776 lines
24 KiB
HTML
776 lines
24 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2020-09-21 lun. 18:03 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<title>SVD Control</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="Dehaeze Thomas" />
|
|
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
<link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
|
|
<script type="text/javascript" src="./js/jquery.min.js"></script>
|
|
<script type="text/javascript" src="./js/bootstrap.min.js"></script>
|
|
<script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
|
|
<script type="text/javascript" src="./js/readtheorg.js"></script>
|
|
<script>MathJax = {
|
|
tex: {
|
|
tags: 'ams',
|
|
macros: {bm: ["\\boldsymbol{#1}",1],}
|
|
}
|
|
};
|
|
</script>
|
|
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href="../index.html"> UP </a>
|
|
|
|
|
<a accesskey="H" href="../index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">SVD Control</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#orge03ef95">1. Gravimeter - Simscape Model</a>
|
|
<ul>
|
|
<li><a href="#org94cda63">1.1. Simulink</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org01f2bcf">2. Stewart Platform - Simscape Model</a>
|
|
<ul>
|
|
<li><a href="#org5d90a14">2.1. Jacobian</a></li>
|
|
<li><a href="#org7bbb169">2.2. Simscape Model</a></li>
|
|
<li><a href="#org2a265c4">2.3. Identification of the plant</a></li>
|
|
<li><a href="#orgfa83a84">2.4. Obtained Dynamics</a></li>
|
|
<li><a href="#org92dd977">2.5. Real Approximation of \(G\) at the decoupling frequency</a></li>
|
|
<li><a href="#orgebf7751">2.6. Verification of the decoupling using the “Gershgorin Radii”</a></li>
|
|
<li><a href="#orge21a525">2.7. Decoupled Plant</a></li>
|
|
<li><a href="#org4c1f528">2.8. Diagonal Controller</a></li>
|
|
<li><a href="#org4f88748">2.9. Centralized Control</a></li>
|
|
<li><a href="#org6eac181">2.10. SVD Control</a></li>
|
|
<li><a href="#org89ccc9f">2.11. Results</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#orgdcb6e90">3. Stewart Platform - Analytical Model</a>
|
|
<ul>
|
|
<li><a href="#orgeb4b14b">3.1. Characteristics</a></li>
|
|
<li><a href="#orgeff797b">3.2. Mass Matrix</a></li>
|
|
<li><a href="#org7027995">3.3. Jacobian Matrix</a></li>
|
|
<li><a href="#org51bab7b">3.4. Stifnness matrix and Damping matrix</a></li>
|
|
<li><a href="#orga9e6cf5">3.5. State Space System</a></li>
|
|
<li><a href="#org769c38a">3.6. Transmissibility</a></li>
|
|
<li><a href="#org24eb81f">3.7. Real approximation of \(G(j\omega)\) at decoupling frequency</a></li>
|
|
<li><a href="#org824e380">3.8. Coupled and Decoupled Plant “Gershgorin Radii”</a></li>
|
|
<li><a href="#org8e5d2c7">3.9. Decoupled Plant</a></li>
|
|
<li><a href="#org102382b">3.10. Controller</a></li>
|
|
<li><a href="#org27bf3be">3.11. Closed Loop System</a></li>
|
|
<li><a href="#org419f877">3.12. Results</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orge03ef95" class="outline-2">
|
|
<h2 id="orge03ef95"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
</div>
|
|
<div id="outline-container-org94cda63" class="outline-3">
|
|
<h3 id="org94cda63"><span class="section-number-3">1.1</span> Simulink</h3>
|
|
<div class="outline-text-3" id="text-1-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">open('gravimeter.slx')
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">%% Name of the Simulink File
|
|
mdl = 'gravimeter';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
|
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'F1', 'F2', 'F3'};
|
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The plant as 6 states as expected (2 translations + 1 rotation)
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">size(G)
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
State-space model with 4 outputs, 3 inputs, and 6 states.
