Compare commits

...

3 Commits

Author SHA1 Message Date
d950a63723 Add two open-loop plant figures 2020-09-30 17:16:30 +02:00
02f8add925 Tangle script for the gravimeter 2020-09-30 17:16:20 +02:00
2affca0685 Add two functions 2020-09-30 17:15:32 +02:00
10 changed files with 12158 additions and 627 deletions

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 243 KiB

5178
figs/open_loop_tf_g.pdf Normal file

File diff suppressed because it is too large Load Diff

BIN
figs/open_loop_tf_g.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 246 KiB

15
gravimeter/align.m Normal file
View File

@ -0,0 +1,15 @@
function [A] = align(V)
%A!ALIGN(V) returns a constat matrix A which is the real alignment of the
%INVERSE of the complex input matrix V
%from Mohit slides
if (nargin ==0) || (nargin > 1)
disp('usage: mat_inv_real = align(mat)')
return
end
D = pinv(real(V'*V));
A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
end

Binary file not shown.

34
gravimeter/pzmap_testCL.m Normal file
View File

@ -0,0 +1,34 @@
function [] = pzmap_testCL(system,H,gain,feedin,feedout)
% evaluate and plot the pole-zero map for the closed loop system for
% different values of the gain
[~, n] = size(gain);
[m1, n1, ~] = size(H);
[~,n2] = size(feedin);
figure
for i = 1:n
% if n1 == n2
system_CL = feedback(system,gain(i)*H,feedin,feedout);
[P,Z] = pzmap(system_CL);
plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
% clear P Z
% else
% system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
%
% [P,Z] = pzmap(system_CL);
% plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
% xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
% clear P Z
% end
end
str = {strcat('gain = ' , num2str(gain(1)))}; % at the end of first loop, z being loop output
str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
for i = 2:n
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
end
legend(str{:})
end

