
|
||||
i_lim = apa_hyst.t > i*5-1 & apa_hyst.t < i*5;
|
||||
plot(apa_hyst.Va(i_lim) - mean(apa_hyst.Va(i_lim)), apa_hyst.de(i_lim) - mean(apa_hyst.de(i_lim)))
|
||||
end
|
||||
hold off;
|
||||
xlim([-0.4, 0.4]); ylim([-0.8e-5, 0.8e-5]);
|
||||
|
||||
%% Load data for stiffness measurement
|
||||
apa_mass = load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', 1), 't', 'de');
|
||||
apa_mass.de = apa_mass.de - mean(apa_mass.de(apa_mass.t<11));
|
||||
|
||||
%% Plot the deflection at a function of time
|
||||
figure;
|
||||
plot(apa_mass.t, apa_mass.de, 'k-');
|
||||
xlabel('Time [s]'); ylabel('Displacement $d_e$ [m]');
|
||||
|
||||
added_mass = 6.4; % Added mass [kg]
|
||||
|
||||
k = 9.8 * added_mass / (mean(apa_mass.de(apa_mass.t > 12 & apa_mass.t < 12.5)) - mean(apa_mass.de(apa_mass.t > 20 & apa_mass.t < 20.5)));
|
||||
|
||||
wz = 2*pi*94; % [rad/s]
|
||||
msus = 5.7; % [kg]
|
||||
k = msus * wz^2;
|
||||
|
||||
%% Load Data
|
||||
add_mass_oc = load(sprintf('frf_data_%i_add_mass_open_circuit.mat', 1), 't', 'de');
|
||||
add_mass_cc = load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', 1), 't', 'de');
|
||||
|
||||
%% Zero displacement at initial time
|
||||
add_mass_oc.de = add_mass_oc.de - mean(add_mass_oc.de(add_mass_oc.t<11));
|
||||
add_mass_cc.de = add_mass_cc.de - mean(add_mass_cc.de(add_mass_cc.t<11));
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(add_mass_oc.t, add_mass_oc.de, 'DisplayName', 'Not connected');
|
||||
plot(add_mass_cc.t, add_mass_cc.de, 'DisplayName', 'Connected');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Displacement $d_e$ [m]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
apa_k_oc = 9.8 * added_mass / (mean(add_mass_oc.de(add_mass_oc.t > 12 & add_mass_oc.t < 12.5)) - mean(add_mass_oc.de(add_mass_oc.t > 20 & add_mass_oc.t < 20.5)));
|
||||
apa_k_cc = 9.8 * added_mass / (mean(add_mass_cc.de(add_mass_cc.t > 12 & add_mass_cc.t < 12.5)) - mean(add_mass_cc.de(add_mass_cc.t > 20 & add_mass_cc.t < 20.5)));
|
||||
|
||||
%% Load the data
|
||||
wi_k = load('frf_data_1_sweep_lf_with_R.mat', 't', 'Vs', 'Va'); % With the resistor
|
||||
wo_k = load('frf_data_1_sweep_lf.mat', 't', 'Vs', 'Va'); % Without the resistor
|
||||
|
||||
win = hanning(ceil(50*Fs)); % Hannning Windows
|
||||
|
||||
%% Compute the transfer functions from Va to Vs
|
||||
[frf_wo_k, f] = tfestimate(wo_k.Va, wo_k.Vs, win, [], [], 1/Ts);
|
||||
[frf_wi_k, ~] = tfestimate(wi_k.Va, wi_k.Vs, win, [], [], 1/Ts);
|
||||
|
||||
%% Model for the high pass filter
|
||||
C = 5.1e-6; % Sensor Stack capacitance [F]
|
||||
R = 80.6e3; % Parallel Resistor [Ohm]
|
||||
|
||||
f0 = 1/(2*pi*R*C); % Crossover frequency of RC HPF [Hz]
|
||||
|
||||
G_hpf = 0.6*(s/2*pi*f0)/(1 + s/2*pi*f0);
|
||||
|
||||
%% Compare the HPF model and the measured FRF
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(frf_wo_k), 'DisplayName', 'Without $k$');
|
||||
plot(f, abs(frf_wi_k), 'DisplayName', 'With $k$');
|
||||
plot(f, abs(squeeze(freqresp(G_hpf, f, 'Hz'))), 'k--', 'DisplayName', sprintf('HPF $f_o = %.2f [Hz]$', f0));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_{out}/V_{in}$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-1, 1e0]);
|
||||
legend('location', 'southeast')
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(frf_wo_k));
|
||||
plot(f, 180/pi*angle(frf_wi_k));
|
||||
plot(f, 180/pi*angle(squeeze(freqresp(G_hpf, f, 'Hz'))), 'k--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:45:360); ylim([-45, 90]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([0.2, 8]);
|
217
matlab/apa_meas_analysis_all.m
Normal file
217
matlab/apa_meas_analysis_all.m
Normal file
@ -0,0 +1,217 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
colors = colororder;
|
||||
|
||||
addpath('./mat/');
|
||||
addpath('./src/');
|
||||
|
||||
added_mass = 6.4; % Added mass [kg]
|
||||
|
||||
apa_nums = [1 2 4 5 6 7 8];
|
||||
|
||||
%% Load Data
|
||||
apa_mass = {};
|
||||
for i = 1:length(apa_nums)
|
||||
apa_mass(i) = {load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', apa_nums(i)), 't', 'de')};
|
||||
% The initial displacement is set to zero
|
||||
apa_mass{i}.de = apa_mass{i}.de - mean(apa_mass{i}.de(apa_mass{i}.t<11));
|
||||
end
|
||||
|
||||
%% Plot the time domain measured deflection
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(apa_mass{i}.t, apa_mass{i}.de, 'DisplayName', sprintf('APA %i', apa_nums(i)));
|
||||
end
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Displacement $d_e$ [m]');
|
||||
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
||||
|
||||
%% Compute the stiffness
|
||||
apa_k = zeros(length(apa_nums), 1);
|
||||
for i = 1:length(apa_nums)
|
||||
apa_k(i) = 9.8 * added_mass / (mean(apa_mass{i}.de(apa_mass{i}.t > 12 & apa_mass{i}.t < 12.5)) - mean(apa_mass{i}.de(apa_mass{i}.t > 20 & apa_mass{i}.t < 20.5)));
|
||||
end
|
||||
|
||||
%% Second identification
|
||||
apa_sweep = {};
|
||||
for i = 1:length(apa_nums)
|
||||
apa_sweep(i) = {load(sprintf('frf_data_%i_sweep.mat', apa_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
|
||||
end
|
||||
|
||||
%% Third identification
|
||||
apa_noise_hf = {};
|
||||
for i = 1:length(apa_nums)
|
||||
apa_noise_hf(i) = {load(sprintf('frf_data_%i_noise_hf.mat', apa_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
|
||||
end
|
||||
|
||||
%% Time vector
|
||||
t = apa_sweep{1}.t - apa_sweep{1}.t(1) ; % Time vector [s]
|
||||
|
||||
%% Sampling
|
||||
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
|
||||
Fs = 1/Ts; % Sampling Frequency [Hz]
|
||||
|
||||
win = hanning(ceil(0.5*Fs)); % Hannning Windows
|
||||
|
||||
% Only used to have the frequency vector "f"
|
||||
[~, f] = tfestimate(apa_sweep{1}.Va, apa_sweep{1}.de, win, [], [], 1/Ts);
|
||||
i_lf = f <= 350;
|
||||
i_hf = f > 350;
|
||||
|
||||
%% Coherence computation
|
||||
coh_enc = zeros(length(f), length(apa_nums));
|
||||
for i = 1:length(apa_nums)
|
||||
[coh_lf, ~] = mscohere(apa_sweep{i}.Va, apa_sweep{i}.de, win, [], [], 1/Ts);
|
||||
[coh_hf, ~] = mscohere(apa_noise_hf{i}.Va, apa_noise_hf{i}.de, win, [], [], 1/Ts);
|
||||
coh_enc(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];
|
||||
end
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, coh_enc(:, i));
|
||||
end;
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
xlim([5, 5e3]); ylim([0, 1]);
|
||||
|
||||
%% Transfer function estimation
|
||||
enc_frf = zeros(length(f), length(apa_nums));
|
||||
for i = 1:length(apa_nums)
|
||||
[frf_lf, ~] = tfestimate(apa_sweep{i}.Va, apa_sweep{i}.de, win, [], [], 1/Ts);
|
||||
[frf_hf, ~] = tfestimate(apa_noise_hf{i}.Va, apa_noise_hf{i}.de, win, [], [], 1/Ts);
|
||||
enc_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];
|
||||
end
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(enc_frf(:, i)), ...
