Compare commits
No commits in common. "d950a637231c24743ef898e453ca697b9a5ccd80" and "e5e290cb81d84b8215890a46646171cee1cd6385" have entirely different histories.
d950a63723
...
e5e290cb81
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Before Width: | Height: | Size: 243 KiB |
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Before Width: | Height: | Size: 246 KiB |
@ -1,15 +0,0 @@
|
||||
function [A] = align(V)
|
||||
%A!ALIGN(V) returns a constat matrix A which is the real alignment of the
|
||||
%INVERSE of the complex input matrix V
|
||||
%from Mohit slides
|
||||
|
||||
if (nargin ==0) || (nargin > 1)
|
||||
disp('usage: mat_inv_real = align(mat)')
|
||||
return
|
||||
end
|
||||
|
||||
D = pinv(real(V'*V));
|
||||
A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
|
||||
|
||||
|
||||
end
|
Binary file not shown.
@ -1,34 +0,0 @@
|
||||
function [] = pzmap_testCL(system,H,gain,feedin,feedout)
|
||||
% evaluate and plot the pole-zero map for the closed loop system for
|
||||
% different values of the gain
|
||||
|
||||
[~, n] = size(gain);
|
||||
[m1, n1, ~] = size(H);
|
||||
[~,n2] = size(feedin);
|
||||
|
||||
figure
|
||||
for i = 1:n
|
||||
% if n1 == n2
|
||||
system_CL = feedback(system,gain(i)*H,feedin,feedout);
|
||||
|
||||
[P,Z] = pzmap(system_CL);
|
||||
plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
|
||||
xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
|
||||
% clear P Z
|
||||
% else
|
||||
% system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
|
||||
%
|
||||
% [P,Z] = pzmap(system_CL);
|
||||
% plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
|
||||
% xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
|
||||
% clear P Z
|
||||
% end
|
||||
end
|
||||
str = {strcat('gain = ' , num2str(gain(1)))}; % at the end of first loop, z being loop output
|
||||
str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
|
||||
for i = 2:n
|
||||
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
|
||||
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
|
||||
end
|
||||
legend(str{:})
|
||||
end
|
@ -1,492 +0,0 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
addpath('gravimeter');
|
||||
|
||||
% Simscape Model - Parameters
|
||||
|
||||
open('gravimeter.slx')
|
||||
|
||||
|
||||
|
||||
% Parameters
|
||||
|
||||
l = 0.5; % Length of the mass [m]
|
||||
la = 0.5; % Position of Act. [m]
|
||||
|
||||
h = 1.7; % Height of the mass [m]
|
||||
ha = 1.7; % Position of Act. [m]
|
||||
|
||||
m = 400; % Mass [kg]
|
||||
I = 115; % Inertia [kg m^2]
|
||||
|
||||
k = 15e3; % Actuator Stiffness [N/m]
|
||||
c = 0.03; % Actuator Damping [N/(m/s)]
|
||||
|
||||
deq = 0.2; % Length of the actuators [m]
|
||||
|
||||
g = 0; % Gravity [m/s2]
|
||||
|
||||
% System Identification - Without Gravity
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'gravimeter';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'F1', 'F2', 'F3'};
|
||||
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||
|
||||
pole(G)
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% #+begin_example
|
||||
% pole(G)
|
||||
% ans =
|
||||
% -0.000473481142385801 + 21.7596190728632i
|
||||
% -0.000473481142385801 - 21.7596190728632i
|
||||
% -7.49842879459177e-05 + 8.6593576906982i
|
||||
% -7.49842879459177e-05 - 8.6593576906982i
|
||||
% -5.15386867925747e-06 + 2.27025295182755i
|
||||
% -5.15386867925747e-06 - 2.27025295182755i
|
||||
% #+end_example
|
||||
|
||||
% The plant as 6 states as expected (2 translations + 1 rotation)
|
||||
|
||||
size(G)
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% : State-space model with 4 outputs, 3 inputs, and 6 states.
|
||||
|
||||
|
||||
freqs = logspace(-2, 2, 1000);
|
||||
|
||||
figure;
|
||||
for in_i = 1:3
|
||||
for out_i = 1:4
|
||||
subplot(4, 3, 3*(out_i-1)+in_i);
|
||||
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
end
|
||||
end
|
||||
|
||||
% System Identification - With Gravity
|
||||
|
||||
g = 9.80665; % Gravity [m/s2]
|
||||
|
||||
Gg = linearize(mdl, io);
|
||||
Gg.InputName = {'F1', 'F2', 'F3'};
|
||||
Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||
|
||||
|
||||
|
||||
% We can now see that the system is unstable due to gravity.
|
||||
|
||||
pole(Gg)
|
||||
|
||||
|
||||
|
||||
% #+RESULTS:
|
||||
% #+begin_example
|
||||
% pole(G)
|
||||
% ans =
|
||||
% -10.9848275341276 + 0i
|
||||
% 10.9838836405193 + 0i
|
||||
% -7.49855396089326e-05 + 8.65962885769976i
|
||||
% -7.49855396089326e-05 - 8.65962885769976i
|
||||
% -6.68819341967921e-06 + 0.83296042226902i
|
||||
% -6.68819341967921e-06 - 0.83296042226902i
|
||||
% #+end_example
|
||||
|
||||
|
||||
freqs = logspace(-2, 2, 1000);
|
||||
|
||||
figure;
|
||||
for in_i = 1:3
|
||||
for out_i = 1:4
|
||||
subplot(4, 3, 3*(out_i-1)+in_i);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
||||
plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
end
|
||||
end
|
||||
|
||||
% Parameters
|
||||
% Control parameters
|
||||
|
||||
g = 1e5;
|
||||
g_svd = 1e5;
|
||||
|
||||
|
||||
|
||||
% System parameters
|
||||
|
||||
w0 = 2*pi*.5; % MinusK BM1 tablle
|
||||
|
||||
l = 0.8; % [m]
|
||||
la = l; % [m]
|
||||
|
||||
h = 1.7; % [m]
|
||||
ha = h; % [m]
|
||||
|
||||
m = 70; % [kg]
|
||||
|
||||
k = 3e3; % [N/m]
|
||||
I = 10; % [kg m^2]
|
||||
|
||||
|
||||
|
||||
% Bode options.
