test-bench-apa/index.org

606 lines
17 KiB
Org Mode
Raw Normal View History

2020-07-20 12:55:13 +02:00
#+TITLE: Test Bench APA95ML
2020-07-17 11:46:45 +02:00
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ../index.html
#+HTML_LINK_UP: ../index.html
2020-07-20 11:27:55 +02:00
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/readtheorg.js"></script>
2020-07-17 11:46:45 +02:00
#+HTML_MATHJAX: align: center tagside: right font: TeX
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results raw replace :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports both
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
:END:
2020-07-20 13:17:34 +02:00
* Introduction :ignore:
#+name: fig:setup_picture
#+caption: Picture of the Setup
[[file:figs/setup_picture.png]]
#+name: fig:setup_zoom
#+caption: Zoom on the APA
[[file:figs/setup_zoom.png]]
2020-07-20 09:44:30 +02:00
* Setup
:PROPERTIES:
:header-args:matlab+: :tangle matlab/setup_experiment.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
** Parameters
2020-07-17 11:46:45 +02:00
#+begin_src matlab
Ts = 1e-4;
#+end_src
2020-07-20 09:44:30 +02:00
** Filter White Noise
2020-07-17 11:46:45 +02:00
#+begin_src matlab
Glpf = 1/(1 + s/2/pi/500);
Gz = c2d(Glpf, Ts, 'tustin');
#+end_src
2020-07-20 09:44:30 +02:00
* Run Experiment and Save Data
:PROPERTIES:
:header-args:matlab+: :tangle matlab/run_experiment.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
** Load Data
#+begin_src matlab
data = SimulinkRealTime.utils.getFileScopeData('data/apa95ml.dat').data;
#+end_src
** Save Data
#+begin_src matlab
u = data(:, 1); % Input Voltage [V]
y = data(:, 2); % Output Displacement [m]
t = data(:, 3); % Time [s]
#+end_src
#+begin_src matlab
save('./mat/huddle_test.mat', 't', 'u', 'y', 'Glpf');
#+end_src
* Huddle Test
:PROPERTIES:
:header-args:matlab+: :tangle matlab/huddle_test.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
2020-07-20 11:27:55 +02:00
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load Data :noexport:
2020-07-20 09:44:30 +02:00
#+begin_src matlab
2020-07-24 15:48:22 +02:00
load('./mat/huddle_test.mat', 't', 'y');
#+end_src
#+begin_src matlab
y = y - mean(y(1000:end));
2020-07-20 09:44:30 +02:00
#+end_src
** Time Domain Data
2020-07-20 11:27:55 +02:00
#+begin_src matlab :exports none
2020-07-20 09:44:30 +02:00
figure;
2020-07-24 15:48:22 +02:00
plot(t(1000:end), y(1000:end))
2020-07-20 09:44:30 +02:00
ylabel('Output Displacement [m]'); xlabel('Time [s]');
#+end_src
2020-07-20 11:27:55 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/huddle_test_time_domain.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:huddle_test_time_domain
#+caption: Measurement of the Mass displacement during Huddle Test
#+RESULTS:
[[file:figs/huddle_test_time_domain.png]]
2020-07-20 09:44:30 +02:00
** PSD of Measurement Noise
2020-07-20 10:55:38 +02:00
#+begin_src matlab
Ts = t(end)/(length(t)-1);
Fs = 1/Ts;
win = hanning(ceil(1*Fs));
#+end_src
#+begin_src matlab
2020-07-24 15:48:22 +02:00
[pxx, f] = pwelch(y(1000:end), win, [], [], Fs);
2020-07-20 10:55:38 +02:00
#+end_src
2020-07-20 11:27:55 +02:00
#+begin_src matlab :exports none
2020-07-20 10:55:38 +02:00
figure;
plot(f, sqrt(pxx));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
2020-07-20 11:27:55 +02:00
xlim([1, Fs/2]);
2020-07-20 10:55:38 +02:00
#+end_src
2020-07-20 09:44:30 +02:00
2020-07-20 11:27:55 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/huddle_test_pdf.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:huddle_test_pdf