492
gravimeter/script.m Normal file
View File

@ -0,0 +1,492 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('gravimeter');
% Simscape Model - Parameters
open('gravimeter.slx')
% Parameters
l = 0.5; % Length of the mass [m]
la = 0.5; % Position of Act. [m]
h = 1.7; % Height of the mass [m]
ha = 1.7; % Position of Act. [m]
m = 400; % Mass [kg]
I = 115; % Inertia [kg m^2]
k = 15e3; % Actuator Stiffness [N/m]
c = 0.03; % Actuator Damping [N/(m/s)]
deq = 0.2; % Length of the actuators [m]
g = 0; % Gravity [m/s2]
% System Identification - Without Gravity
%% Name of the Simulink File
mdl = 'gravimeter';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
pole(G)
% #+RESULTS:
% #+begin_example
% pole(G)
% ans =
% -0.000473481142385801 + 21.7596190728632i
% -0.000473481142385801 - 21.7596190728632i
% -7.49842879459177e-05 + 8.6593576906982i
% -7.49842879459177e-05 - 8.6593576906982i
% -5.15386867925747e-06 + 2.27025295182755i
% -5.15386867925747e-06 - 2.27025295182755i
% #+end_example
% The plant as 6 states as expected (2 translations + 1 rotation)
size(G)
% #+RESULTS:
% : State-space model with 4 outputs, 3 inputs, and 6 states.
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
% System Identification - With Gravity
g = 9.80665; % Gravity [m/s2]
Gg = linearize(mdl, io);
Gg.InputName = {'F1', 'F2', 'F3'};
Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
% We can now see that the system is unstable due to gravity.
pole(Gg)
% #+RESULTS:
% #+begin_example
% pole(G)
% ans =
% -10.9848275341276 + 0i
% 10.9838836405193 + 0i
% -7.49855396089326e-05 + 8.65962885769976i
% -7.49855396089326e-05 - 8.65962885769976i
% -6.68819341967921e-06 + 0.83296042226902i
% -6.68819341967921e-06 - 0.83296042226902i
% #+end_example
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
hold on;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
% Parameters
% Control parameters
g = 1e5;
g_svd = 1e5;
% System parameters
w0 = 2*pi*.5; % MinusK BM1 tablle
l = 0.8; % [m]
la = l; % [m]
h = 1.7; % [m]
ha = h; % [m]
m = 70; % [kg]
k = 3e3; % [N/m]
I = 10; % [kg m^2]
% Bode options.
P = bodeoptions;
P.FreqUnits = 'Hz';
P.MagUnits = 'abs';
P.MagScale = 'log';
P.Grid = 'on';
P.PhaseWrapping = 'on';
P.Title.FontSize = 14;
P.XLabel.FontSize = 14;
P.YLabel.FontSize = 14;
P.TickLabel.FontSize = 12;
P.Xlim = [1e-1,1e2];
P.MagLowerLimMode = 'manual';
P.MagLowerLim= 1e-3;
%P.PhaseVisible = 'off';
% Frequency vector.
w = 2*pi*logspace(-1,2,1000); % [rad/s]
% generation of the state space model
M = [m 0 0
0 m 0
0 0 I];
%Jacobian of the bottom sensor
Js1 = [1 0 h/2
0 1 -l/2];
%Jacobian of the top sensor
Js2 = [1 0 -h/2
0 1 0];
%Jacobian of the actuators
Ja = [1 0 ha/2 %Left horizontal actuator
%1 0 h/2 %Right horizontal actuator
0 1 -la/2 %Left vertical actuator
0 1 la/2]; %Right vertical actuator
Jta = Ja';
K = k*Jta*Ja;
C = 0.06*k*Jta*Ja;
E = [1 0 0
0 1 0
0 0 1]; %projecting ground motion in the directions of the legs
AA = [zeros(3) eye(3)
-M\K -M\C];
BB = [zeros(3,6)
M\Jta M\(k*Jta*E)];
% BB = [zeros(3,3)
% M\Jta ];
%
% CC = [Ja zeros(3)];
% DD = zeros(3,3);
CC = [[Js1;Js2] zeros(4,3);
zeros(2,6)
(Js1+Js2)./2 zeros(2,3)
(Js1-Js2)./2 zeros(2,3)
(Js1-Js2)./(2*h) zeros(2,3)];
DD = [zeros(4,6)
zeros(2,3) eye(2,3)
zeros(6,6)];
system_dec = ss(AA,BB,CC,DD);
% - Input = three actuators and three ground motions
% - Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
size(system_dec)
% Comparison with the Simscape Model
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
hold on;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
% Analysis
% figure
% bode(system_dec,P);
% return
%% svd decomposition
% system_dec_freq = freqresp(system_dec,w);
% S = zeros(3,length(w));
% for m = 1:length(w)
% S(:,m) = svd(system_dec_freq(1:4,1:3,m));
% end
% figure
% loglog(w./(2*pi), S);hold on;
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
% ylim([1e-8 1e-2]);
%
% %condition number
% figure
% loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
% xlabel('Frequency [Hz]');ylabel('Condition number [-]');
% % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
%
% %performance indicator
% system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
% [U,S,V] = svd(system_dec_svd);
% H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
% H_svd = pinv(V')*H_svd_OL*pinv(U);
% % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
%
% OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
% OL_freq = freqresp(OL_dec,w); % OL = G*H
% CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
% CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
% % CL_system_2 = feedback(system_dec,H);
% % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