|
|
</pre>
|
|
|
|
|
|
|
|
<div id="org57d8f45" class="figure">
|
|
<p><img src="figs/open_loop_tf.png" alt="open_loop_tf.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 1: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org01f2bcf" class="outline-2">
|
|
<h2 id="org01f2bcf"><span class="section-number-2">2</span> Stewart Platform - Simscape Model</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
</div>
|
|
<div id="outline-container-org5d90a14" class="outline-3">
|
|
<h3 id="org5d90a14"><span class="section-number-3">2.1</span> Jacobian</h3>
|
|
<div class="outline-text-3" id="text-2-1">
|
|
<p>
|
|
First, the position of the “joints” (points of force application) are estimated and the Jacobian computed.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">open('stewart_platform/drone_platform_jacobian.slx');
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">sim('drone_platform_jacobian');
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Aa = [a1.Data(1,:);
|
|
a2.Data(1,:);
|
|
a3.Data(1,:);
|
|
a4.Data(1,:);
|
|
a5.Data(1,:);
|
|
a6.Data(1,:)]';
|
|
|
|
Ab = [b1.Data(1,:);
|
|
b2.Data(1,:);
|
|
b3.Data(1,:);
|
|
b4.Data(1,:);
|
|
b5.Data(1,:);
|
|
b6.Data(1,:)]';
|
|
|
|
As = (Ab - Aa)./vecnorm(Ab - Aa);
|
|
|
|
l = vecnorm(Ab - Aa)';
|
|
|
|
J = [As' , cross(Ab, As)'];
|
|
|
|
save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org7bbb169" class="outline-3">
|
|
<h3 id="org7bbb169"><span class="section-number-3">2.2</span> Simscape Model</h3>
|
|
<div class="outline-text-3" id="text-2-2">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">open('stewart_platform/drone_platform.slx');
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Definition of spring parameters
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">kx = 50; % [N/m]
|
|
ky = 50;
|
|
kz = 50;
|
|
|
|
cx = 0.025; % [Nm/rad]
|
|
cy = 0.025;
|
|
cz = 0.025;
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We load the Jacobian.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org2a265c4" class="outline-3">
|
|
<h3 id="org2a265c4"><span class="section-number-3">2.3</span> Identification of the plant</h3>
|
|
<div class="outline-text-3" id="text-2-3">
|
|
<p>
|
|
The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">%% Name of the Simulink File
|
|
mdl = 'drone_platform';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1;
|
|
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
|
|
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
There are 24 states (6dof for the bottom platform + 6dof for the top platform).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">size(G)
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
State-space model with 6 outputs, 12 inputs, and 24 states.
|
|
</pre>
|
|
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">% G = G*blkdiag(inv(J), eye(6));
|
|
% G.InputName = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ...
