Compare commits

..

No commits in common. "d950a637231c24743ef898e453ca697b9a5ccd80" and "e5e290cb81d84b8215890a46646171cee1cd6385" have entirely different histories.

10 changed files with 625 additions and 12156 deletions

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 243 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 246 KiB

View File

@ -1,15 +0,0 @@
function [A] = align(V)
%A!ALIGN(V) returns a constat matrix A which is the real alignment of the
%INVERSE of the complex input matrix V
%from Mohit slides
if (nargin ==0) || (nargin > 1)
disp('usage: mat_inv_real = align(mat)')
return
end
D = pinv(real(V'*V));
A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
end

Binary file not shown.

View File

@ -1,34 +0,0 @@
function [] = pzmap_testCL(system,H,gain,feedin,feedout)
% evaluate and plot the pole-zero map for the closed loop system for
% different values of the gain
[~, n] = size(gain);
[m1, n1, ~] = size(H);
[~,n2] = size(feedin);
figure
for i = 1:n
% if n1 == n2
system_CL = feedback(system,gain(i)*H,feedin,feedout);
[P,Z] = pzmap(system_CL);
plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
% clear P Z
% else
% system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
%
% [P,Z] = pzmap(system_CL);
% plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
% xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
% clear P Z
% end
end
str = {strcat('gain = ' , num2str(gain(1)))}; % at the end of first loop, z being loop output
str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
for i = 2:n
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
end
legend(str{:})
end