% for i = 1:size(w,2)
% OL(:,i) = svd(OL_freq(:,:,i));
% CL (:,i) = svd(CL_freq(:,:,i));
% %CL2 (:,i) = svd(CL_freq_2(:,:,i));
% end
%
% un = ones(1,length(w));
% figure
% loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
%
% figure
% loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
% Control Section
system_dec_10Hz = freqresp(system_dec,2*pi*10);
system_dec_0Hz = freqresp(system_dec,0);
system_decReal_10Hz = pinv(align(system_dec_10Hz));
[Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
[U,S,V] = svd(system_dec_10Hz(1:4,1:3));
normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
0 0 0 zpk(-2*pi,-2*pi*10,10)]);
H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
% H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
% 0 1/normalizationMatrix(2,2) 0 0
% 0 0 1/normalizationMatrix(3,3) 0];
% H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
% 0 1/normalizationMatrixReal(2,2) 0 0
% 0 0 1/normalizationMatrixReal(3,3) 0];
H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
% H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
% H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
H_svd = pinv(V')*H_svd_OL*pinv(U);
H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
OL_dec = g*H_dec*system_dec(1:4,1:3);
OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
% figure
% bode(OL_dec,w,P);title('OL Decentralized');
% figure
% bode(OL_cen,w,P);title('OL Centralized');
figure
bode(g*system_dec(1:4,1:3),w,P);
title('gain * Plant');
figure
bode(OL_svd,OL_svd_real,w,P);
title('OL SVD');
legend('SVD of Complex plant','SVD of real approximation of the complex plant')
figure
bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
title('Decentralized control');
pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
title('Centralized control');
pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
title('SVD control');
pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
title('Real approximation SVD control');
P.Ylim = [1e-8 1e-3];
figure
bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
title('Motion/actuator')
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
P.Ylim = [1e-5 1e1];
figure
bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
title('Transmissibility');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
figure
bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
title('Transmissibility from half sum and half difference in the X direction');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
figure
bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
title('Transmissibility from half sum and half difference in the Z direction');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
% Greshgorin radius
system_dec_freq = freqresp(system_dec,w);
x1 = zeros(1,length(w));
z1 = zeros(1,length(w));
x2 = zeros(1,length(w));
S1 = zeros(1,length(w));
S2 = zeros(1,length(w));
S3 = zeros(1,length(w));
for t = 1:length(w)
x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
end
limit = 0.5*ones(1,length(w));
figure
loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
legend('x_1','z_1','x_2','Limit');
xlabel('Frequency [Hz]');
ylabel('Greshgorin radius [-]');
figure
loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
legend('S1','S2','S3','Limit');
xlabel('Frequency [Hz]');
ylabel('Greshgorin radius [-]');
% set(gcf,'color','w')
% Injecting ground motion in the system to have the output
Fr = logspace(-2,3,1e3);
w=2*pi*Fr*1i;
%fit of the ground motion data in m/s^2/rtHz
Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10];
n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5];
Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10];
n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5];
n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear');
n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear');
% figure
% loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*');
% xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]');
% return
%converting into PSD
n_ground_x = (n_ground_x).^2;
n_ground_v = (n_ground_v).^2;
%Injecting ground motion in the system and getting the outputs
system_dec_f = (freqresp(system_dec,abs(w)));
PHI = zeros(size(Fr,2),12,12);
for p = 1:size(Fr,2)
Sw=zeros(6,6);
Iact = zeros(3,3);
Sw(4,4) = n_ground_x(p);
Sw(5,5) = n_ground_v(p);
Sw(6,6) = n_ground_v(p);
Sw(1:3,1:3) = Iact;
PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))';
end
x1 = PHI(:,1,1);
z1 = PHI(:,2,2);
x2 = PHI(:,3,3);
z2 = PHI(:,4,4);
wx = PHI(:,5,5);
wz = PHI(:,6,6);
x12 = PHI(:,1,3);
z12 = PHI(:,2,4);
PHIwx = PHI(:,1,5);
PHIwz = PHI(:,2,6);
xsum = PHI(:,7,7);
zsum = PHI(:,8,8);
xdelta = PHI(:,9,9);
zdelta = PHI(:,10,10);
rot = PHI(:,11,11);