|
||||
|
||||
P = bodeoptions;
|
||||
P.FreqUnits = 'Hz';
|
||||
P.MagUnits = 'abs';
|
||||
P.MagScale = 'log';
|
||||
P.Grid = 'on';
|
||||
P.PhaseWrapping = 'on';
|
||||
P.Title.FontSize = 14;
|
||||
P.XLabel.FontSize = 14;
|
||||
P.YLabel.FontSize = 14;
|
||||
P.TickLabel.FontSize = 12;
|
||||
P.Xlim = [1e-1,1e2];
|
||||
P.MagLowerLimMode = 'manual';
|
||||
P.MagLowerLim= 1e-3;
|
||||
%P.PhaseVisible = 'off';
|
||||
|
||||
|
||||
|
||||
% Frequency vector.
|
||||
|
||||
w = 2*pi*logspace(-1,2,1000); % [rad/s]
|
||||
|
||||
% generation of the state space model
|
||||
|
||||
M = [m 0 0
|
||||
0 m 0
|
||||
0 0 I];
|
||||
|
||||
%Jacobian of the bottom sensor
|
||||
Js1 = [1 0 h/2
|
||||
0 1 -l/2];
|
||||
%Jacobian of the top sensor
|
||||
Js2 = [1 0 -h/2
|
||||
0 1 0];
|
||||
|
||||
%Jacobian of the actuators
|
||||
Ja = [1 0 ha/2 %Left horizontal actuator
|
||||
%1 0 h/2 %Right horizontal actuator
|
||||
0 1 -la/2 %Left vertical actuator
|
||||
0 1 la/2]; %Right vertical actuator
|
||||
Jta = Ja';
|
||||
K = k*Jta*Ja;
|
||||
C = 0.06*k*Jta*Ja;
|
||||
|
||||
E = [1 0 0
|
||||
0 1 0
|
||||
0 0 1]; %projecting ground motion in the directions of the legs
|
||||
|
||||
AA = [zeros(3) eye(3)
|
||||
-M\K -M\C];
|
||||
|
||||
BB = [zeros(3,6)
|
||||
M\Jta M\(k*Jta*E)];
|
||||
|
||||
% BB = [zeros(3,3)
|
||||
% M\Jta ];
|
||||
%
|
||||
% CC = [Ja zeros(3)];
|
||||
% DD = zeros(3,3);
|
||||
|
||||
CC = [[Js1;Js2] zeros(4,3);
|
||||
zeros(2,6)
|
||||
(Js1+Js2)./2 zeros(2,3)
|
||||
(Js1-Js2)./2 zeros(2,3)
|
||||
(Js1-Js2)./(2*h) zeros(2,3)];
|
||||
|
||||
DD = [zeros(4,6)
|
||||
zeros(2,3) eye(2,3)
|
||||
zeros(6,6)];
|
||||
|
||||
system_dec = ss(AA,BB,CC,DD);
|
||||
|
||||
|
||||
|
||||
% - Input = three actuators and three ground motions
|
||||
% - Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
|
||||
|
||||
|
||||
size(system_dec)
|
||||
|
||||
% Comparison with the Simscape Model
|
||||
|
||||
freqs = logspace(-2, 2, 1000);
|
||||
|
||||
figure;
|
||||
for in_i = 1:3
|
||||
for out_i = 1:4
|
||||
subplot(4, 3, 3*(out_i-1)+in_i);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
||||
plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
end
|
||||
end
|
||||
|
||||
% Analysis
|
||||
|
||||
% figure
|
||||
% bode(system_dec,P);
|
||||
% return
|
||||
|
||||
%% svd decomposition
|
||||
% system_dec_freq = freqresp(system_dec,w);
|
||||
% S = zeros(3,length(w));
|
||||
% for m = 1:length(w)
|
||||
% S(:,m) = svd(system_dec_freq(1:4,1:3,m));
|
||||
% end
|
||||
% figure
|
||||
% loglog(w./(2*pi), S);hold on;
|
||||
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
|
||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
||||
% legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
|
||||
% ylim([1e-8 1e-2]);
|
||||
%
|
||||
% %condition number
|
||||
% figure
|
||||
% loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
|
||||
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
|
||||
% xlabel('Frequency [Hz]');ylabel('Condition number [-]');
|
||||
% % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
|
||||
%
|
||||
% %performance indicator
|
||||
% system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
|
||||
% [U,S,V] = svd(system_dec_svd);
|
||||
% H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
|
||||
% H_svd = pinv(V')*H_svd_OL*pinv(U);
|
||||
% % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
|
||||
%
|
||||
% OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
|
||||
% OL_freq = freqresp(OL_dec,w); % OL = G*H
|
||||
% CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
|
||||
% CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
|
||||
% % CL_system_2 = feedback(system_dec,H);
|
||||
% % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
|
||||
% for i = 1:size(w,2)
|
||||
% OL(:,i) = svd(OL_freq(:,:,i));
|
||||
% CL (:,i) = svd(CL_freq(:,:,i));
|
||||
% %CL2 (:,i) = svd(CL_freq_2(:,:,i));
|
||||
% end
|
||||
%
|
||||
% un = ones(1,length(w));
|
||||
% figure
|
||||
% loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
|
||||
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
|
||||
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
|
||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
||||
% legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
|
||||
%
|
||||
% figure
|
||||
% loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
|
||||
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
|
||||
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
|
||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
||||
% legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
|
||||
|
||||
% Control Section
|
||||
|
||||
system_dec_10Hz = freqresp(system_dec,2*pi*10);