View File

@ -1,492 +0,0 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('gravimeter');
% Simscape Model - Parameters
open('gravimeter.slx')
% Parameters
l = 0.5; % Length of the mass [m]
la = 0.5; % Position of Act. [m]
h = 1.7; % Height of the mass [m]
ha = 1.7; % Position of Act. [m]
m = 400; % Mass [kg]
I = 115; % Inertia [kg m^2]
k = 15e3; % Actuator Stiffness [N/m]
c = 0.03; % Actuator Damping [N/(m/s)]
deq = 0.2; % Length of the actuators [m]
g = 0; % Gravity [m/s2]
% System Identification - Without Gravity
%% Name of the Simulink File
mdl = 'gravimeter';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
pole(G)
% #+RESULTS:
% #+begin_example
% pole(G)
% ans =
% -0.000473481142385801 + 21.7596190728632i
% -0.000473481142385801 - 21.7596190728632i
% -7.49842879459177e-05 + 8.6593576906982i
% -7.49842879459177e-05 - 8.6593576906982i
% -5.15386867925747e-06 + 2.27025295182755i
% -5.15386867925747e-06 - 2.27025295182755i
% #+end_example
% The plant as 6 states as expected (2 translations + 1 rotation)
size(G)
% #+RESULTS:
% : State-space model with 4 outputs, 3 inputs, and 6 states.
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
% System Identification - With Gravity
g = 9.80665; % Gravity [m/s2]
Gg = linearize(mdl, io);
Gg.InputName = {'F1', 'F2', 'F3'};
Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
% We can now see that the system is unstable due to gravity.
pole(Gg)
% #+RESULTS:
% #+begin_example
% pole(G)
% ans =
% -10.9848275341276 + 0i
% 10.9838836405193 + 0i
% -7.49855396089326e-05 + 8.65962885769976i
% -7.49855396089326e-05 - 8.65962885769976i
% -6.68819341967921e-06 + 0.83296042226902i
% -6.68819341967921e-06 - 0.83296042226902i
% #+end_example
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
hold on;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
% Parameters
% Control parameters
g = 1e5;
g_svd = 1e5;
% System parameters
w0 = 2*pi*.5; % MinusK BM1 tablle
l = 0.8; % [m]
la = l; % [m]
h = 1.7; % [m]
ha = h; % [m]
m = 70; % [kg]
k = 3e3; % [N/m]
I = 10; % [kg m^2]
% Bode options.
P = bodeoptions;
P.FreqUnits = 'Hz';
P.MagUnits = 'abs';
P.MagScale = 'log';
P.Grid = 'on';
P.PhaseWrapping = 'on';
P.Title.FontSize = 14;
P.XLabel.FontSize = 14;
P.YLabel.FontSize = 14;
P.TickLabel.FontSize = 12;
P.Xlim = [1e-1,1e2];
P.MagLowerLimMode = 'manual';
P.MagLowerLim= 1e-3;
%P.PhaseVisible = 'off';
% Frequency vector.
w = 2*pi*logspace(-1,2,1000); % [rad/s]
% generation of the state space model
M = [m 0 0
0 m 0
0 0 I];
%Jacobian of the bottom sensor
Js1 = [1 0 h/2
0 1 -l/2];
%Jacobian of the top sensor
Js2 = [1 0 -h/2
0 1 0];
%Jacobian of the actuators
Ja = [1 0 ha/2 %Left horizontal actuator
%1 0 h/2 %Right horizontal actuator
0 1 -la/2 %Left vertical actuator
0 1 la/2]; %Right vertical actuator
Jta = Ja';
K = k*Jta*Ja;
C = 0.06*k*Jta*Ja;
E = [1 0 0
0 1 0
0 0 1]; %projecting ground motion in the directions of the legs
AA = [zeros(3) eye(3)
-M\K -M\C];
BB = [zeros(3,6)
M\Jta M\(k*Jta*E)];
% BB = [zeros(3,3)
% M\Jta ];
%
% CC = [Ja zeros(3)];
% DD = zeros(3,3);
CC = [[Js1;Js2] zeros(4,3);
zeros(2,6)
(Js1+Js2)./2 zeros(2,3)
(Js1-Js2)./2 zeros(2,3)
(Js1-Js2)./(2*h) zeros(2,3)];
DD = [zeros(4,6)
zeros(2,3) eye(2,3)
zeros(6,6)];
system_dec = ss(AA,BB,CC,DD);
% - Input = three actuators and three ground motions
% - Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
size(system_dec)
% Comparison with the Simscape Model
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
hold on;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
% Analysis
% figure
% bode(system_dec,P);
% return
%% svd decomposition
% system_dec_freq = freqresp(system_dec,w);
% S = zeros(3,length(w));
% for m = 1:length(w)
% S(:,m) = svd(system_dec_freq(1:4,1:3,m));
% end
% figure
% loglog(w./(2*pi), S);hold on;
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
% ylim([1e-8 1e-2]);
%
% %condition number
% figure
% loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
% xlabel('Frequency [Hz]');ylabel('Condition number [-]');
% % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
%
% %performance indicator
% system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
% [U,S,V] = svd(system_dec_svd);
% H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
% H_svd = pinv(V')*H_svd_OL*pinv(U);
% % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
%
% OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
% OL_freq = freqresp(OL_dec,w); % OL = G*H
% CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
% CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
% % CL_system_2 = feedback(system_dec,H);
% % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
% for i = 1:size(w,2)
% OL(:,i) = svd(OL_freq(:,:,i));
% CL (:,i) = svd(CL_freq(:,:,i));
% %CL2 (:,i) = svd(CL_freq_2(:,:,i));
% end
%
% un = ones(1,length(w));
% figure
% loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
%
% figure
% loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
% Control Section
system_dec_10Hz = freqresp(system_dec,2*pi*10);
system_dec_0Hz = freqresp(system_dec,0);
system_decReal_10Hz = pinv(align(system_dec_10Hz));
[Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
[U,S,V] = svd(system_dec_10Hz(1:4,1:3));
normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
0 0 0 zpk(-2*pi,-2*pi*10,10)]);
H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
% H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
% 0 1/normalizationMatrix(2,2) 0 0
% 0 0 1/normalizationMatrix(3,3) 0];
% H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
% 0 1/normalizationMatrixReal(2,2) 0 0
% 0 0 1/normalizationMatrixReal(3,3) 0];
H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
% H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
% H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
H_svd = pinv(V')*H_svd_OL*pinv(U);
H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
OL_dec = g*H_dec*system_dec(1:4,1:3);
OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
% figure
% bode(OL_dec,w,P);title('OL Decentralized');
% figure
% bode(OL_cen,w,P);title('OL Centralized');
figure
bode(g*system_dec(1:4,1:3),w,P);
title('gain * Plant');
figure
bode(OL_svd,OL_svd_real,w,P);
title('OL SVD');
legend('SVD of Complex plant','SVD of real approximation of the complex plant')
figure
bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
title('Decentralized control');
pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
title('Centralized control');
pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
title('SVD control');
pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
title('Real approximation SVD control');
P.Ylim = [1e-8 1e-3];
figure
bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
title('Motion/actuator')
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
P.Ylim = [1e-5 1e1];
figure
bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
title('Transmissibility');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
figure
bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
title('Transmissibility from half sum and half difference in the X direction');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
figure
bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
title('Transmissibility from half sum and half difference in the Z direction');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
% Greshgorin radius
system_dec_freq = freqresp(system_dec,w);
x1 = zeros(1,length(w));
z1 = zeros(1,length(w));
x2 = zeros(1,length(w));
S1 = zeros(1,length(w));
S2 = zeros(1,length(w));
S3 = zeros(1,length(w));
for t = 1:length(w)
x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
end
limit = 0.5*ones(1,length(w));
figure
loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
legend('x_1','z_1','x_2','Limit');
xlabel('Frequency [Hz]');
ylabel('Greshgorin radius [-]');
figure
loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
legend('S1','S2','S3','Limit');
xlabel('Frequency [Hz]');
ylabel('Greshgorin radius [-]');
% set(gcf,'color','w')
% Injecting ground motion in the system to have the output
Fr = logspace(-2,3,1e3);
w=2*pi*Fr*1i;
%fit of the ground motion data in m/s^2/rtHz
Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10];
n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5];
Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10];
n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5];
n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear');
n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear');
% figure
% loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*');
% xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]');
% return
%converting into PSD
n_ground_x = (n_ground_x).^2;
n_ground_v = (n_ground_v).^2;
%Injecting ground motion in the system and getting the outputs
system_dec_f = (freqresp(system_dec,abs(w)));
PHI = zeros(size(Fr,2),12,12);
for p = 1:size(Fr,2)
Sw=zeros(6,6);
Iact = zeros(3,3);
Sw(4,4) = n_ground_x(p);
Sw(5,5) = n_ground_v(p);
Sw(6,6) = n_ground_v(p);
Sw(1:3,1:3) = Iact;
PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))';
end
x1 = PHI(:,1,1);
z1 = PHI(:,2,2);
x2 = PHI(:,3,3);
z2 = PHI(:,4,4);
wx = PHI(:,5,5);
wz = PHI(:,6,6);
x12 = PHI(:,1,3);
z12 = PHI(:,2,4);
PHIwx = PHI(:,1,5);
PHIwz = PHI(:,2,6);
xsum = PHI(:,7,7);
zsum = PHI(:,8,8);
xdelta = PHI(:,9,9);
zdelta = PHI(:,10,10);
rot = PHI(:,11,11);