1098
index.html

File diff suppressed because it is too large Load Diff

652
index.org
View File

@ -44,6 +44,9 @@
:END:
* Gravimeter - Simscape Model
:PROPERTIES:
:header-args:matlab+: :tangle gravimeter/script.m
:END:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
@ -53,11 +56,35 @@
<<matlab-init>>
#+end_src
** Simulink
#+begin_src matlab
addpath('gravimeter');
#+end_src
** Simscape Model - Parameters
#+begin_src matlab
open('gravimeter.slx')
#+end_src
Parameters
#+begin_src matlab
l = 0.5; % Length of the mass [m]
la = 0.5; % Position of Act. [m]
h = 1.7; % Height of the mass [m]
ha = 1.7; % Position of Act. [m]
m = 400; % Mass [kg]
I = 115; % Inertia [kg m^2]
k = 15e3; % Actuator Stiffness [N/m]
c = 0.03; % Actuator Damping [N/(m/s)]
deq = 0.2; % Length of the actuators [m]
g = 0; % Gravity [m/s2]
#+end_src
** System Identification - Without Gravity
#+begin_src matlab
%% Name of the Simulink File
mdl = 'gravimeter';
@ -77,8 +104,23 @@
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
#+end_src
The plant as 6 states as expected (2 translations + 1 rotation)
#+begin_src matlab :results output replace :exports results
pole(G)
#+end_src
#+RESULTS:
#+begin_example
pole(G)
ans =
-0.000473481142385801 + 21.7596190728632i
-0.000473481142385801 - 21.7596190728632i
-7.49842879459177e-05 + 8.6593576906982i
-7.49842879459177e-05 - 8.6593576906982i
-5.15386867925747e-06 + 2.27025295182755i
-5.15386867925747e-06 - 2.27025295182755i
#+end_example
The plant as 6 states as expected (2 translations + 1 rotation)
#+begin_src matlab :results output replace
size(G)
#+end_src
@ -108,181 +150,108 @@ The plant as 6 states as expected (2 translations + 1 rotation)
#+RESULTS:
[[file:figs/open_loop_tf.png]]
** Matlab Code :noexport:
** System Identification - With Gravity
#+begin_src matlab
clc;
% close all
g = 9.80665; % Gravity [m/s2]
#+end_src
g = 100000;
#+begin_src matlab
Gg = linearize(mdl, io);
Gg.InputName = {'F1', 'F2', 'F3'};
Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
#+end_src
We can now see that the system is unstable due to gravity.
#+begin_src matlab :results output replace :exports results
pole(Gg)
#+end_src
#+RESULTS:
#+begin_example
pole(G)
ans =
-10.9848275341276 + 0i
10.9838836405193 + 0i
-7.49855396089326e-05 + 8.65962885769976i
-7.49855396089326e-05 - 8.65962885769976i
-6.68819341967921e-06 + 0.83296042226902i
-6.68819341967921e-06 - 0.83296042226902i
#+end_example
#+begin_src matlab :exports none
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
hold on;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/open_loop_tf_g.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:open_loop_tf_g
#+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity
#+RESULTS:
[[file:figs/open_loop_tf_g.png]]
** Analytical Model
*** Parameters
Control parameters
#+begin_src matlab
g = 1e5;
g_svd = 1e5;
#+end_src
System parameters
#+begin_src matlab
w0 = 2*pi*.5; % MinusK BM1 tablle
l = 0.5; %[m]
la = 1; %[m]
h = 1.7; %[m]
ha = 1.7;% %[m]
m = 400; %[kg]
k = 15e3;%[N/m]
kv = k;
kh = 15e3;
I = 115;%[kg m^2]
% c = 0.06;
% l = 0.4719; %[m]
% la = .477; %[m]
% h = 1.8973; %[m]
% ha = 1.9060;% %[m]
% m = 98.1421; %[kg]
% k = 14512;%[N/m]
% I = 28.5372;%[kg m^2]
cv = 0.03;
ch = 0.03;
%% System definition
[Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot]...
= modelGeneration(m,I,k,h,ha,l,la,cv,ch,kv,kh);
l = 0.8; % [m]
la = l; % [m]