|
||||
system_dec_0Hz = freqresp(system_dec,0);
|
||||
|
||||
system_decReal_10Hz = pinv(align(system_dec_10Hz));
|
||||
[Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
|
||||
normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
|
||||
|
||||
[U,S,V] = svd(system_dec_10Hz(1:4,1:3));
|
||||
normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
|
||||
|
||||
H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
|
||||
0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
|
||||
0 0 0 zpk(-2*pi,-2*pi*10,10)]);
|
||||
H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
|
||||
0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
|
||||
H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
|
||||
% H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
|
||||
% 0 1/normalizationMatrix(2,2) 0 0
|
||||
% 0 0 1/normalizationMatrix(3,3) 0];
|
||||
% H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
|
||||
% 0 1/normalizationMatrixReal(2,2) 0 0
|
||||
% 0 0 1/normalizationMatrixReal(3,3) 0];
|
||||
H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
|
||||
0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
|
||||
0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
|
||||
H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
|
||||
0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
|
||||
0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
|
||||
% H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
|
||||
% H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
|
||||
H_svd = pinv(V')*H_svd_OL*pinv(U);
|
||||
H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
|
||||
|
||||
OL_dec = g*H_dec*system_dec(1:4,1:3);
|
||||
OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
|
||||
OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
|
||||
OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
|
||||
|
||||
% figure
|
||||
% bode(OL_dec,w,P);title('OL Decentralized');
|
||||
% figure
|
||||
% bode(OL_cen,w,P);title('OL Centralized');
|
||||
|
||||
figure
|
||||
bode(g*system_dec(1:4,1:3),w,P);
|
||||
title('gain * Plant');
|
||||
|
||||
figure
|
||||
bode(OL_svd,OL_svd_real,w,P);
|
||||
title('OL SVD');
|
||||
legend('SVD of Complex plant','SVD of real approximation of the complex plant')
|
||||
|
||||
figure
|
||||
bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
|
||||
|
||||
CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
|
||||
CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
|
||||
CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
|
||||
CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
|
||||
|
||||
pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
|
||||
title('Decentralized control');
|
||||
|
||||
pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
|
||||
title('Centralized control');
|
||||
|
||||
pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
|
||||
title('SVD control');
|
||||
|
||||
pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
|
||||
title('Real approximation SVD control');
|
||||
|
||||
P.Ylim = [1e-8 1e-3];
|
||||
figure
|
||||
bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
|
||||
title('Motion/actuator')
|
||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
||||
|
||||
P.Ylim = [1e-5 1e1];
|
||||
figure
|
||||
bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
|
||||
title('Transmissibility');
|
||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
||||
|
||||
figure
|
||||
bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
|
||||
title('Transmissibility from half sum and half difference in the X direction');
|
||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
||||
|
||||
figure
|
||||
bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
|
||||
title('Transmissibility from half sum and half difference in the Z direction');
|
||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
||||
|
||||
% Greshgorin radius
|
||||
|
||||
system_dec_freq = freqresp(system_dec,w);
|
||||
x1 = zeros(1,length(w));
|
||||
z1 = zeros(1,length(w));
|
||||
x2 = zeros(1,length(w));
|
||||
S1 = zeros(1,length(w));
|
||||
S2 = zeros(1,length(w));
|
||||
S3 = zeros(1,length(w));
|
||||
|
||||
for t = 1:length(w)
|
||||
x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
|
||||
z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
|
||||
x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
|
||||
system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
|
||||
S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
|
||||
S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
|
||||
S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
|
||||
end
|
||||
|
||||