|
||||
'DisplayName', sprintf('APA %i', apa_nums(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
||||
ylim([1e-9, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(enc_frf(:, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(enc_frf(:, i)), ...
|
||||
'DisplayName', sprintf('APA %i', apa_nums(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
||||
ylim([2e-5, 4e-4]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(enc_frf(:, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360);
|
||||
ylim([-10, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([80, 120]);
|
||||
|
||||
%% Compute the Coherence
|
||||
coh_iff = zeros(length(f), length(apa_nums));
|
||||
for i = 1:length(apa_nums)
|
||||
[coh_lf, ~] = mscohere(apa_sweep{i}.Va, apa_sweep{i}.Vs, win, [], [], 1/Ts);
|
||||
[coh_hf, ~] = mscohere(apa_noise_hf{i}.Va, apa_noise_hf{i}.Vs, win, [], [], 1/Ts);
|
||||
coh_iff(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];
|
||||
end
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, coh_iff(:, i));
|
||||
end;
|
||||
hold off;
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlim([5, 5e3]); ylim([0, 1]);
|
||||
|
||||
%% FRF estimation of the transfer function from Va to Vs
|
||||
iff_frf = zeros(length(f), length(apa_nums));
|
||||
for i = 1:length(apa_nums)
|
||||
[frf_lf, ~] = tfestimate(apa_sweep{i}.Va, apa_sweep{i}.Vs, win, [], [], 1/Ts);
|
||||
[frf_hf, ~] = tfestimate(apa_noise_hf{i}.Va, apa_noise_hf{i}.Vs, win, [], [], 1/Ts);
|
||||
iff_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];
|
||||
end
|
||||
|
||||
%% Plot the FRF from Va to Vs
|
||||
figure;
|
||||
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(iff_frf(:, i)), ...
|
||||
'DisplayName', sprintf('APA %i', apa_nums(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(iff_frf(:, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Remove the APA 7 (6 in the list) from measurements
|
||||
apa_nums(6) = [];
|
||||
enc_frf(:,6) = [];
|
||||
iff_frf(:,6) = [];
|
||||
|
||||
%% Save the measured FRF
|
||||
save('mat/meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums');
|
383
matlab/apa_simscape_model_comp.m
Normal file
383
matlab/apa_simscape_model_comp.m
Normal file
@ -0,0 +1,383 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Add useful folders to the path
|
||||
addpath('test_bench_apa300ml/');
|
||||
addpath('png/');
|
||||
addpath('mat/');
|
||||
addpath('src/');
|
||||
|
||||
%% Frequency vector used for many plots
|
||||
freqs = 2*logspace(0, 3, 1000);
|
||||
|
||||
%% Open Simscape Model
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
% Name of the Simulink File
|
||||
mdl = 'test_bench_apa300ml';
|
||||
|
||||
open(mdl)
|
||||
|
||||
%% Initialize the structure with default values
|
||||
n_hexapod = struct();
|
||||
n_hexapod.actuator = initializeAPA(...
|
||||
'type', '2dof', ...
|
||||
'Ga', 1, ... % Actuator constant [N/V]
|
||||
'Gs', 1); % Sensor constant [V/m]
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
|
||||
io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Interferometer
|
||||
|
||||
%% Run the linearization
|
||||
Ga = linearize(mdl, io, 0.0, options);
|
||||
Ga.InputName = {'Va'};
|
||||
Ga.OutputName = {'Vs', 'de', 'da'};
|
||||
|
||||
%% Bode plot of the transfer function from u to taum
|
||||
freqs = logspace(1, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Ga('Vs', 'Va'), freqs, 'Hz'))), 'k-')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('Vs', 'Va'), freqs, 'Hz'))), 'k-')
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:45:360);
|
||||
ylim([-180, 0])
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
|
||||
%% Bode plot of the transfer function from Va to de and da
|
||||
freqs = logspace(1, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Ga('de', 'Va'), freqs, 'Hz'))), 'DisplayName', 'Encoder')
|
||||
plot(freqs, abs(squeeze(freqresp(Ga('da', 'Va'), freqs, 'Hz'))), 'DisplayName', 'Interferometer')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'southwest');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('de', 'Va'), freqs, 'Hz'))))
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('da', 'Va'), freqs, 'Hz'))))
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:45:360);
|
||||
ylim([-180, 0])
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
%% Load Data
|
||||
load('meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums');
|
||||
|
||||
%% Initialize a 2DoF APA with Ga=Gs=1
|
||||
n_hexapod.actuator = initializeAPA(...
|
||||
'type', '2dof', ...
|
||||
'ga', 1, ...