|
|
% 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Gx = G*blkdiag(eye(6), inv(J'));
|
|
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
|
|
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
|
|
Gl = J*G;
|
|
Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgfa83a84" class="outline-3">
|
|
<h3 id="orgfa83a84"><span class="section-number-3">2.4</span> Obtained Dynamics</h3>
|
|
<div class="outline-text-3" id="text-2-4">
|
|
|
|
<div id="orga7d2bfa" class="figure">
|
|
<p><img src="figs/stewart_platform_translations.png" alt="stewart_platform_translations.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 2: </span>Stewart Platform Plant from forces applied by the legs to the acceleration of the platform</p>
|
|
</div>
|
|
|
|
|
|
<div id="orge8ecc72" class="figure">
|
|
<p><img src="figs/stewart_platform_rotations.png" alt="stewart_platform_rotations.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 3: </span>Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform</p>
|
|
</div>
|
|
|
|
|
|
<div id="orga068faf" class="figure">
|
|
<p><img src="figs/stewart_platform_legs.png" alt="stewart_platform_legs.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 4: </span>Stewart Platform Plant from forces applied by the legs to displacement of the legs</p>
|
|
</div>
|
|
|
|
|
|
<div id="orgf48c4d4" class="figure">
|
|
<p><img src="figs/stewart_platform_transmissibility.png" alt="stewart_platform_transmissibility.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 5: </span>Transmissibility</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org92dd977" class="outline-3">
|
|
<h3 id="org92dd977"><span class="section-number-3">2.5</span> Real Approximation of \(G\) at the decoupling frequency</h3>
|
|
<div class="outline-text-3" id="text-2-5">
|
|
<p>
|
|
Let’s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G_c(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">wc = 2*pi*20; % Decoupling frequency [rad/s]
|
|
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">H1 = evalfr(Gc, j*wc);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The real approximation is computed as follows:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">D = pinv(real(H1'*H1));
|
|
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgebf7751" class="outline-3">
|
|
<h3 id="orgebf7751"><span class="section-number-3">2.6</span> Verification of the decoupling using the “Gershgorin Radii”</h3>
|
|
<div class="outline-text-3" id="text-2-6">
|
|
<p>
|
|
First, the Singular Value Decomposition of \(H_1\) is performed:
|
|
\[ H_1 = U \Sigma V^H \]
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">[U,S,V] = svd(H1);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Then, the “Gershgorin Radii” is computed for the plant \(G_c(s)\) and the “SVD Decoupled Plant” \(G_d(s)\):
|
|
\[ G_d(s) = U^T G_c(s) V \]
|
|
</p>
|
|
|
|
<p>
|
|
It is done over the following frequencies.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">freqs = logspace(-1,2,1000); % [Hz]
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">for i = 1:length(freqs)
|
|
H = abs(evalfr(Gc, j*2*pi*freqs(i)));
|
|
for j = 1:size(H,2)
|
|
g_r1(i,j) = (sum(H(j,:)) - H(j,j))/H(j,j);
|
|
end
|
|
end
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Gd = U'*Gc*V;
|
|
|
|
for i = 1:length(freqs)
|
|
H_dec = abs(evalfr(Gd, j*2*pi*freqs(i)));
|
|
for j = 1:size(H,2)
|
|
g_r2(i,j) = (sum(H_dec(j,:)) - H_dec(j,j))/H_dec(j,j);
|
|
end
|
|
end
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orge21a525" class="outline-3">
|
|
<h3 id="orge21a525"><span class="section-number-3">2.7</span> Decoupled Plant</h3>
|
|
<div class="outline-text-3" id="text-2-7">
|
|
<p>
|
|
Let’s see the bode plot of the decoupled plant \(G_d(s)\).
|
|
\[ G_d(s) = U^T G_c(s) V \]
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org4c1f528" class="outline-3">
|
|
<h3 id="org4c1f528"><span class="section-number-3">2.8</span> Diagonal Controller</h3>
|
|
<div class="outline-text-3" id="text-2-8">
|
|
<p>
|
|
The controller \(K\) is a diagonal controller consisting a low pass filters with a crossover frequency \(\omega_c\) and a DC gain \(C_g\).
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">wc = 2*pi*0.1; % Crossover Frequency [rad/s]
|
|
C_g = 50; % DC Gain
|
|
|
|
K = eye(6)*C_g/(s+wc);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org4f88748" class="outline-3">
|
|
<h3 id="org4f88748"><span class="section-number-3">2.9</span> Centralized Control</h3>
|
|
<div class="outline-text-3" id="text-2-9">
|
|
<p>
|
|
The control diagram for the centralized control is shown below.
|
|
</p>
|
|
|
|
<p>
|
|
The controller \(K_c\) is “working” in an cartesian frame.
|
|
The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.
|
|
</p>
|
|
|
|
|
|
<div class="figure">
|
|
<p><img src="figs/centralized_control.png" alt="centralized_control.png" />
|
|
</p>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">G_cen = feedback(G, inv(J')*K, [7:12], [1:6]);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org6eac181" class="outline-3">
|
|
<h3 id="org6eac181"><span class="section-number-3">2.10</span> SVD Control</h3>
|
|
<div class="outline-text-3" id="text-2-10">
|
|
<p>
|
|
The SVD control architecture is shown below.