#+caption: Amplitude Spectral Density of the Displacement during Huddle Test
#+RESULTS:
[[file:figs/huddle_test_pdf.png]]
* Transfer Function Estimation using the DAC as the driver
2020-07-20 09:44:30 +02:00
:PROPERTIES:
:header-args:matlab+: :tangle matlab/tf_estimation.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
2020-07-20 11:27:55 +02:00
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load Data :noexport:
2020-07-17 11:46:45 +02:00
#+begin_src matlab
2020-07-20 10:55:38 +02:00
ht = load('./mat/huddle_test.mat', 't', 'u', 'y');
2020-07-20 11:27:55 +02:00
load('./mat/apa95ml_5kg_10V.mat', 't', 'u', 'y');
2020-07-17 11:46:45 +02:00
#+end_src
2020-07-20 09:44:30 +02:00
** Time Domain Data
2020-07-20 11:27:55 +02:00
#+begin_src matlab :exports none
2020-07-17 11:46:45 +02:00
figure;
subplot(1,2,1);
2020-07-20 10:55:38 +02:00
plot(t, u)
2020-07-17 11:46:45 +02:00
ylabel('Input Voltage [V]'); xlabel('Time [s]');
subplot(1,2,2);
2020-07-20 10:55:38 +02:00
plot(t, y)
2020-07-17 11:46:45 +02:00
ylabel('Output Displacement [m]'); xlabel('Time [s]');
#+end_src
2020-07-20 11:27:55 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_10V_time_domain.pdf', 'width', 'full', 'height', 'tall');
#+end_src
#+name: fig:apa95ml_5kg_10V_time_domain
#+caption: Time domain signals during the test
#+RESULTS:
[[file:figs/apa95ml_5kg_10V_time_domain.png]]
2020-07-20 10:55:38 +02:00
** Comparison of the PSD with Huddle Test
#+begin_src matlab
Ts = t(end)/(length(t)-1);
Fs = 1/Ts;
win = hanning(ceil(1*Fs));
#+end_src
#+begin_src matlab
[pxx, f] = pwelch(y, win, [], [], Fs);
[pht, ~] = pwelch(ht.y, win, [], [], Fs);
#+end_src
2020-07-20 11:27:55 +02:00
#+begin_src matlab :exports none
2020-07-20 10:55:38 +02:00
figure;
hold on;
plot(f, sqrt(pxx), 'DisplayName', '5kg');
plot(f, sqrt(pht), 'DisplayName', 'Huddle Test');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
2020-07-20 11:27:55 +02:00
legend('location', 'northeast');
xlim([1, Fs/2]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_10V_pdf_comp_huddle.pdf', 'width', 'wide', 'height', 'tall');
2020-07-20 10:55:38 +02:00
#+end_src
2020-07-20 11:27:55 +02:00
#+name: fig:apa95ml_5kg_10V_pdf_comp_huddle
#+caption: Comparison of the ASD for the identification test and the huddle test
#+RESULTS:
[[file:figs/apa95ml_5kg_10V_pdf_comp_huddle.png]]
2020-07-20 09:44:30 +02:00
** Compute TF estimate and Coherence
#+begin_src matlab
Ts = t(end)/(length(t)-1);
Fs = 1/Ts;
#+end_src
2020-07-17 11:46:45 +02:00
#+begin_src matlab
win = hann(ceil(1/Ts));
2020-07-20 11:27:55 +02:00
[tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts);
[co_est, ~] = mscohere( u, -y, win, [], [], 1/Ts);
2020-07-17 11:46:45 +02:00
#+end_src
2020-07-20 11:27:55 +02:00
#+begin_src matlab :exports none
2020-07-17 11:46:45 +02:00
figure;
hold on;
plot(f, co_est, 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
2020-07-20 11:27:55 +02:00
xlim([10, 5e3]);
2020-07-17 11:46:45 +02:00
#+end_src
2020-07-20 11:27:55 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_10V_coh.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:apa95ml_5kg_10V_coh
#+caption: Coherence
#+RESULTS:
[[file:figs/apa95ml_5kg_10V_coh.png]]
#+begin_src matlab :exports none
2020-07-17 11:46:45 +02:00
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(tf_est), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
hold off;
ax2 = subplot(2, 1, 2);
hold on;
plot(f, 180/pi*angle(tf_est), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
linkaxes([ax1,ax2], 'x');