limit = 0.5*ones(1,length(w));
|
||||
|
||||
figure
|
||||
loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
|
||||
legend('x_1','z_1','x_2','Limit');
|
||||
xlabel('Frequency [Hz]');
|
||||
ylabel('Greshgorin radius [-]');
|
||||
|
||||
figure
|
||||
loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
|
||||
legend('S1','S2','S3','Limit');
|
||||
xlabel('Frequency [Hz]');
|
||||
ylabel('Greshgorin radius [-]');
|
||||
% set(gcf,'color','w')
|
||||
|
||||
% Injecting ground motion in the system to have the output
|
||||
|
||||
Fr = logspace(-2,3,1e3);
|
||||
w=2*pi*Fr*1i;
|
||||
%fit of the ground motion data in m/s^2/rtHz
|
||||
Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10];
|
||||
n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5];
|
||||
Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10];
|
||||
n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5];
|
||||
|
||||
n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear');
|
||||
n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear');
|
||||
% figure
|
||||
% loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*');
|
||||
% xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]');
|
||||
% return
|
||||
|
||||
%converting into PSD
|
||||
n_ground_x = (n_ground_x).^2;
|
||||
n_ground_v = (n_ground_v).^2;
|
||||
|
||||
%Injecting ground motion in the system and getting the outputs
|
||||
system_dec_f = (freqresp(system_dec,abs(w)));
|
||||
PHI = zeros(size(Fr,2),12,12);
|
||||
for p = 1:size(Fr,2)
|
||||
Sw=zeros(6,6);
|
||||
Iact = zeros(3,3);
|
||||
Sw(4,4) = n_ground_x(p);
|
||||
Sw(5,5) = n_ground_v(p);
|
||||
Sw(6,6) = n_ground_v(p);
|
||||
Sw(1:3,1:3) = Iact;
|
||||
PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))';
|
||||
end
|
||||
x1 = PHI(:,1,1);
|
||||
z1 = PHI(:,2,2);
|
||||
x2 = PHI(:,3,3);
|
||||
z2 = PHI(:,4,4);
|
||||
wx = PHI(:,5,5);
|
||||
wz = PHI(:,6,6);
|
||||
x12 = PHI(:,1,3);
|
||||
z12 = PHI(:,2,4);
|
||||
PHIwx = PHI(:,1,5);
|
||||
PHIwz = PHI(:,2,6);
|
||||
xsum = PHI(:,7,7);
|
||||
zsum = PHI(:,8,8);
|
||||
xdelta = PHI(:,9,9);
|
||||
zdelta = PHI(:,10,10);
|
||||
rot = PHI(:,11,11);
|
1098
index.html
1098
index.html
File diff suppressed because it is too large
Load Diff
652
index.org
652
index.org
@ -44,9 +44,6 @@
|
||||
:END:
|
||||
|
||||
* Gravimeter - Simscape Model
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle gravimeter/script.m
|
||||
:END:
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@ -56,35 +53,11 @@
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
addpath('gravimeter');
|
||||
#+end_src
|
||||
|
||||
** Simscape Model - Parameters
|
||||
** Simulink
|
||||
#+begin_src matlab
|
||||
open('gravimeter.slx')
|
||||
#+end_src
|
||||
|
||||
Parameters
|
||||
#+begin_src matlab
|
||||
l = 0.5; % Length of the mass [m]
|
||||
la = 0.5; % Position of Act. [m]
|
||||
|
||||
h = 1.7; % Height of the mass [m]
|
||||
ha = 1.7; % Position of Act. [m]
|
||||
|
||||
m = 400; % Mass [kg]
|
||||
I = 115; % Inertia [kg m^2]
|
||||
|
||||
k = 15e3; % Actuator Stiffness [N/m]
|
||||
c = 0.03; % Actuator Damping [N/(m/s)]
|
||||
|
||||
deq = 0.2; % Length of the actuators [m]
|
||||
|
||||
g = 0; % Gravity [m/s2]
|
||||
#+end_src
|
||||
|
||||
** System Identification - Without Gravity
|
||||
#+begin_src matlab
|
||||
%% Name of the Simulink File
|
||||
mdl = 'gravimeter';
|
||||
@ -104,23 +77,8 @@ Parameters
|
||||
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results output replace :exports results
|
||||
pole(G)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_example
|
||||
pole(G)
|
||||
ans =
|
||||
-0.000473481142385801 + 21.7596190728632i
|
||||
-0.000473481142385801 - 21.7596190728632i
|
||||
-7.49842879459177e-05 + 8.6593576906982i
|
||||
-7.49842879459177e-05 - 8.6593576906982i
|
||||
-5.15386867925747e-06 + 2.27025295182755i
|
||||
-5.15386867925747e-06 - 2.27025295182755i
|
||||
#+end_example
|
||||
|
||||
The plant as 6 states as expected (2 translations + 1 rotation)
|
||||
|
||||
#+begin_src matlab :results output replace
|
||||
size(G)
|
||||
#+end_src
|
||||
@ -150,108 +108,181 @@ The plant as 6 states as expected (2 translations + 1 rotation)
|
||||
#+RESULTS:
|
||||
[[file:figs/open_loop_tf.png]]
|
||||
|
||||
** System Identification - With Gravity
|
||||
** Matlab Code :noexport:
|
||||
#+begin_src matlab
|
||||
g = 9.80665; % Gravity [m/s2]
|
||||
#+end_src
|
||||
clc;
|
||||
% close all
|
||||
|
||||
#+begin_src matlab
|
||||
Gg = linearize(mdl, io);
|
||||
Gg.InputName = {'F1', 'F2', 'F3'};
|
||||
Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||
#+end_src
|
||||
g = 100000;
|
||||
|
||||
We can now see that the system is unstable due to gravity.