|
|
The matrices \(U\) and \(V\) are used to decoupled the plant \(G\).
|
|
</p>
|
|
|
|
|
|
<div class="figure">
|
|
<p><img src="figs/svd_control.png" alt="svd_control.png" />
|
|
</p>
|
|
</div>
|
|
|
|
<p>
|
|
SVD Control
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org89ccc9f" class="outline-3">
|
|
<h3 id="org89ccc9f"><span class="section-number-3">2.11</span> Results</h3>
|
|
<div class="outline-text-3" id="text-2-11">
|
|
<p>
|
|
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#orgfaedd1c">8</a>.
|
|
</p>
|
|
|
|
|
|
<div id="orgfaedd1c" class="figure">
|
|
<p><img src="figs/stewart_platform_simscape_cl_transmissibility.png" alt="stewart_platform_simscape_cl_transmissibility.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 8: </span>Obtained Transmissibility</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgdcb6e90" class="outline-2">
|
|
<h2 id="orgdcb6e90"><span class="section-number-2">3</span> Stewart Platform - Analytical Model</h2>
|
|
<div class="outline-text-2" id="text-3">
|
|
</div>
|
|
<div id="outline-container-orgeb4b14b" class="outline-3">
|
|
<h3 id="orgeb4b14b"><span class="section-number-3">3.1</span> Characteristics</h3>
|
|
<div class="outline-text-3" id="text-3-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">L = 0.055;
|
|
Zc = 0;
|
|
m = 0.2;
|
|
k = 1e3;
|
|
c = 2*0.1*sqrt(k*m);
|
|
|
|
Rx = 0.04;
|
|
Rz = 0.04;
|
|
Ix = m*Rx^2;
|
|
Iy = m*Rx^2;
|
|
Iz = m*Rz^2;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgeff797b" class="outline-3">
|
|
<h3 id="orgeff797b"><span class="section-number-3">3.2</span> Mass Matrix</h3>
|
|
<div class="outline-text-3" id="text-3-2">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">M = m*[1 0 0 0 Zc 0;
|
|
0 1 0 -Zc 0 0;
|
|
0 0 1 0 0 0;
|
|
0 -Zc 0 Rx^2+Zc^2 0 0;
|
|
Zc 0 0 0 Rx^2+Zc^2 0;
|
|
0 0 0 0 0 Rz^2];
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org7027995" class="outline-3">
|
|
<h3 id="org7027995"><span class="section-number-3">3.3</span> Jacobian Matrix</h3>
|
|
<div class="outline-text-3" id="text-3-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Bj=1/sqrt(6)*[ 1 1 -2 1 1 -2;
|
|
sqrt(3) -sqrt(3) 0 sqrt(3) -sqrt(3) 0;
|
|
sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2);
|
|
0 0 L L -L -L;
|
|
-L*2/sqrt(3) -L*2/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3);
|
|
L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2)];
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org51bab7b" class="outline-3">
|
|
<h3 id="org51bab7b"><span class="section-number-3">3.4</span> Stifnness matrix and Damping matrix</h3>
|
|
<div class="outline-text-3" id="text-3-4">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">kv = k/3; % [N/m]
|
|
kh = 0.5*k/3; % [N/m]
|
|
|
|
K = diag([3*kh,3*kh,3*kv,3*kv*Rx^2/2,3*kv*Rx^2/2,3*kh*Rx^2]); % Stiffness Matrix
|
|
|
|
C = c*K/100000; % Damping Matrix
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orga9e6cf5" class="outline-3">
|
|
<h3 id="orga9e6cf5"><span class="section-number-3">3.5</span> State Space System</h3>
|
|
<div class="outline-text-3" id="text-3-5">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">A = [zeros(6) eye(6); -M\K -M\C];
|
|
Bw = [zeros(6); -eye(6)];
|
|
Bu = [zeros(6); M\Bj];
|
|
Co = [-M\K -M\C];
|
|
D = [zeros(6) M\Bj];
|
|
|
|
ST = ss(A,[Bw Bu],Co,D);
|
|
</pre>
|
|
</div>
|
|
|
|
<ul class="org-ul">
|
|
<li>OUT 1-6: 6 dof</li>
|
|
<li>IN 1-6 : ground displacement in the directions of the legs</li>
|
|
<li>IN 7-12: forces in the actuators.</li>
|
|
</ul>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">ST.StateName = {'x';'y';'z';'theta_x';'theta_y';'theta_z';...