|
||||
'gs', 1);
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
|
||||
io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Attocube
|
||||
|
||||
%% Identification
|
||||
Gs = linearize(mdl, io, 0.0, options);
|
||||
Gs.InputName = {'Va'};
|
||||
Gs.OutputName = {'Vs', 'de', 'da'};
|
||||
|
||||
%% Estimated Actuator Constant
|
||||
ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(Gs('de', 'Va')); % [N/V]
|
||||
|
||||
%% Estimated Sensor Constant
|
||||
gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m]
|
||||
|
||||
%% Set the identified constants
|
||||
n_hexapod.actuator = initializeAPA(...
|
||||
'type', '2dof', ...
|
||||
'ga', ga, ... % Actuator gain [N/V]
|
||||
'gs', gs); % Sensor gain [V/m]
|
||||
|
||||
%% Identify again the dynamics with correct Ga,Gs
|
||||
Gs = linearize(mdl, io, 0.0, options);
|
||||
Gs = Gs*exp(-Ts*s);
|
||||
Gs.InputName = {'Va'};
|
||||
Gs.OutputName = {'Vs', 'de', 'da'};
|
||||
|
||||
%% Bode plot of the transfer function from u to de
|
||||
freqs = logspace(1,4,1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d\mathcal{L}_m/u$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(enc_frf(:,1)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Bode plot of the transfer function from Va to Vs (both Simscape and measured FRF)
|
||||
freqs = logspace(1,4,1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $\tau_m/u$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(iff_frf(:,1)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Initialize the APA as a flexible body
|
||||
n_hexapod.actuator = initializeAPA(...
|
||||
'type', 'flexible', ...
|
||||
'ga', 1, ...
|
||||
'gs', 1);
|
||||
|
||||
%% Identify the dynamics
|
||||
Gs = linearize(mdl, io, 0.0, options);
|
||||
Gs.InputName = {'Va'};
|
||||
Gs.OutputName = {'Vs', 'de', 'da'};
|
||||
|
||||
%% Actuator Constant
|
||||
ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(Gs('de', 'Va')); % [N/V]
|
||||
|
||||
%% Sensor Constant
|
||||
gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m]
|
||||
|
||||
%% Set the identified constants
|
||||
n_hexapod.actuator = initializeAPA(...
|
||||
'type', 'flexible', ...
|
||||
'ga', ga, ... % Actuator gain [N/V]
|
||||
'gs', gs); % Sensor gain [V/m]
|
||||
|
||||
%% Identify with updated constants
|
||||
Gs = linearize(mdl, io, 0.0, options);
|
||||
Gs = Gs*exp(-Ts*s);
|
||||
Gs.InputName = {'Va'};
|
||||
Gs.OutputName = {'Vs', 'de', 'da'};
|
||||
|
||||
%% Bode plot of the transfer function from V_a to d_e (both Simscape and measured FRF)
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d\mathcal{L}_m/u$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-9, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(enc_frf(:,1)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Bode plot of the transfer function from Va to Vs (both Simscape and measured FRF)
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $\tau_m/u$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(iff_frf(:,1)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Optimized parameters
|
||||
n_hexapod.actuator = initializeAPA('type', '2dof', ...
|
||||
'Ga', -32.2, ...
|
||||
'Gs', 0.088, ...
|
||||
'k', ones(6,1)*0.38e6, ...
|
||||
'ke', ones(6,1)*1.75e6, ...
|
||||
'ka', ones(6,1)*3e7, ...
|
||||
'c', ones(6,1)*1.3e2, ...
|
||||
'ce', ones(6,1)*1e1, ...
|
||||
'ca', ones(6,1)*1e1 ...
|
||||
);
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
|
||||
|
||||
%% Identification with optimized parameters
|
||||
Gs = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
||||
Gs.InputName = {'Va'};
|
||||
Gs.OutputName = {'Vs', 'de'};
|
||||
|
||||
%% Comparison of the experimental data and Simscape Model
|
||||
freqs = 5*logspace(0, 3, 1000);
|
||||
figure;
|
||||
tiledlayout(3, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
|
||||
ax1b = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
ax2b = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(apa_nums)
|
||||
plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
||||
xlim([10, 2e3]);
|
45
matlab/basic_meas_geometrical.m
Normal file
45
matlab/basic_meas_geometrical.m
Normal file
@ -0,0 +1,45 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
colors = colororder;
|
||||
|
||||
addpath('./mat/');
|
||||
|
||||
%% Measured height for all the APA at the 8 locations
|
||||
apa1 = 1e-6*[0, -0.5 , 3.5 , 3.5 , 42 , 45.5, 52.5 , 46];
|
||||
apa2 = 1e-6*[0, -2.5 , -3 , 0 , -1.5 , 1 , -2 , -4];
|
||||
apa3 = 1e-6*[0, -1.5 , 15 , 17.5 , 6.5 , 6.5 , 21 , 23];
|
||||
apa4 = 1e-6*[0, 6.5 , 14.5 , 9 , 16 , 22 , 29.5 , 21];
|
||||
apa5 = 1e-6*[0, -12.5, 16.5 , 28.5 , -43 , -52 , -22.5, -13.5];
|
||||
apa6 = 1e-6*[0, -8 , -2 , 5 , -57.5, -62 , -55.5, -52.5];
|
||||
apa7 = 1e-6*[0, 19.5 , -8 , -29.5, 75 , 97.5, 70 , 48];
|
||||
apa7b = 1e-6*[0, 9 , -18.5, -30 , 31 , 46.5, 16.5 , 7.5];
|
||||
|
||||
apa = {apa1, apa2, apa3, apa4, apa5, apa6, apa7b};
|
||||
|
||||
%% X-Y positions of the measurements points
|
||||
W = 20e-3; % Width [m]
|
||||
L = 61e-3; % Length [m]
|
||||
d = 1e-3; % Distance from border [m]
|
||||
l = 15.5e-3; % [m]
|
||||
|
||||
pos = [[-L/2 + d; W/2 - d],
|
||||
[-L/2 + l - d; W/2 - d],
|
||||
[-L/2 + l - d; -W/2 + d],
|
||||
[-L/2 + d; -W/2 + d],
|
||||
[L/2 - l + d; W/2 - d],
|
||||
[L/2 - d; W/2 - d],
|
||||
[L/2 - d; -W/2 + d],
|
||||
[L/2 - l + d; -W/2 + d]];
|
||||
|
||||
%% Using fminsearch to find the best fitting plane
|
||||
apa_d = zeros(1, 7);
|
||||
for i = 1:7
|
||||
fun = @(x)max(abs(([pos; apa{i}]-[0;0;x(1)])'*([x(2:3);1]/norm([x(2:3);1]))));
|
||||
x0 = [0;0;0];
|
||||
[x, min_d] = fminsearch(fun,x0);
|
||||
apa_d(i) = min_d;
|
||||
end
|
97
matlab/basic_meas_spurious_res.m
Normal file
97
matlab/basic_meas_spurious_res.m
Normal file
@ -0,0 +1,97 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
colors = colororder;
|
||||
|
||||
addpath('mat/');
|
||||
|
||||
%% Load Data
|
||||
bending_X = load('apa300ml_bending_X_top.mat');
|
||||
|
||||
%% Spectral Analysis setup
|
||||
Ts = bending_X.Track1_X_Resolution; % Sampling Time [s]
|
||||
win = hann(ceil(1/Ts));
|
||||
|
||||
%% Compute the transfer function from applied force to measured rotation
|
||||
[G_bending_X, f] = tfestimate(bending_X.Track1, bending_X.Track2, win, [], [], 1/Ts);
|
||||
|
||||
%% Plot the transfer function
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, abs(G_bending_X), 'k-');
|
||||
hold off;
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude');
|
||||
xlim([50, 2e3]); ylim([1e-5, 2e-1]);
|
||||
text(280, 5.5e-2,{'280Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
text(840, 2.0e-3,{'840Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