|
||||
#+begin_src matlab :results output replace :exports results
|
||||
pole(Gg)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_example
|
||||
pole(G)
|
||||
ans =
|
||||
-10.9848275341276 + 0i
|
||||
10.9838836405193 + 0i
|
||||
-7.49855396089326e-05 + 8.65962885769976i
|
||||
-7.49855396089326e-05 - 8.65962885769976i
|
||||
-6.68819341967921e-06 + 0.83296042226902i
|
||||
-6.68819341967921e-06 - 0.83296042226902i
|
||||
#+end_example
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-2, 2, 1000);
|
||||
|
||||
figure;
|
||||
for in_i = 1:3
|
||||
for out_i = 1:4
|
||||
subplot(4, 3, 3*(out_i-1)+in_i);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
||||
plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
end
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/open_loop_tf_g.pdf', 'width', 'full', 'height', 'full');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:open_loop_tf_g
|
||||
#+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity
|
||||
#+RESULTS:
|
||||
[[file:figs/open_loop_tf_g.png]]
|
||||
|
||||
** Analytical Model
|
||||
*** Parameters
|
||||
Control parameters
|
||||
#+begin_src matlab
|
||||
g = 1e5;
|
||||
g_svd = 1e5;
|
||||
#+end_src
|
||||
|
||||
System parameters
|
||||
#+begin_src matlab
|
||||
w0 = 2*pi*.5; % MinusK BM1 tablle
|
||||
l = 0.5; %[m]
|
||||
la = 1; %[m]
|
||||
h = 1.7; %[m]
|
||||
ha = 1.7;% %[m]
|
||||
m = 400; %[kg]
|
||||
k = 15e3;%[N/m]
|
||||
kv = k;
|
||||
kh = 15e3;
|
||||
I = 115;%[kg m^2]
|
||||
% c = 0.06;
|
||||
% l = 0.4719; %[m]
|
||||
% la = .477; %[m]
|
||||
% h = 1.8973; %[m]
|
||||
% ha = 1.9060;% %[m]
|
||||
% m = 98.1421; %[kg]
|
||||
% k = 14512;%[N/m]
|
||||
% I = 28.5372;%[kg m^2]
|
||||
cv = 0.03;
|
||||
ch = 0.03;
|
||||
|
||||
l = 0.8; % [m]
|
||||
la = l; % [m]
|
||||
%% System definition
|
||||
[Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot]...
|
||||
= modelGeneration(m,I,k,h,ha,l,la,cv,ch,kv,kh);
|
||||
|
||||
h = 1.7; % [m]
|
||||
ha = h; % [m]
|
||||
|
||||
m = 70; % [kg]
|
||||
|
||||
k = 3e3; % [N/m]
|
||||
I = 10; % [kg m^2]
|
||||
#+end_src
|
||||
|
||||
Bode options.
|
||||
#+begin_src matlab
|
||||
%% Bode options
|
||||
P = bodeoptions;
|
||||
P.FreqUnits = 'Hz';
|
||||
P.MagUnits = 'abs';
|
||||
P.MagScale = 'log';
|
||||
P.Grid = 'on';
|
||||
P.PhaseWrapping = 'on';
|
||||
P.Title.FontSize = 14;
|
||||
P.XLabel.FontSize = 14;
|
||||
P.YLabel.FontSize = 14;
|
||||
P.TickLabel.FontSize = 12;
|
||||
P.Xlim = [1e-1,1e2];
|
||||
P.MagLowerLimMode = 'manual';
|
||||
P.MagLowerLim= 1e-3;
|
||||
%P.PhaseVisible = 'off';
|
||||
w = 2*pi*logspace(-1,2,1000);
|
||||
|
||||
%% curves points
|
||||
% slide 4
|
||||
F_sl4 = [2e-1 4e-1 7e-1 1 2 3 5];
|
||||
Amp_sl4 = [ 1 2 4 2.5 1 7e-1 7e-1];
|
||||
F_sl4_phase = [2e-1 4e-1 7e-1 1 ];
|
||||
Phase_sl4 = (180/pi).*[0 0 -0.5 -1.7];
|
||||
|
||||
%slide 6
|
||||
F_sl6 = [2e-1 4e-1 1 2 3 5];
|
||||
Amp_sl6 = [1 1 6e-1 2e-1 3e-1 3e-1];
|
||||
F_sl6_phase = [2e-1 4e-1 1 ];
|
||||
Phase_sl6 = (180/pi).*[0 0 0 ];
|
||||
|
||||
%slide 9
|
||||
F_sl9 = [2.5e-1 4e-1 6e-1 1 1.7 2.2 3 5 10];
|
||||
Amp_sl9 = [3 6 1 5e-1 1 2 7e-1 2.5e-1 7e-2];
|
||||
Phase_sl9 = (180/pi)*[0 -1 -pi 0 -1 -1.5 -pi -pi -pi];
|
||||
|
||||
% slide 14
|
||||
F_sl14 = [ 2e-1 4e-1 6e-1 8e-1 1 2 3 5 10];
|
||||
Amp_sl14 = [9e-1 1.5 1.2 0.35 .3 1.2 .3 .1 5e-2];
|
||||
F_sl14_phase = [ 2e-1 4e-1 6e-1 8e-1 ];
|
||||
Phase_sl14 = (180/pi).*[0 0 -1.7 -2];
|
||||
|
||||
%rotation
|
||||
F_rot = [1e-1 2e-1 4e-1 5e-1 7e-1 1 2 3 6.5 10 20];
|
||||
Amp_rot = [7e-8 2.2e-7 3e-7 1e-7 2e-8 9e-9 3e-8 9e-9 1e-9 4e-10 8e-11];
|
||||
|
||||
%% Plots
|
||||
% %slide 3
|
||||
% figure
|
||||
% loglog(Fr,abs(x2).^.5,Fr,abs(x1).^.5,Fr,abs(xsum).^.5,Fr,abs(xdelta).^.5)
|
||||
% xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
|
||||
% legend('Top sensor','Bottom sensor','Half sum','Half difference');
|
||||
% title('Horizontal')
|
||||
% xlim([7e-2 1e1]);
|
||||
|
||||
%slide 4
|
||||
figure
|
||||
subplot 211
|