%% Bode options
h = 1.7; % [m]
ha = h; % [m]
m = 70; % [kg]
k = 3e3; % [N/m]
I = 10; % [kg m^2]
#+end_src
Bode options.
#+begin_src matlab
P = bodeoptions;
P.FreqUnits = 'Hz';
P.MagUnits = 'abs';
P.MagScale = 'log';
P.Grid = 'on';
P.PhaseWrapping = 'on';
P.Title.FontSize = 14;
P.XLabel.FontSize = 14;
P.YLabel.FontSize = 14;
P.TickLabel.FontSize = 12;
P.Xlim = [1e-1,1e2];
P.MagLowerLimMode = 'manual';
P.MagLowerLim= 1e-3;
%P.PhaseVisible = 'off';
w = 2*pi*logspace(-1,2,1000);
%% curves points
% slide 4
F_sl4 = [2e-1 4e-1 7e-1 1 2 3 5];
Amp_sl4 = [ 1 2 4 2.5 1 7e-1 7e-1];
F_sl4_phase = [2e-1 4e-1 7e-1 1 ];
Phase_sl4 = (180/pi).*[0 0 -0.5 -1.7];
%slide 6
F_sl6 = [2e-1 4e-1 1 2 3 5];
Amp_sl6 = [1 1 6e-1 2e-1 3e-1 3e-1];
F_sl6_phase = [2e-1 4e-1 1 ];
Phase_sl6 = (180/pi).*[0 0 0 ];
%slide 9
F_sl9 = [2.5e-1 4e-1 6e-1 1 1.7 2.2 3 5 10];
Amp_sl9 = [3 6 1 5e-1 1 2 7e-1 2.5e-1 7e-2];
Phase_sl9 = (180/pi)*[0 -1 -pi 0 -1 -1.5 -pi -pi -pi];
% slide 14
F_sl14 = [ 2e-1 4e-1 6e-1 8e-1 1 2 3 5 10];
Amp_sl14 = [9e-1 1.5 1.2 0.35 .3 1.2 .3 .1 5e-2];
F_sl14_phase = [ 2e-1 4e-1 6e-1 8e-1 ];
Phase_sl14 = (180/pi).*[0 0 -1.7 -2];
%rotation
F_rot = [1e-1 2e-1 4e-1 5e-1 7e-1 1 2 3 6.5 10 20];
Amp_rot = [7e-8 2.2e-7 3e-7 1e-7 2e-8 9e-9 3e-8 9e-9 1e-9 4e-10 8e-11];
%% Plots
% %slide 3
% figure
% loglog(Fr,abs(x2).^.5,Fr,abs(x1).^.5,Fr,abs(xsum).^.5,Fr,abs(xdelta).^.5)
% xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
% legend('Top sensor','Bottom sensor','Half sum','Half difference');
% title('Horizontal')
% xlim([7e-2 1e1]);
%slide 4
figure
subplot 211
loglog(Fr, abs(x12)./abs(x1));hold on;
loglog(F_sl4,Amp_sl4,'*');
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
title('X direction Top/bottom sensor');
xlim([7e-2 1e1]);
subplot 212
semilogx(Fr, (180/pi).*angle(x12./abs(x1)));hold on;
loglog(F_sl4_phase,Phase_sl4,'*');
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
xlim([7e-2 1e1]);
%slide 6
figure
subplot 211
loglog(Fr, abs(z12)./abs(z1));hold on;
loglog(F_sl6,Amp_sl6,'*');
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
title('Z direction Top/bottom sensor');
xlim([7e-2 1e1]);
subplot 212
semilogx(Fr, (180/pi).*angle(z12./abs(z1)));hold on;
loglog(F_sl6_phase,Phase_sl6,'*');
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
xlim([7e-2 1e1]);ylim([-180 180]);
% %slide 6
% figure
% loglog(Fr,abs(z2).^.5,Fr,abs(z1).^.5,Fr,abs(zsum).^.5,Fr,abs(zdelta).^.5)
% xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
% legend('Top sensor','Bottom sensor','Half sum','Half difference');
% title('Vertical')
% xlim([7e-2 1e1]);
%slide 9
figure
subplot 211
loglog(Fr, abs(PHIwx)./abs(wx));hold on;
loglog(F_sl9,Amp_sl9,'*');
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
title('X direction bottom/ground sensor');
xlim([7e-2 1e1]);
ylim([0.01 10]);
subplot 212
semilogx(Fr, (180/pi).*angle(PHIwx./abs(wx)));hold on;
loglog(F_sl9,Phase_sl9,'*');
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
xlim([7e-2 1e1]);
% %slide 8
% figure
% loglog(Fr,abs(wx).^.5,Fr,abs(x1).^.5,'-.',Fr,abs(x2).^.5,'.');
% grid on;xlabel('Frequency [Hz]');
% ylabel('ASD [m/s^2/rtHz]');
% xlim([7e-2 1e1]);
% legend('Ground','Bottom sensor','Top sensor');
% title('Horizontal');
%
% %slide 13
% figure
% loglog(Fr,abs(wz).^.5,Fr,abs(z1).^.5,'-.',Fr,abs(z2).^.5,'.');
% grid on;xlabel('Frequency [Hz]');
% ylabel('ASD [m/s^2/rtHz]');
% xlim([7e-2 1e1]);
% legend('Ground','Bottom sensor','Top sensor');