text(1400, 7.0e-3,{'1400Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
|
||||
%% Load Data
|
||||
bending_Y = load('apa300ml_bending_Y_top.mat');
|
||||
|
||||
%% Compute the transfer function
|
||||
[G_bending_Y, ~] = tfestimate(bending_Y.Track1, bending_Y.Track2, win, [], [], 1/Ts);
|
||||
|
||||
%% Plot the transfer function
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, abs(G_bending_Y), 'k-');
|
||||
hold off;
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude');
|
||||
xlim([50, 2e3]); ylim([1e-5, 3e-2])
|
||||
text(412, 1.5e-2,{'412Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
text(1218, 1.5e-2,{'1220Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
|
||||
%% Load Data
|
||||
torsion = load('apa300ml_torsion_left.mat');
|
||||
|
||||
%% Compute transfer function
|
||||
[G_torsion, ~] = tfestimate(torsion.Track1, torsion.Track2, win, [], [], 1/Ts);
|
||||
|
||||
%% Plot the transfer function
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, abs(G_torsion), 'k-');
|
||||
hold off;
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude');
|
||||
xlim([50, 2e3]); ylim([1e-5, 2e-2])
|
||||
text(415, 4.3e-3,{'415Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
text(267, 8e-4,{'267Hz'}, 'VerticalAlignment', 'bottom','HorizontalAlignment','center')
|
||||
text(800, 6e-4,{'800Hz'}, 'VerticalAlignment', 'bottom','HorizontalAlignment','center')
|
||||
|
||||
%% Load data
|
||||
torsion = load('apa300ml_torsion_top.mat');
|
||||
|
||||
%% Compute transfer function
|
||||
[G_torsion_top, ~] = tfestimate(torsion.Track1, torsion.Track2, win, [], [], 1/Ts);
|
||||
|
||||
%% Plot the two transfer functions
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, abs(G_torsion), 'k-', 'DisplayName', 'Left excitation');
|
||||
plot(f, abs(G_torsion_top), '-', 'DisplayName', 'Top excitation');
|
||||
hold off;
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude');
|
||||
xlim([50, 2e3]); ylim([1e-5, 2e-2])
|
||||
text(415, 4.3e-3,{'415Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
text(267, 8e-4,{'267Hz'}, 'VerticalAlignment', 'bottom','HorizontalAlignment','center')
|
||||
text(800, 2e-3,{'800Hz'}, 'VerticalAlignment', 'bottom','HorizontalAlignment','center')
|
||||
legend('location', 'northwest');
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, abs(G_torsion), 'DisplayName', 'Torsion');
|
||||
plot(f, abs(G_bending_X), 'DisplayName', 'Bending - X');
|
||||
plot(f, abs(G_bending_Y), 'DisplayName', 'Bending - Y');
|
||||
hold off;
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude');
|
||||
xlim([50, 2e3]); ylim([1e-5, 1e-1]);
|
||||
legend('location', 'southeast');
|
112
matlab/basic_meas_stroke.m
Normal file
112
matlab/basic_meas_stroke.m
Normal file
@ -0,0 +1,112 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
colors = colororder;
|
||||
|
||||
addpath('./mat/');
|
||||
|
||||
%% Load the measurements
|
||||
apa300ml_1s = {};
|
||||
for i = 1:7
|
||||
apa300ml_1s(i) = {load(['mat/stroke_apa_1stacks_' num2str(i) '.mat'], 't', 'V', 'd')};
|
||||
end
|
||||
|
||||
%% Only take the data between t=2 and t=10 and reset the measured displacement at t=2
|
||||
for i = 1:7
|
||||
t = apa300ml_1s{i}.t;
|
||||
apa300ml_1s{i}.d = apa300ml_1s{i}.d - mean(apa300ml_1s{i}.d(t > 1.9 & t < 2.0));
|
||||
apa300ml_1s{i}.d = apa300ml_1s{i}.d(t > 2.0 & t < 10.0);
|
||||
apa300ml_1s{i}.V = apa300ml_1s{i}.V(t > 2.0 & t < 10.0);
|
||||
apa300ml_1s{i}.t = apa300ml_1s{i}.t(t > 2.0 & t < 10.0);
|
||||
end
|
||||
|
||||
%% Applied voltage as a function of time
|
||||
figure;
|
||||
plot(apa300ml_1s{1}.t, 20*apa300ml_1s{1}.V)
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
ylim([-20,160]); yticks([-20 0 20 40 60 80 100 120 140 160]);
|
||||
|
||||
%% Measured motion for all the APA300ML
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:7
|
||||
plot(apa300ml_1s{i}.t, 1e6*apa300ml_1s{i}.d, 'DisplayName', sprintf('APA %i', i))
|
||||
end
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Displacement [$\mu m$]')
|
||||
legend('location', 'southeast', 'FontSize', 8)
|
||||
|
||||
%% Displacement as a function of the applied voltage
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:7
|
||||
plot(20*apa300ml_1s{i}.V, 1e6*apa300ml_1s{i}.d, 'DisplayName', sprintf('APA %i', i))
|
||||
end
|
||||
hold off;
|
||||
xlabel('Voltage [V]'); ylabel('Displacement [$\mu m$]')
|
||||
legend('location', 'southwest', 'FontSize', 8)
|
||||
xlim([-20, 160]); ylim([-140, 0]);
|
||||
|
||||
%% Load the measurements
|
||||
apa300ml_2s = {};
|
||||
for i = 1:7
|
||||
apa300ml_2s(i) = {load(['mat/stroke_apa_2stacks_' num2str(i) '.mat'], 't', 'V', 'd')};
|
||||
end
|
||||
|
||||
%% Only take the data between t=2 and t=10 and reset the measured displacement at t=2
|
||||
for i = 1:7
|
||||
t = apa300ml_2s{i}.t;
|
||||
apa300ml_2s{i}.d = apa300ml_2s{i}.d - mean(apa300ml_2s{i}.d(t > 1.9 & t < 2.0));
|
||||
apa300ml_2s{i}.d = apa300ml_2s{i}.d(t > 2.0 & t < 10.0);
|
||||
apa300ml_2s{i}.V = apa300ml_2s{i}.V(t > 2.0 & t < 10.0);
|
||||
apa300ml_2s{i}.t = apa300ml_2s{i}.t(t > 2.0 & t < 10.0);
|
||||
end
|
||||
|
||||
%% Measured motion for all the APA300ML
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:7
|
||||
plot(apa300ml_2s{i}.t, 1e6*apa300ml_2s{i}.d, 'DisplayName', sprintf('APA %i', i))
|
||||
end
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Displacement [$\mu m$]')
|
||||
legend('location', 'southeast', 'FontSize', 8)
|
||||
ylim([-250, 0]);
|
||||
|
||||
%% Displacement as a function of the applied voltage
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:7
|
||||
plot(20*apa300ml_2s{i}.V, 1e6*apa300ml_2s{i}.d, 'DisplayName', sprintf('APA %i', i))
|
||||
end
|
||||
hold off;
|
||||
xlabel('Voltage [V]'); ylabel('Displacement [$\mu m$]')
|
||||
legend('location', 'southwest', 'FontSize', 8)
|
||||
xlim([-20, 160]); ylim([-250, 0]);
|
||||
|
||||
%% Motion induced by applying a voltage to the three stack is the sum to the previous two measured displacements
|
||||
apa300ml_3s = {};
|
||||
for i = 1:7
|
||||
apa300ml_3s(i) = apa300ml_1s(i);
|
||||
apa300ml_3s{i}.d = apa300ml_1s{i}.d + apa300ml_2s{i}.d;
|
||||
end
|
||||
|
||||
%% Displacement as a function of the applied voltage
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:7
|
||||
plot(20*apa300ml_3s{i}.V, 1e6*apa300ml_3s{i}.d, 'DisplayName', sprintf('APA %i', i))
|
||||
end
|
||||
hold off;
|
||||
xlabel('Voltage [V]'); ylabel('Displacement [$\mu m$]')
|
||||
legend('location', 'southwest', 'FontSize', 8)
|
||||
xlim([-20, 160]); ylim([-400, 0]);
|
||||
|
||||
%% Estimate the maximum stroke
|
||||
apa300ml_stroke = zeros(1, 7);
|
||||
for i = 1:7
|
||||
apa300ml_stroke(i) = max(apa300ml_3s{i}.d) - min(apa300ml_3s{i}.d);