||||
loglog(Fr, abs(x12)./abs(x1));hold on;
|
||||
loglog(F_sl4,Amp_sl4,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
|
||||
title('X direction Top/bottom sensor');
|
||||
xlim([7e-2 1e1]);
|
||||
subplot 212
|
||||
semilogx(Fr, (180/pi).*angle(x12./abs(x1)));hold on;
|
||||
loglog(F_sl4_phase,Phase_sl4,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
|
||||
xlim([7e-2 1e1]);
|
||||
|
||||
%slide 6
|
||||
figure
|
||||
subplot 211
|
||||
loglog(Fr, abs(z12)./abs(z1));hold on;
|
||||
loglog(F_sl6,Amp_sl6,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
|
||||
title('Z direction Top/bottom sensor');
|
||||
xlim([7e-2 1e1]);
|
||||
subplot 212
|
||||
semilogx(Fr, (180/pi).*angle(z12./abs(z1)));hold on;
|
||||
loglog(F_sl6_phase,Phase_sl6,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
|
||||
xlim([7e-2 1e1]);ylim([-180 180]);
|
||||
|
||||
% %slide 6
|
||||
% figure
|
||||
% loglog(Fr,abs(z2).^.5,Fr,abs(z1).^.5,Fr,abs(zsum).^.5,Fr,abs(zdelta).^.5)
|
||||
% xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
|
||||
% legend('Top sensor','Bottom sensor','Half sum','Half difference');
|
||||
% title('Vertical')
|
||||
% xlim([7e-2 1e1]);
|
||||
|
||||
%slide 9
|
||||
figure
|
||||
subplot 211
|
||||
loglog(Fr, abs(PHIwx)./abs(wx));hold on;
|
||||
loglog(F_sl9,Amp_sl9,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
|
||||
title('X direction bottom/ground sensor');
|
||||
xlim([7e-2 1e1]);
|
||||
ylim([0.01 10]);
|
||||
subplot 212
|
||||
semilogx(Fr, (180/pi).*angle(PHIwx./abs(wx)));hold on;
|
||||
loglog(F_sl9,Phase_sl9,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
|
||||
xlim([7e-2 1e1]);
|
||||
|
||||
% %slide 8
|
||||
% figure
|
||||
% loglog(Fr,abs(wx).^.5,Fr,abs(x1).^.5,'-.',Fr,abs(x2).^.5,'.');
|
||||
% grid on;xlabel('Frequency [Hz]');
|
||||
% ylabel('ASD [m/s^2/rtHz]');
|
||||
% xlim([7e-2 1e1]);
|
||||
% legend('Ground','Bottom sensor','Top sensor');
|
||||
% title('Horizontal');
|
||||
%
|
||||
% %slide 13
|
||||
% figure
|
||||
% loglog(Fr,abs(wz).^.5,Fr,abs(z1).^.5,'-.',Fr,abs(z2).^.5,'.');
|
||||
% grid on;xlabel('Frequency [Hz]');
|
||||
% ylabel('ASD [m/s^2/rtHz]');
|
||||
% xlim([7e-2 1e1]);
|
||||
% legend('Ground','Bottom sensor','Top sensor');
|
||||
% title('Vertical');
|
||||
|
||||
%slide 14
|
||||
figure
|
||||
subplot 211
|
||||
loglog(Fr, abs(PHIwz)./abs(wz));hold on;
|
||||
loglog(F_sl14,Amp_sl14,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
|
||||
title('Z direction bottom/ground sensor');
|
||||
xlim([7e-2 1e1]);
|
||||
ylim([0.01 10]);
|
||||
subplot 212
|
||||
semilogx(Fr, (180/pi).*angle(PHIwz./abs(wz)));hold on;
|
||||
loglog(F_sl14_phase,Phase_sl14,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
|
||||
xlim([7e-2 1e1]);
|
||||
|
||||
%rotation
|
||||
figure
|
||||
loglog(Fr,abs(rot).^.5./((2*pi*Fr').^2),F_rot,Amp_rot,'*');
|
||||
xlabel('Frequency [Hz]');ylabel('Rotation [rad/rtHz]')
|
||||
xlim([7e-2 1e1]);
|
||||
#+end_src
|
||||
|
||||
Frequency vector.
|
||||
#+begin_src matlab
|
||||
w = 2*pi*logspace(-1,2,1000); % [rad/s]
|
||||
#+end_src
|
||||
|
||||
*** generation of the state space model
|
||||
** Model Generation :noexport:
|
||||
#+begin_src matlab
|
||||
function [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot] = modelGeneration(m,I,k,h,ha,l,la,dampv,damph,kv,kh)
|
||||
%% generation of the state space model
|
||||
M = [m 0 0
|
||||
0 m 0
|
||||
0 0 I];
|
||||
@ -268,9 +299,14 @@ Frequency vector.
|
||||
%1 0 h/2 %Right horizontal actuator
|
||||
0 1 -la/2 %Left vertical actuator
|
||||
0 1 la/2]; %Right vertical actuator
|
||||
Jah = [1 0 ha/2];
|
||||
Jav = [0 1 -la/2 %Left vertical actuator
|
||||
0 1 la/2]; %Right vertical actuator
|
||||
Jta = Ja';
|
||||
K = k*Jta*Ja;
|
||||
C = 0.06*k*Jta*Ja;
|
||||
Jtah = Jah';
|
||||
Jtav = Jav';
|
||||
K = kv*Jtav*Jav + kh*Jtah*Jah;
|
||||
C = dampv*kv*Jtav*Jav+damph*kh*Jtah*Jah;
|
||||
|
||||
E = [1 0 0
|
||||
0 1 0
|
||||
@ -282,12 +318,6 @@ Frequency vector.