2020-07-20 11:27:55 +02:00
xlim([10, 5e3]);
2020-07-17 11:46:45 +02:00
#+end_src
2020-07-20 11:27:55 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_10V_tf.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:apa95ml_5kg_10V_tf
#+caption: Estimation of the transfer function from input voltage to displacement
#+RESULTS:
[[file:figs/apa95ml_5kg_10V_tf.png]]
2020-07-20 13:29:36 +02:00
** Comparison with the FEM model
#+begin_src matlab
load('mat/fem_model_5kg.mat', 'Ghm');
#+end_src
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(tf_est), 'DisplayName', 'Identification')
plot(f, abs(squeeze(freqresp(Ghm, f, 'Hz'))), 'DisplayName', 'FEM')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
legend('location', 'northeast')
hold off;
ax2 = subplot(2, 1, 2);
hold on;
plot(f, 180/pi*angle(tf_est))
plot(f, 180/pi*angle(squeeze(freqresp(Ghm, f, 'Hz'))))
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
linkaxes([ax1,ax2], 'x');
xlim([10, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_comp_fem.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:apa95ml_5kg_comp_fem
#+caption: Comparison of the identified transfer function and the one estimated from the FE model
#+RESULTS:
[[file:figs/apa95ml_5kg_comp_fem.png]]
** Conclusion :ignore:
#+begin_important
The problem comes from the fact that the piezo is driven directly by the DAC that cannot deliver enought current.
In the next section, a current amplifier is used.
#+end_important
* Transfer Function Estimation using the PI Amplifier
2020-07-24 11:34:18 +02:00
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load Data :noexport:
#+begin_src matlab
ht = load('./mat/huddle_test.mat', 't', 'u', 'y');
load('./mat/apa95ml_5kg_Amp_E505.mat', 't', 'u', 'um', 'y');
2020-07-24 11:34:18 +02:00
#+end_src
#+begin_src matlab
u = u - mean(u);
um = um - mean(um);
y = y - mean(y);
ht.u = ht.u - mean(ht.u);
ht.y = ht.y - mean(ht.y);
#+end_src
** Comparison of the PSD with Huddle Test
#+begin_src matlab
Ts = t(end)/(length(t)-1);
Fs = 1/Ts;
win = hanning(ceil(1*Fs));
#+end_src
#+begin_src matlab
[pxx, f] = pwelch(y, win, [], [], Fs);
[pht, ~] = pwelch(ht.y, win, [], [], Fs);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(f, sqrt(pxx), 'DisplayName', '5kg');
plot(f, sqrt(pht), 'DisplayName', 'Huddle Test');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
2020-07-24 15:48:22 +02:00
legend('location', 'southwest');
xlim([1, Fs/2]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_PI_pdf_comp_huddle.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:apa95ml_5kg_PI_pdf_comp_huddle
#+caption: Comparison of the ASD for the identification test and the huddle test
#+RESULTS:
[[file:figs/apa95ml_5kg_PI_pdf_comp_huddle.png]]
** Compute TF estimate and Coherence
#+begin_src matlab
Ts = t(end)/(length(t)-1);
Fs = 1/Ts;
#+end_src
#+begin_src matlab
win = hann(ceil(1/Ts));
[tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts);
[tf_um , ~] = tfestimate(um, -y, win, [], [], 1/Ts);
[co_est, ~] = mscohere( um, -y, win, [], [], 1/Ts);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(f, co_est, 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([10, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_PI_coh.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:apa95ml_5kg_PI_coh
#+caption: Coherence
#+RESULTS:
[[file:figs/apa95ml_5kg_PI_coh.png]]
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(tf_est), 'DisplayName', 'Input Voltage')