|
||||
end
|
369
matlab/strut_meas_analysis_1.m
Normal file
369
matlab/strut_meas_analysis_1.m
Normal file
@ -0,0 +1,369 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
colors = colororder;
|
||||
|
||||
addpath('./mat/');
|
||||
addpath('./src/');
|
||||
|
||||
%% Load Data
|
||||
leg_sweep = load(sprintf('frf_data_leg_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
|
||||
leg_noise_hf = load(sprintf('frf_data_leg_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
|
||||
|
||||
%% Time vector
|
||||
t = leg_sweep.t - leg_sweep.t(1) ; % Time vector [s]
|
||||
|
||||
%% Sampling frequency/time
|
||||
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
|
||||
Fs = 1/Ts; % Sampling Frequency [Hz]
|
||||
|
||||
win = hanning(ceil(0.5*Fs)); % Hannning Windows
|
||||
|
||||
% Only used to have the frequency vector "f"
|
||||
[~, f] = tfestimate(leg_sweep.Va, leg_sweep.de, win, [], [], 1/Ts);
|
||||
i_lf = f <= 350; % Indices used for the low frequency
|
||||
i_hf = f > 350; % Indices used for the low frequency
|
||||
|
||||
%% Compute the coherence for both excitation signals
|
||||
[int_coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts);
|
||||
[int_coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the coherence
|
||||
int_coh = [int_coh_sweep(i_lf); int_coh_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, int_coh(:, 1), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
xlim([10, 2e3]); ylim([0, 1]);
|
||||
|
||||
%% Compute FRF function from Va to da
|
||||
[frf_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts);
|
||||
[frf_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the FRF
|
||||
int_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the measured FRF
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(int_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-9, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(int_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Compute the coherence for both excitation signals
|
||||
[iff_coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts);
|
||||
[iff_coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the coherence
|
||||
iff_coh = [iff_coh_sweep(i_lf); iff_coh_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, iff_coh, 'k-');
|
||||
hold off;
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlim([10, 2e3]); ylim([0, 1]);
|
||||
|
||||
%% Compute the FRF
|
||||
[frf_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts);
|
||||
[frf_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the FRF
|
||||
iff_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the measured FRF
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(iff_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(iff_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Load data
|
||||
leg_enc_sweep = load(sprintf('frf_data_leg_coder_badly_align_%i_noise.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
|
||||
leg_enc_noise_hf = load(sprintf('frf_data_leg_coder_badly_align_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
|
||||
|
||||
%% Compute the coherence for both excitation signals
|
||||
[int_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.da, win, [], [], 1/Ts);
|
||||
[int_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.da, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the coherinte
|
||||
int_coh = [int_coh_sweep(i_lf); int_coh_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, int_coh(:, 1), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
xlim([10, 2e3]); ylim([0, 1]);
|
||||
|
||||
%% Compute FRF function from Va to da
|
||||
[frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.da, win, [], [], 1/Ts);
|
||||
[frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.da, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the FRF
|
||||
int_with_enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the FRF from Va to de
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(int_with_enc_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_a/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-7, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(int_with_enc_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Plot the FRF from Va to da with and without the encoder
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(int_with_enc_frf), '-', 'DisplayName', 'With encoder');
|
||||
plot(f, abs(int_frf), '-', 'DisplayName', 'Without encoder');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_a/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-7, 1e-3]);
|
||||
legend('location', 'northeast')
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(int_with_enc_frf), '-');
|
||||
plot(f, 180/pi*angle(int_frf), '-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Compute the coherence for both excitation signals
|
||||
[enc_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.de, win, [], [], 1/Ts);
|
||||
[enc_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the coherence
|
||||
enc_coh = [enc_coh_sweep(i_lf); enc_coh_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, enc_coh(:, 1), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
xlim([10, 2e3]); ylim([0, 1]);
|
||||
|
||||
%% Compute FRF function from Va to da
|
||||
[frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.de, win, [], [], 1/Ts);
|
||||
[frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the FRF
|
||||
enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the FRF from Va to de
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(enc_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-7, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(enc_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(enc_frf), 'DisplayName', 'Encoder');
|
||||
plot(f, abs(int_with_enc_frf), 'DisplayName', 'Interferometer');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
||||
ylim([1e-8, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(enc_frf));
|
||||
plot(f, 180/pi*angle(int_with_enc_frf));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Transfer function from Vs to de with indicated resonances
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, abs(enc_frf), 'k-');
|
||||
text(93, 4e-4, {'93Hz'}, 'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
text(200, 1.3e-4,{'197Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
text(300, 4e-6, {'290Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
text(400, 1.4e-6,{'376Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); xlabel('Frequency [Hz]');
|
||||
hold off;
|
||||
ylim([1e-7, 1e-3]); xlim([10, 2e3]);
|
||||
|
||||
%% Compute the coherence for both excitation signals