|
||||
BB = [zeros(3,6)
|
||||
M\Jta M\(k*Jta*E)];
|
||||
|
||||
% BB = [zeros(3,3)
|
||||
% M\Jta ];
|
||||
%
|
||||
% CC = [Ja zeros(3)];
|
||||
% DD = zeros(3,3);
|
||||
|
||||
CC = [[Js1;Js2] zeros(4,3);
|
||||
zeros(2,6)
|
||||
(Js1+Js2)./2 zeros(2,3)
|
||||
@ -299,272 +329,11 @@ Frequency vector.
|
||||
zeros(6,6)];
|
||||
|
||||
system_dec = ss(AA,BB,CC,DD);
|
||||
#+end_src
|
||||
%input = three actuators and three ground motions
|
||||
%output = the bottom sensor; the top sensor; the ground motion; the half
|
||||
%sum; the half difference; the rotation
|
||||
|
||||
- Input = three actuators and three ground motions
|
||||
- Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
|
||||
|
||||
#+begin_src matlab :results output replace
|
||||
size(system_dec)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: State-space model with 12 outputs, 6 inputs, and 6 states.
|
||||
|
||||
*** Comparison with the Simscape Model
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-2, 2, 1000);
|
||||
|
||||
figure;
|
||||
for in_i = 1:3
|
||||
for out_i = 1:4
|
||||
subplot(4, 3, 3*(out_i-1)+in_i);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
||||
plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
end
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/gravimeter_analytical_system_open_loop_models.pdf', 'width', 'full', 'height', 'full');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:gravimeter_analytical_system_open_loop_models
|
||||
#+caption: Comparison of the analytical and the Simscape models
|
||||
#+RESULTS:
|
||||
[[file:figs/gravimeter_analytical_system_open_loop_models.png]]
|
||||
|
||||
*** Analysis
|
||||
#+begin_src matlab
|
||||
% figure
|
||||
% bode(system_dec,P);
|
||||
% return
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
%% svd decomposition
|
||||
% system_dec_freq = freqresp(system_dec,w);
|
||||
% S = zeros(3,length(w));
|
||||
% for m = 1:length(w)
|
||||
% S(:,m) = svd(system_dec_freq(1:4,1:3,m));
|
||||
% end
|
||||
% figure
|
||||
% loglog(w./(2*pi), S);hold on;
|
||||
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
|
||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
||||
% legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
|
||||
% ylim([1e-8 1e-2]);
|
||||
%
|
||||
% %condition number
|
||||
% figure
|
||||
% loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
|
||||
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
|
||||
% xlabel('Frequency [Hz]');ylabel('Condition number [-]');
|
||||
% % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
|
||||
%
|
||||
% %performance indicator
|
||||
% system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
|
||||
% [U,S,V] = svd(system_dec_svd);
|
||||
% H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
|
||||
% H_svd = pinv(V')*H_svd_OL*pinv(U);
|
||||
% % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
|
||||
%
|
||||
% OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
|
||||
% OL_freq = freqresp(OL_dec,w); % OL = G*H
|
||||
% CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
|
||||
% CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
|
||||
% % CL_system_2 = feedback(system_dec,H);
|
||||
% % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
|
||||
% for i = 1:size(w,2)
|
||||
% OL(:,i) = svd(OL_freq(:,:,i));
|
||||
% CL (:,i) = svd(CL_freq(:,:,i));
|
||||
% %CL2 (:,i) = svd(CL_freq_2(:,:,i));
|
||||
% end
|
||||
%
|
||||
% un = ones(1,length(w));
|
||||
% figure
|
||||
% loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
|
||||
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
|
||||
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
|
||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
||||
% legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
|
||||
%
|
||||
% figure
|
||||
% loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
|
||||
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
|
||||
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
|
||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
||||
% legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
|
||||
#+end_src
|
||||
|
||||
*** Control Section
|
||||
#+begin_src matlab
|
||||
system_dec_10Hz = freqresp(system_dec,2*pi*10);
|
||||
system_dec_0Hz = freqresp(system_dec,0);
|
||||
|
||||
system_decReal_10Hz = pinv(align(system_dec_10Hz));
|
||||
[Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
|
||||
normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
|
||||
|
||||
[U,S,V] = svd(system_dec_10Hz(1:4,1:3));
|
||||
normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
|
||||
|
||||
H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
|
||||
0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
|
||||
0 0 0 zpk(-2*pi,-2*pi*10,10)]);
|
||||
H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
|
||||
0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
|
||||
H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
|
||||
% H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
|
||||
% 0 1/normalizationMatrix(2,2) 0 0
|
||||
% 0 0 1/normalizationMatrix(3,3) 0];
|
||||
% H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
|
||||
% 0 1/normalizationMatrixReal(2,2) 0 0
|
||||
% 0 0 1/normalizationMatrixReal(3,3) 0];
|
||||
H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
|
||||
0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
|
||||
0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
|
||||
H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
|
||||
0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
|
||||
0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
|
||||
% H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
|
||||
% H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
|
||||
H_svd = pinv(V')*H_svd_OL*pinv(U);
|
||||
H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
|
||||
|
||||
OL_dec = g*H_dec*system_dec(1:4,1:3);
|
||||
OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
|
||||
OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
|
||||
OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
% figure
|
||||
% bode(OL_dec,w,P);title('OL Decentralized');
|
||||
% figure
|
||||