% title('Vertical');
%slide 14
figure
subplot 211
loglog(Fr, abs(PHIwz)./abs(wz));hold on;
loglog(F_sl14,Amp_sl14,'*');
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
title('Z direction bottom/ground sensor');
xlim([7e-2 1e1]);
ylim([0.01 10]);
subplot 212
semilogx(Fr, (180/pi).*angle(PHIwz./abs(wz)));hold on;
loglog(F_sl14_phase,Phase_sl14,'*');
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
xlim([7e-2 1e1]);
%rotation
figure
loglog(Fr,abs(rot).^.5./((2*pi*Fr').^2),F_rot,Amp_rot,'*');
xlabel('Frequency [Hz]');ylabel('Rotation [rad/rtHz]')
xlim([7e-2 1e1]);
#+end_src
** Model Generation :noexport:
Frequency vector.
#+begin_src matlab
w = 2*pi*logspace(-1,2,1000); % [rad/s]
#+end_src
*** generation of the state space model
#+begin_src matlab
function [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot] = modelGeneration(m,I,k,h,ha,l,la,dampv,damph,kv,kh)
%% generation of the state space model
M = [m 0 0
0 m 0
0 0 I];
@ -299,14 +268,9 @@ The plant as 6 states as expected (2 translations + 1 rotation)
%1 0 h/2 %Right horizontal actuator
0 1 -la/2 %Left vertical actuator
0 1 la/2]; %Right vertical actuator
Jah = [1 0 ha/2];
Jav = [0 1 -la/2 %Left vertical actuator
0 1 la/2]; %Right vertical actuator
Jta = Ja';
Jtah = Jah';
Jtav = Jav';
K = kv*Jtav*Jav + kh*Jtah*Jah;
C = dampv*kv*Jtav*Jav+damph*kh*Jtah*Jah;
K = k*Jta*Ja;
C = 0.06*k*Jta*Ja;
E = [1 0 0
0 1 0
@ -318,6 +282,12 @@ The plant as 6 states as expected (2 translations + 1 rotation)
BB = [zeros(3,6)
M\Jta M\(k*Jta*E)];
% BB = [zeros(3,3)
% M\Jta ];
%
% CC = [Ja zeros(3)];
% DD = zeros(3,3);
CC = [[Js1;Js2] zeros(4,3);
zeros(2,6)
(Js1+Js2)./2 zeros(2,3)
@ -329,11 +299,272 @@ The plant as 6 states as expected (2 translations + 1 rotation)
zeros(6,6)];
system_dec = ss(AA,BB,CC,DD);
%input = three actuators and three ground motions
%output = the bottom sensor; the top sensor; the ground motion; the half
%sum; the half difference; the rotation
#+end_src
%% Injecting ground motion in the system to have the output
- Input = three actuators and three ground motions
- Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
#+begin_src matlab :results output replace
size(system_dec)
#+end_src
#+RESULTS:
: State-space model with 12 outputs, 6 inputs, and 6 states.
*** Comparison with the Simscape Model
#+begin_src matlab :exports none
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
hold on;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/gravimeter_analytical_system_open_loop_models.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:gravimeter_analytical_system_open_loop_models
#+caption: Comparison of the analytical and the Simscape models
#+RESULTS:
[[file:figs/gravimeter_analytical_system_open_loop_models.png]]
*** Analysis
#+begin_src matlab
% figure
% bode(system_dec,P);
% return
#+end_src
#+begin_src matlab
%% svd decomposition
% system_dec_freq = freqresp(system_dec,w);
% S = zeros(3,length(w));
% for m = 1:length(w)
% S(:,m) = svd(system_dec_freq(1:4,1:3,m));
% end
% figure
% loglog(w./(2*pi), S);hold on;
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
% ylim([1e-8 1e-2]);
%
% %condition number
% figure
% loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
% xlabel('Frequency [Hz]');ylabel('Condition number [-]');
% % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
%
% %performance indicator
% system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