|
||||
[iff_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [], [], 1/Ts);
|
||||
[iff_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the coherence
|
||||
iff_coh = [iff_coh_sweep(i_lf); iff_coh_noise_hf(i_hf)];
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, iff_coh, 'k-');
|
||||
hold off;
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlim([10, 2e3]); ylim([0, 1]);
|
||||
|
||||
%% Compute FRF function from Va to da
|
||||
[frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [], [], 1/Ts);
|
||||
[frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [], 1/Ts);
|
||||
|
||||
%% Combine the FRF
|
||||
iff_with_enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];
|
||||
|
||||
%% Plot FRF of the transfer function from Va to Vs
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(iff_with_enc_frf), 'k-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(iff_with_enc_frf), 'k');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Compare the IFF plant with and without the encoders
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(iff_with_enc_frf), 'DisplayName', 'With Encoder');
|
||||
plot(f, abs(iff_frf), 'DisplayName', 'Without Encoder');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast', 'FontSize', 8);
|
||||
ylim([1e-2, 1e2]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(iff_with_enc_frf));
|
||||
plot(f, 180/pi*angle(iff_frf));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
217
matlab/strut_meas_analysis_all.m
Normal file
217
matlab/strut_meas_analysis_all.m
Normal file
@ -0,0 +1,217 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
colors = colororder;
|
||||
|
||||
addpath('./mat/');
|
||||
addpath('./src/');
|
||||
|
||||
%% Numnbers of the measured legs
|
||||
leg_nums = [1 2 3 4 5];
|
||||
|
||||
%% First identification (low frequency noise)
|
||||
leg_noise = {};
|
||||
for i = 1:length(leg_nums)
|
||||
leg_noise(i) = {load(sprintf('frf_data_leg_coder_%i_noise.mat', leg_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
|
||||
end
|
||||
|
||||
%% Second identification (high frequency noise)
|
||||
leg_noise_hf = {};
|
||||
for i = 1:length(leg_nums)
|
||||
leg_noise_hf(i) = {load(sprintf('frf_data_leg_coder_%i_noise_hf.mat', leg_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
|
||||
end
|
||||
|
||||
%% Time vector
|
||||
t = leg_noise{1}.t - leg_noise{1}.t(1) ; % Time vector [s]
|
||||
|
||||
%% Sampling
|
||||
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
|
||||
Fs = 1/Ts; % Sampling Frequency [Hz]
|
||||
|
||||
win = hanning(ceil(0.5*Fs)); % Hannning Windows
|
||||
|
||||
% Only used to have the frequency vector "f"
|
||||
[~, f] = tfestimate(leg_noise{1}.Va, leg_noise{1}.de, win, [], [], 1/Ts);
|
||||
i_lf = f <= 350;
|
||||
i_hf = f > 350;
|
||||
|
||||
%% Coherence computation
|
||||
coh_enc = zeros(length(f), length(leg_nums));
|
||||
for i = 1:length(leg_nums)
|
||||
[coh_lf, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.de, win, [], [], 1/Ts);
|
||||
[coh_hf, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.de, win, [], [], 1/Ts);
|
||||
coh_enc(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];
|
||||
end
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, coh_enc(:, i));
|
||||
end;
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
xlim([10, 2e3]); ylim([0, 1]);
|
||||
|
||||
%% Transfer function estimation
|
||||
enc_frf = zeros(length(f), length(leg_nums));
|
||||
|
||||
for i = 1:length(leg_nums)
|
||||
[frf_lf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.de, win, [], [], 1/Ts);
|
||||
[frf_hf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.de, win, [], [], 1/Ts);
|
||||
enc_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];
|
||||
end
|
||||
|
||||
%% Bode plot of the FRF from Va to de
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, abs(enc_frf(:, i)), ...
|
||||
'DisplayName', sprintf('Leg %i', leg_nums(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
||||
ylim([1e-8, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, 180/pi*angle(enc_frf(:, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Coherence computation
|
||||
coh_int = zeros(length(f), length(leg_nums));
|
||||
for i = 1:length(leg_nums)
|
||||
[coh_lf, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.da, win, [], [], 1/Ts);
|
||||
[coh_hf, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.da, win, [], [], 1/Ts);
|
||||
coh_int(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];
|
||||
end
|
||||
|
||||
%% Plot coherence
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, coh_int(:, i));
|
||||
end;
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
xlim([10, 2e3]); ylim([0, 1]);
|
||||
|
||||
%% Transfer function estimation
|
||||
int_frf = zeros(length(f), length(leg_nums));
|
||||
for i = 1:length(leg_nums)
|
||||
[frf_lf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.da, win, [], [], 1/Ts);
|
||||
[frf_hf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.da, win, [], [], 1/Ts);
|
||||
int_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];
|
||||
end
|
||||
|
||||
%% Plot the FRF from Va to de (interferometer)
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, abs(int_frf(:, i)), ...
|
||||
'DisplayName', sprintf('Leg %i', leg_nums(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_a/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
||||
ylim([1e-9, 1e-3]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, 180/pi*angle(int_frf(:, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Coherence
|
||||
coh_iff = zeros(length(f), length(leg_nums));
|
||||
for i = 1:length(leg_nums)
|
||||
[coh_lf, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.Vs, win, [], [], 1/Ts);
|
||||
[coh_hf, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.Vs, win, [], [], 1/Ts);
|
||||
coh_iff(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];
|
||||
end
|
||||
|
||||
%% Plot the coherence
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, coh_iff(:, i));
|
||||
end;
|
||||
hold off;
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlim([10, 2e3]); ylim([0, 1]);
|
||||
|
||||
%% FRF estimation of the transfer function from Va to Vs
|
||||
iff_frf = zeros(length(f), length(leg_nums));
|
||||
for i = 1:length(leg_nums)
|
||||
[frf_lf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.Vs, win, [], [], 1/Ts);
|
||||
[frf_hf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.Vs, win, [], [], 1/Ts);
|
||||
iff_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];
|
||||
end
|
||||
|
||||
%% Plot the FRF from Va to Vs
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, abs(iff_frf(:, i)), ...