% bode(OL_cen,w,P);title('OL Centralized');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
figure
|
||||
bode(g*system_dec(1:4,1:3),w,P);
|
||||
title('gain * Plant');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
figure
|
||||
bode(OL_svd,OL_svd_real,w,P);
|
||||
title('OL SVD');
|
||||
legend('SVD of Complex plant','SVD of real approximation of the complex plant')
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
figure
|
||||
bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
|
||||
CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
|
||||
CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
|
||||
CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
|
||||
title('Decentralized control');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
|
||||
title('Centralized control');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
|
||||
title('SVD control');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
|
||||
title('Real approximation SVD control');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
P.Ylim = [1e-8 1e-3];
|
||||
figure
|
||||
bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
|
||||
title('Motion/actuator')
|
||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
P.Ylim = [1e-5 1e1];
|
||||
figure
|
||||
bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
|
||||
title('Transmissibility');
|
||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
figure
|
||||
bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
|
||||
title('Transmissibility from half sum and half difference in the X direction');
|
||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
figure
|
||||
bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
|
||||
title('Transmissibility from half sum and half difference in the Z direction');
|
||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
||||
#+end_src
|
||||
|
||||
*** Greshgorin radius
|
||||
#+begin_src matlab
|
||||
system_dec_freq = freqresp(system_dec,w);
|
||||
x1 = zeros(1,length(w));
|
||||
z1 = zeros(1,length(w));
|
||||
x2 = zeros(1,length(w));
|
||||
S1 = zeros(1,length(w));
|
||||
S2 = zeros(1,length(w));
|
||||
S3 = zeros(1,length(w));
|
||||
|
||||
for t = 1:length(w)
|
||||
x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
|
||||
z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
|
||||
x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
|
||||
system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
|
||||
S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
|
||||
S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
|
||||
S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
|
||||
end
|
||||
|
||||
limit = 0.5*ones(1,length(w));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
figure
|
||||
loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
|
||||
legend('x_1','z_1','x_2','Limit');
|
||||
xlabel('Frequency [Hz]');
|
||||
ylabel('Greshgorin radius [-]');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
figure
|
||||
loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
|
||||
legend('S1','S2','S3','Limit');
|
||||
xlabel('Frequency [Hz]');
|
||||
ylabel('Greshgorin radius [-]');
|
||||
% set(gcf,'color','w')
|
||||
#+end_src
|
||||
|
||||
*** Injecting ground motion in the system to have the output
|
||||
#+begin_src matlab
|
||||
%% Injecting ground motion in the system to have the output
|
||||
Fr = logspace(-2,3,1e3);
|
||||
w=2*pi*Fr*1i;
|
||||
%fit of the ground motion data in m/s^2/rtHz
|
||||
@ -613,83 +382,6 @@ Frequency vector.
|
||||
rot = PHI(:,11,11);
|
||||
#+end_src
|
||||
|
||||
* Gravimeter - Functions
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
||||
:END:
|
||||
** =align=
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle gravimeter/align.m
|
||||
:END:
|
||||
<<sec:align>>
|
||||
|
||||
This Matlab function is accessible [[file:gravimeter/align.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [A] = align(V)
|
||||
%A!ALIGN(V) returns a constat matrix A which is the real alignment of the
|
||||
%INVERSE of the complex input matrix V
|
||||
%from Mohit slides
|
||||
|
||||
if (nargin ==0) || (nargin > 1)
|
||||
disp('usage: mat_inv_real = align(mat)')
|
||||
return
|
||||
end
|
||||
|
||||
D = pinv(real(V'*V));
|
||||
A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
|
||||
|
||||
|
||||
end
|
||||
#+end_src
|
||||
|
||||
|
||||
** =pzmap_testCL=
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle gravimeter/pzmap_testCL.m
|
||||
:END:
|
||||
<<sec:pzmap_testCL>>
|
||||
|
||||
This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [] = pzmap_testCL(system,H,gain,feedin,feedout)
|
||||
% evaluate and plot the pole-zero map for the closed loop system for
|
||||
% different values of the gain
|
||||
|
||||
[~, n] = size(gain);
|
||||
[m1, n1, ~] = size(H);
|
||||
[~,n2] = size(feedin);
|
||||
|
||||
figure
|
||||
for i = 1:n
|
||||
% if n1 == n2
|
||||
system_CL = feedback(system,gain(i)*H,feedin,feedout);
|
||||
|
||||
[P,Z] = pzmap(system_CL);
|
||||
plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
|
||||
xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
|
||||
% clear P Z
|
||||
% else
|
||||
% system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
|
||||
%
|
||||
% [P,Z] = pzmap(system_CL);
|
||||
% plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
|
||||
% xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
|
||||
% clear P Z
|
||||
% end
|
||||
end
|
||||
str = {strcat('gain = ' , num2str(gain(1)))}; % at the end of first loop, z being loop output
|
||||
str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
|
||||
for i = 2:n
|
||||
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
|
||||
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
|
||||
end
|
||||
legend(str{:})
|
||||
end
|
||||
|
||||
#+end_src
|
||||
|
||||
* Stewart Platform - Simscape Model
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
@ -1283,7 +975,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
|
||||
#+RESULTS:
|
||||
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
|
||||
|
||||
* Stewart Platform - Analytical Model :noexport:
|
||||
* Stewart Platform - Analytical Model
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
|
Loading…
Reference in New Issue
Block a user