|
|
'dx';'dy';'dz';'dtheta_x';'dtheta_y';'dtheta_z'};
|
|
ST.InputName = {'w1';'w2';'w3';'w4';'w5';'w6';...
|
|
'u1';'u2';'u3';'u4';'u5';'u6'};
|
|
ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'};
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org769c38a" class="outline-3">
|
|
<h3 id="org769c38a"><span class="section-number-3">3.6</span> Transmissibility</h3>
|
|
<div class="outline-text-3" id="text-3-6">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">TR=ST*[eye(6); zeros(6)];
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">figure
|
|
subplot(231)
|
|
bodemag(TR(1,1),opts);
|
|
subplot(232)
|
|
bodemag(TR(2,2),opts);
|
|
subplot(233)
|
|
bodemag(TR(3,3),opts);
|
|
subplot(234)
|
|
bodemag(TR(4,4),opts);
|
|
subplot(235)
|
|
bodemag(TR(5,5),opts);
|
|
subplot(236)
|
|
bodemag(TR(6,6),opts);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org55a5d25" class="figure">
|
|
<p><img src="figs/stewart_platform_analytical_transmissibility.png" alt="stewart_platform_analytical_transmissibility.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 9: </span>Transmissibility</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org24eb81f" class="outline-3">
|
|
<h3 id="org24eb81f"><span class="section-number-3">3.7</span> Real approximation of \(G(j\omega)\) at decoupling frequency</h3>
|
|
<div class="outline-text-3" id="text-3-7">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs
|
|
|
|
dec_fr = 20;
|
|
H1 = evalfr(sys1,j*2*pi*dec_fr);
|
|
H2 = H1;
|
|
D = pinv(real(H2'*H2));
|
|
H1 = inv(D*real(H2'*diag(exp(j*angle(diag(H2*D*H2.'))/2)))) ;
|
|
[U,S,V] = svd(H1);
|
|
|
|
wf = logspace(-1,2,1000);
|
|
for i = 1:length(wf)
|
|
H = abs(evalfr(sys1,j*2*pi*wf(i)));
|
|
H_dec = abs(evalfr(U'*sys1*V,j*2*pi*wf(i)));
|
|
for j = 1:size(H,2)
|
|
g_r1(i,j) = (sum(H(j,:))-H(j,j))/H(j,j);
|
|
g_r2(i,j) = (sum(H_dec(j,:))-H_dec(j,j))/H_dec(j,j);
|
|
% keyboard
|
|
end
|
|
g_lim(i) = 0.5;
|
|
end
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org824e380" class="outline-3">
|
|
<h3 id="org824e380"><span class="section-number-3">3.8</span> Coupled and Decoupled Plant “Gershgorin Radii”</h3>
|
|
<div class="outline-text-3" id="text-3-8">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">figure;
|
|
title('Coupled plant')
|
|
loglog(wf,g_r1(:,1),wf,g_r1(:,2),wf,g_r1(:,3),wf,g_r1(:,4),wf,g_r1(:,5),wf,g_r1(:,6),wf,g_lim,'--');
|
|
legend('$a_x$','$a_y$','$a_z$','$\theta_x$','$\theta_y$','$\theta_z$','Limit');
|
|
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org7d8bf66" class="figure">
|
|
<p><img src="figs/gershorin_raddii_coupled_analytical.png" alt="gershorin_raddii_coupled_analytical.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 10: </span>Gershorin Raddi for the coupled plant</p>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">figure;
|
|
title('Decoupled plant (10 Hz)')
|
|
loglog(wf,g_r2(:,1),wf,g_r2(:,2),wf,g_r2(:,3),wf,g_r2(:,4),wf,g_r2(:,5),wf,g_r2(:,6),wf,g_lim,'--');
|
|
legend('$S_1$','$S_2$','$S_3$','$S_4$','$S_5$','$S_6$','Limit');
|
|
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org319f0f6" class="figure">
|
|