|
||||
'DisplayName', sprintf('Leg %i', leg_nums(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, 180/pi*angle(iff_frf(:, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Save the estimated FRF for further analysis
|
||||
save('mat/meas_struts_frf.mat', 'f', 'Ts', 'enc_frf', 'int_frf', 'iff_frf', 'leg_nums');
|
597
matlab/strut_simscape_model_comp.m
Normal file
597
matlab/strut_simscape_model_comp.m
Normal file
@ -0,0 +1,597 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Add useful folders to the path
|
||||
addpath('test_bench_struts/');
|
||||
addpath('png/');
|
||||
addpath('mat/');
|
||||
addpath('src/');
|
||||
|
||||
%% Frequency vector used for many plots
|
||||
freqs = 2*logspace(0, 3, 1000);
|
||||
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'test_bench_struts';
|
||||
|
||||
%% Open the Simulink File
|
||||
open(mdl)
|
||||
|
||||
%% Initialize structure containing data for the Simscape model
|
||||
n_hexapod = struct();
|
||||
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof');
|
||||
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof');
|
||||
n_hexapod.actuator = initializeAPA('type', '2dof');
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
|
||||
io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Interferometer
|
||||
|
||||
%% Run the linearization
|
||||
Gs = linearize(mdl, io, 0.0, options);
|
||||
Gs.InputName = {'Va'};
|
||||
Gs.OutputName = {'Vs', 'de', 'da'};
|
||||
|
||||
%% Bode plot of the transfer functions
|
||||
figure;
|
||||
tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))), 'DisplayName', 'Encoder')
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('da', 'Va'), freqs, 'Hz'))), 'DisplayName', 'Interferometer')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'southwest');
|
||||
|
||||
ax1b = nexttile([2,1]);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))), 'k-')
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))))
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('da', 'Va'), freqs, 'Hz'))))
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:45:360);
|
||||
ylim([-180, 180])
|
||||
|
||||
ax2b = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))), 'k-')
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:45:360);
|
||||
ylim([0, 180])
|
||||
|
||||
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Load measured FRF
|
||||
load('meas_struts_frf.mat', 'f', 'Ts', 'enc_frf', 'int_frf', 'iff_frf', 'leg_nums');
|
||||
|
||||
%% Add time delay to the Simscape model
|
||||
Gs = exp(-s*Ts)*Gs;
|
||||
|
||||
%% Compare the FRF and identified dynamics from Va to Vs and da
|
||||
figure;
|
||||
tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(int_frf(:, 1)), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', 'Meas. FRF');
|
||||
for i = 2:length(leg_nums)
|
||||
plot(f, abs(int_frf(:, i)), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('da', 'Va'), freqs, 'Hz'))), '-', ...
|
||||
'DisplayName', 'Model')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_a/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax1b = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', 'Meas. FRF');
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))), '-', ...
|
||||
'DisplayName', 'Model')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-2, 1e2]);
|
||||
legend('location', 'southeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, 180/pi*angle(int_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('da', 'Va'), freqs, 'Hz'))), '-')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
ax2b = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))), '-')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Compare the FRF and identified dynamics from Va to de
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(enc_frf(:, 1)), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', 'Meas. FRF');
|
||||
for i = 2:length(leg_nums)
|
||||
plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))), '-', ...
|
||||
'DisplayName', 'Model')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))), '-')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([20, 2e3]);
|
||||
|
||||
%% Load measured FRF of the struts
|
||||
load('meas_struts_frf.mat', 'f', 'Ts', 'enc_frf', 'int_frf', 'iff_frf', 'leg_nums');
|
||||
|
||||
%% Initialize Simscape data
|
||||
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof');
|
||||
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof');
|
||||
n_hexapod.actuator = initializeAPA('type', 'flexible');
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
|
||||
|
||||
%% Identification
|
||||
Gs = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
||||
Gs.InputName = {'Va'};
|
||||
Gs.OutputName = {'de'};
|
||||
|
||||
%% Measured FRF from Vs to de and identified dynamics using the flexible APA
|
||||
freqs = 2*logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', 'Meas. FRF');
|
||||
for i = 2:length(leg_nums)
|
||||
plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))), '-', ...
|
||||
'DisplayName', 'Model')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(leg_nums)
|
||||
plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]);
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz'))), '-')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Considered misalignments
|
||||
dy_aligns = [-0.5, -0.1, 0, 0.1, 0.5]*1e-3; % [m]
|
||||
|
||||
%% Transfer functions from u to de for all the misalignment in y direction
|
||||
Gs_align = {zeros(length(dy_aligns), 1)};
|
||||
|
||||
for i = 1:length(dy_aligns)
|
||||
n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align', [0; dy_aligns(i); 0]);
|
||||
|
||||
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
||||
G.InputName = {'Va'};
|
||||
G.OutputName = {'de'};
|
||||
|
||||
Gs_align(i) = {G};
|
||||
end
|
||||
|
||||
%% Transfer function from Vs to de - effect of x-misalignment
|
||||
freqs = 2*logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(dy_aligns)
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_align{i}('de', 'Va'), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$d_y = %.1f$ [mm]', 1e3*dy_aligns(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(dy_aligns)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_align{i}('de', 'Va'), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Considered misalignments
|
||||
dx_aligns = [-0.1, -0.05, 0, 0.05, 0.1]*1e-3; % [m]
|
||||
|
||||
%% Transfer functions from u to de for all the misalignment in x direction
|
||||
Gs_align = {zeros(length(dx_aligns), 1)};
|
||||
|
||||
for i = 1:length(dx_aligns)
|
||||
n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align', [dx_aligns(i); 0; 0]);
|
||||
|
||||
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
||||
G.InputName = {'Va'};
|
||||
G.OutputName = {'de'};
|
||||
|
||||
Gs_align(i) = {G};
|
||||
end
|
||||
|
||||
%% Transfer function from Vs to de - effect of x-misalignment
|
||||
freqs = 2*logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(dx_aligns)
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_align{i}('de', 'Va'), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$d_x = %.2f$ [mm]', 1e3*dx_aligns(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(dx_aligns)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_align{i}('de', 'Va'), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 2e3]);
|
||||
|
||||
%% Tuned misalignment [m]
|
||||
d_aligns = [[-0.05, -0.3, 0];
|
||||
[ 0, 0.5, 0];
|
||||
[-0.1, -0.3, 0];
|
||||
[ 0, 0.3, 0];
|
||||
[-0.05, 0.05, 0]]'*1e-3;
|
||||
|
||||
%% Idenfity the transfer function from actuator to encoder for all cases
|
||||
Gs_align = {zeros(size(d_aligns,2), 1)};
|
||||
|
||||
for i = 1:size(d_aligns,2)
|
||||
n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align', d_aligns(:,i));
|
||||
|
||||
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
||||
G.InputName = {'Va'};
|
||||
G.OutputName = {'de'};
|
||||
|
||||
Gs_align(i) = {G};
|
||||
end
|
||||
|
||||
%% Comparison of the plants (encoder output) when tuning the misalignment
|
||||
freqs = 2*logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
ax1 = nexttile();
|
||||
hold on;
|
||||
plot(f, abs(enc_frf(:, 1)));
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_align{1}('de', 'Va'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]');
|
||||
|
||||
ax2 = nexttile();
|
||||
hold on;
|
||||
plot(f, abs(enc_frf(:, 2)));
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_align{2}('de', 'Va'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
||||
|
||||
ax3 = nexttile(4);
|
||||
hold on;
|
||||
plot(f, abs(enc_frf(:, 3)), 'DisplayName', 'Meas.');
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_align{3}('de', 'Va'), freqs, 'Hz'))), ...