plot(f, abs(tf_um), 'DisplayName', 'Monitor Voltage')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
hold off;
legend('location', 'southwest')
ax2 = subplot(2, 1, 2);
hold on;
plot(f, 180/pi*unwrap(angle(tf_est)))
plot(f, 180/pi*unwrap(angle(tf_um)))
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-540, 0]);
yticks(-540:90:0);
linkaxes([ax1,ax2], 'x');
xlim([10, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_PI_tf.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:apa95ml_5kg_PI_tf
#+caption: Estimation of the transfer function from input voltage to displacement
#+RESULTS:
[[file:figs/apa95ml_5kg_PI_tf.png]]
** Comparison with the FEM model
#+begin_src matlab
load('mat/fem_model_5kg.mat', 'Ghm');
#+end_src
#+begin_src matlab :exports none
freqs = logspace(0, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, 1/10*170/1400*abs(tf_um), 'DisplayName', 'Identification')
plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), 'DisplayName', 'FEM')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
legend('location', 'northeast')
hold off;
ax2 = subplot(2, 1, 2);
hold on;
plot(f, 180/pi*unwrap(angle(tf_um)))
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))))
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-540, 0]);
yticks(-540:90:0);
linkaxes([ax1,ax2], 'x');
xlim([10, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/apa95ml_5kg_pi_comp_fem.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:apa95ml_5kg_pi_comp_fem
#+caption: Comparison of the identified transfer function and the one estimated from the FE model
#+RESULTS:
[[file:figs/apa95ml_5kg_pi_comp_fem.png]]
* Transfer function of the PI Amplifier
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load Data :noexport:
#+begin_src matlab
load('./mat/apa95ml_5kg_Amp_E505.mat', 't', 'u', 'um');
#+end_src
** Compute TF estimate and Coherence
#+begin_src matlab
Ts = t(end)/(length(t)-1);
Fs = 1/Ts;
#+end_src
The coherence and the transfer function are estimate from the voltage input of the PI amplifier to its voltage inputs.
The coherence is very good as expected (Figure [[fig:PI_E505_coh]]).
The transfer function show a low pass filter behavior with a lot of phase drop (Figure [[fig:PI_E505_tf]]).
#+begin_src matlab
win = hann(ceil(10/Ts));
[tf_est, f] = tfestimate(u, um, win, [], [], 1/Ts);
[co_est, ~] = mscohere( u, um, win, [], [], 1/Ts);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(f, co_est, 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([10, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/PI_E505_coh.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:PI_E505_coh
#+caption: Coherence
#+RESULTS:
[[file:figs/PI_E505_coh.png]]
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(tf_est), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
hold off;
ax2 = subplot(2, 1, 2);
hold on;
plot(f, 180/pi*angle(tf_est), 'k-')
set(gca, 'Xscale', 'lin'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks(-180:90:180);
linkaxes([ax1,ax2], 'x');
xlim([10, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/PI_E505_tf.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:PI_E505_tf
#+caption: Estimation of the transfer function from input voltage to displacement
#+RESULTS:
[[file:figs/PI_E505_tf.png]]
2020-07-24 15:48:22 +02:00
The delay can be estimated as follow (in ms):
#+begin_src matlab :results replace value
2020-07-24 15:48:22 +02:00
finddelay(u, um)*(1000*Ts)
#+end_src
#+RESULTS:
2020-07-24 15:48:22 +02:00
: 0.4
2020-07-24 15:48:22 +02:00
This most probably corresponds to a FIR filter.