<p><img src="figs/gershorin_raddii_decoupled_analytical.png" alt="gershorin_raddii_decoupled_analytical.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 11: </span>Gershorin Raddi for the decoupled plant</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org8e5d2c7" class="outline-3">
|
|
<h3 id="org8e5d2c7"><span class="section-number-3">3.9</span> Decoupled Plant</h3>
|
|
<div class="outline-text-3" id="text-3-9">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">figure;
|
|
bodemag(U'*sys1*V,opts)
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org057e23e" class="figure">
|
|
<p><img src="figs/stewart_platform_analytical_decoupled_plant.png" alt="stewart_platform_analytical_decoupled_plant.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 12: </span>Decoupled Plant</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org102382b" class="outline-3">
|
|
<h3 id="org102382b"><span class="section-number-3">3.10</span> Controller</h3>
|
|
<div class="outline-text-3" id="text-3-10">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">fc = 2*pi*0.1; % Crossover Frequency [rad/s]
|
|
c_gain = 50; %
|
|
|
|
cont = eye(6)*c_gain/(s+fc);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org27bf3be" class="outline-3">
|
|
<h3 id="org27bf3be"><span class="section-number-3">3.11</span> Closed Loop System</h3>
|
|
<div class="outline-text-3" id="text-3-11">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">FEEDIN = [7:12]; % Input of controller
|
|
FEEDOUT = [1:6]; % Output of controller
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Centralized Control
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">STcen = feedback(ST, inv(Bj)*cont, FEEDIN, FEEDOUT);
|
|
TRcen = STcen*[eye(6); zeros(6)];
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
SVD Control
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">STsvd = feedback(ST, pinv(V')*cont*pinv(U), FEEDIN, FEEDOUT);
|
|
TRsvd = STsvd*[eye(6); zeros(6)];
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org419f877" class="outline-3">
|
|
<h3 id="org419f877"><span class="section-number-3">3.12</span> Results</h3>
|
|
<div class="outline-text-3" id="text-3-12">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">figure
|
|
subplot(231)
|
|
bodemag(TR(1,1),TRcen(1,1),TRsvd(1,1),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(232)
|
|
bodemag(TR(2,2),TRcen(2,2),TRsvd(2,2),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(233)
|
|
bodemag(TR(3,3),TRcen(3,3),TRsvd(3,3),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(234)
|
|
bodemag(TR(4,4),TRcen(4,4),TRsvd(4,4),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(235)
|
|
bodemag(TR(5,5),TRcen(5,5),TRsvd(5,5),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(236)
|
|
bodemag(TR(6,6),TRcen(6,6),TRsvd(6,6),opts)
|
|
legend('OL','Centralized','SVD')
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgbde8c92" class="figure">
|
|
<p><img src="figs/stewart_platform_analytical_svd_cen_comp.png" alt="stewart_platform_analytical_svd_cen_comp.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 13: </span>Comparison of the obtained transmissibility for the centralized control and the SVD control</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: Dehaeze Thomas</p>
|
|
<p class="date">Created: 2020-09-21 lun. 18:03</p>
|
|
</div>
|
|
</body>
|
|
</html>
|