|
||||
'DisplayName', 'Model');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]');
|
||||
legend('location', 'southwest', 'FontSize', 8);
|
||||
|
||||
ax4 = nexttile(5);
|
||||
hold on;
|
||||
plot(f, abs(enc_frf(:, 4)));
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_align{4}('de', 'Va'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
|
||||
ax5 = nexttile(6);
|
||||
hold on;
|
||||
plot(f, abs(enc_frf(:, 5)));
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_align{5}('de', 'Va'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4,ax5],'xy');
|
||||
xlim([20, 2e3]); ylim([1e-8, 1e-3]);
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
|
||||
|
||||
%% APA Initialization
|
||||
n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align', [0.1e-3; 0.5e-3; 0]);
|
||||
|
||||
%% Tested bending stiffnesses [Nm/rad]
|
||||
kRs = [3, 4, 5, 6, 7];
|
||||
|
||||
%% Idenfity the transfer function from actuator to encoder for all bending stiffnesses
|
||||
Gs = {zeros(length(kRs), 1)};
|
||||
|
||||
for i = 1:length(kRs)
|
||||
n_hexapod.flex_bot = initializeBotFlexibleJoint(...
|
||||
'type', '4dof', ...
|
||||
'kRx', kRs(i), ...
|
||||
'kRy', kRs(i));
|
||||
n_hexapod.flex_top = initializeTopFlexibleJoint(...
|
||||
'type', '4dof', ...
|
||||
'kRx', kRs(i), ...
|
||||
'kRy', kRs(i));
|
||||
|
||||
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
||||
G.InputName = {'Va'};
|
||||
G.OutputName = {'de'};
|
||||
|
||||
Gs(i) = {G};
|
||||
end
|
||||
|
||||
%% Plot the obtained transfer functions for all the bending stiffnesses
|
||||
freqs = 2*logspace(1, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(kRs)
|
||||
plot(freqs, abs(squeeze(freqresp(Gs{i}('de', 'Va'), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$k_R = %.0f$ [Nm/rad]', kRs(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(kRs)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('de', 'Va'), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([20, 2e3]);
|
||||
|
||||
%% Tested axial stiffnesses [N/m]
|
||||
kzs = [5e7 7.5e7 1e8 2.5e8];
|
||||
|
||||
%% Idenfity the transfer function from actuator to encoder for all bending stiffnesses
|
||||
Gs = {zeros(length(kzs), 1)};
|
||||
|
||||
for i = 1:length(kzs)
|
||||
n_hexapod.flex_bot = initializeBotFlexibleJoint(...
|
||||
'type', '4dof', ...
|
||||
'kz', kzs(i));
|
||||
n_hexapod.flex_top = initializeTopFlexibleJoint(...
|
||||
'type', '4dof', ...
|
||||
'kz', kzs(i));
|
||||
|
||||
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
||||
G.InputName = {'Va'};
|
||||
G.OutputName = {'de'};
|
||||
|
||||
Gs(i) = {G};
|
||||
end
|
||||
|
||||
%% Plot the obtained transfer functions for all the axial stiffnesses
|
||||
freqs = 2*logspace(1, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(kzs)
|
||||
plot(freqs, abs(squeeze(freqresp(Gs{i}('de', 'Va'), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$k_z = %.1e$ [N/m]', kzs(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(kzs)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('de', 'Va'), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([20, 2e3]);
|
||||
|
||||
%% Tested bending dampings [Nm/(rad/s)]
|
||||
cRs = [1e-3, 5e-3, 1e-2, 5e-2, 1e-1];
|
||||
|
||||
%% Idenfity the transfer function from actuator to encoder for all bending dampins
|
||||
Gs = {zeros(length(kRs), 1)};
|
||||
|
||||
for i = 1:length(kRs)
|
||||
n_hexapod.flex_bot = initializeBotFlexibleJoint(...
|
||||
'type', '4dof', ...
|
||||
'cRx', cRs(i), ...
|
||||
'cRy', cRs(i));
|
||||
n_hexapod.flex_top = initializeTopFlexibleJoint(...
|
||||
'type', '4dof', ...
|
||||
'cRx', cRs(i), ...
|
||||
'cRy', cRs(i));
|
||||
|
||||
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
||||
G.InputName = {'Va'};
|
||||
G.OutputName = {'de'};
|
||||
|
||||
Gs(i) = {G};
|
||||
end
|
||||
|
||||
%% Plot the obtained transfer functions for all the bending stiffnesses
|
||||
freqs = 2*logspace(1, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(kRs)
|
||||
plot(freqs, abs(squeeze(freqresp(Gs{i}('de', 'Va'), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$c_R = %.3f\\,[\\frac{Nm}{rad/s}]$', cRs(i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-3]);
|
||||
legend('location', 'southwest');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(kRs)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('de', 'Va'), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([20, 2e3]);
|
@ -4205,6 +4205,10 @@ save('mat/meas_struts_frf.mat', 'f', 'Ts', 'enc_frf', 'int_frf', 'iff_frf', 'leg
|
||||
#+end_src
|
||||
|
||||
* Test Bench Struts - Simscape Model
|
||||
:PROPERTIES:
|
||||
:header-args:matlab: :tangle matlab/strut_simscape_model_comp.m
|
||||
:header-args:matlab+: :comments no
|
||||
:END:
|
||||
<<sec:simscape_bench_struts>>
|
||||
** Introduction :ignore:
|
||||
|
||||
@ -5159,10 +5163,6 @@ Not sure is would be effect though.
|
||||
#+end_question
|
||||
|
||||
* TODO Compare with the FEM/Simscape Model :noexport:
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/APA300ML.m
|
||||
:END:
|
||||
|
||||
** Introduction :ignore:
|
||||
In this section, the Amplified Piezoelectric Actuator APA300ML ([[file:doc/APA300ML.pdf][doc]]) is modeled using a Finite Element Software.
|
||||
Then a /super element/ is exported and imported in Simscape where its dynamic is studied.
|
||||
|
Loading…
Reference in New Issue
Block a user