% [U,S,V] = svd(system_dec_svd);
% H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
% H_svd = pinv(V')*H_svd_OL*pinv(U);
% % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
%
% OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
% OL_freq = freqresp(OL_dec,w); % OL = G*H
% CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
% CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
% % CL_system_2 = feedback(system_dec,H);
% % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
% for i = 1:size(w,2)
% OL(:,i) = svd(OL_freq(:,:,i));
% CL (:,i) = svd(CL_freq(:,:,i));
% %CL2 (:,i) = svd(CL_freq_2(:,:,i));
% end
%
% un = ones(1,length(w));
% figure
% loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
%
% figure
% loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
#+end_src
*** Control Section
#+begin_src matlab
system_dec_10Hz = freqresp(system_dec,2*pi*10);
system_dec_0Hz = freqresp(system_dec,0);
system_decReal_10Hz = pinv(align(system_dec_10Hz));
[Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
[U,S,V] = svd(system_dec_10Hz(1:4,1:3));
normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
0 0 0 zpk(-2*pi,-2*pi*10,10)]);
H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
% H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
% 0 1/normalizationMatrix(2,2) 0 0
% 0 0 1/normalizationMatrix(3,3) 0];
% H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
% 0 1/normalizationMatrixReal(2,2) 0 0
% 0 0 1/normalizationMatrixReal(3,3) 0];
H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
% H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
% H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
H_svd = pinv(V')*H_svd_OL*pinv(U);
H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
OL_dec = g*H_dec*system_dec(1:4,1:3);
OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
#+end_src
#+begin_src matlab
% figure
% bode(OL_dec,w,P);title('OL Decentralized');
% figure
% bode(OL_cen,w,P);title('OL Centralized');
#+end_src
#+begin_src matlab
figure
bode(g*system_dec(1:4,1:3),w,P);
title('gain * Plant');
#+end_src
#+begin_src matlab
figure
bode(OL_svd,OL_svd_real,w,P);
title('OL SVD');
legend('SVD of Complex plant','SVD of real approximation of the complex plant')
#+end_src
#+begin_src matlab
figure
bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
#+end_src
#+begin_src matlab
CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
#+end_src
#+begin_src matlab
pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
title('Decentralized control');
#+end_src
#+begin_src matlab
pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
title('Centralized control');
#+end_src
#+begin_src matlab
pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
title('SVD control');
#+end_src
#+begin_src matlab
pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
title('Real approximation SVD control');
#+end_src
#+begin_src matlab
P.Ylim = [1e-8 1e-3];
figure
bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
title('Motion/actuator')
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
#+end_src
#+begin_src matlab
P.Ylim = [1e-5 1e1];
figure
bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
title('Transmissibility');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
#+end_src
#+begin_src matlab
figure
bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
title('Transmissibility from half sum and half difference in the X direction');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
#+end_src
#+begin_src matlab
figure
bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
title('Transmissibility from half sum and half difference in the Z direction');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
#+end_src
*** Greshgorin radius
#+begin_src matlab
system_dec_freq = freqresp(system_dec,w);
x1 = zeros(1,length(w));
z1 = zeros(1,length(w));
x2 = zeros(1,length(w));
S1 = zeros(1,length(w));
S2 = zeros(1,length(w));
S3 = zeros(1,length(w));
for t = 1:length(w)
x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
end
limit = 0.5*ones(1,length(w));
#+end_src
#+begin_src matlab
figure
loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
legend('x_1','z_1','x_2','Limit');
xlabel('Frequency [Hz]');
ylabel('Greshgorin radius [-]');
#+end_src
#+begin_src matlab
figure
loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
legend('S1','S2','S3','Limit');
xlabel('Frequency [Hz]');
ylabel('Greshgorin radius [-]');
% set(gcf,'color','w')
#+end_src
*** Injecting ground motion in the system to have the output
#+begin_src matlab
Fr = logspace(-2,3,1e3);
w=2*pi*Fr*1i;
%fit of the ground motion data in m/s^2/rtHz
@ -382,6 +613,83 @@ The plant as 6 states as expected (2 translations + 1 rotation)
rot = PHI(:,11,11);
#+end_src
* Gravimeter - Functions
:PROPERTIES:
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
** =align=
:PROPERTIES:
:header-args:matlab+: :tangle gravimeter/align.m
:END:
<<sec:align>>
This Matlab function is accessible [[file:gravimeter/align.m][here]].
#+begin_src matlab
function [A] = align(V)
%A!ALIGN(V) returns a constat matrix A which is the real alignment of the
%INVERSE of the complex input matrix V
%from Mohit slides
if (nargin ==0) || (nargin > 1)
disp('usage: mat_inv_real = align(mat)')
return
end
D = pinv(real(V'*V));
A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
end
#+end_src
** =pzmap_testCL=
:PROPERTIES:
:header-args:matlab+: :tangle gravimeter/pzmap_testCL.m
:END:
<<sec:pzmap_testCL>>
This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
#+begin_src matlab
function [] = pzmap_testCL(system,H,gain,feedin,feedout)
% evaluate and plot the pole-zero map for the closed loop system for
% different values of the gain
[~, n] = size(gain);
[m1, n1, ~] = size(H);
[~,n2] = size(feedin);
figure
for i = 1:n
% if n1 == n2
system_CL = feedback(system,gain(i)*H,feedin,feedout);
[P,Z] = pzmap(system_CL);
plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
% clear P Z
% else
% system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
%
% [P,Z] = pzmap(system_CL);
% plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
% xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
% clear P Z
% end
end
str = {strcat('gain = ' , num2str(gain(1)))}; % at the end of first loop, z being loop output
str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
for i = 2:n
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
end
legend(str{:})
end
#+end_src
* Stewart Platform - Simscape Model
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
@ -975,7 +1283,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
#+RESULTS:
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
* Stewart Platform - Analytical Model
* Stewart Platform - Analytical Model :noexport:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>