1098
index.html

File diff suppressed because it is too large Load Diff

650
index.org
View File

@ -44,9 +44,6 @@
:END: :END:
* Gravimeter - Simscape Model * Gravimeter - Simscape Model
:PROPERTIES:
:header-args:matlab+: :tangle gravimeter/script.m
:END:
** Matlab Init :noexport:ignore: ** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>> <<matlab-dir>>
@ -56,35 +53,11 @@
<<matlab-init>> <<matlab-init>>
#+end_src #+end_src
#+begin_src matlab ** Simulink
addpath('gravimeter');
#+end_src
** Simscape Model - Parameters
#+begin_src matlab #+begin_src matlab
open('gravimeter.slx') open('gravimeter.slx')
#+end_src #+end_src
Parameters
#+begin_src matlab
l = 0.5; % Length of the mass [m]
la = 0.5; % Position of Act. [m]
h = 1.7; % Height of the mass [m]
ha = 1.7; % Position of Act. [m]
m = 400; % Mass [kg]
I = 115; % Inertia [kg m^2]
k = 15e3; % Actuator Stiffness [N/m]
c = 0.03; % Actuator Damping [N/(m/s)]
deq = 0.2; % Length of the actuators [m]
g = 0; % Gravity [m/s2]
#+end_src
** System Identification - Without Gravity
#+begin_src matlab #+begin_src matlab
%% Name of the Simulink File %% Name of the Simulink File
mdl = 'gravimeter'; mdl = 'gravimeter';
@ -104,23 +77,8 @@ Parameters
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'}; G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
#+end_src #+end_src
#+begin_src matlab :results output replace :exports results
pole(G)
#+end_src
#+RESULTS:
#+begin_example
pole(G)
ans =
-0.000473481142385801 + 21.7596190728632i
-0.000473481142385801 - 21.7596190728632i
-7.49842879459177e-05 + 8.6593576906982i
-7.49842879459177e-05 - 8.6593576906982i
-5.15386867925747e-06 + 2.27025295182755i
-5.15386867925747e-06 - 2.27025295182755i
#+end_example
The plant as 6 states as expected (2 translations + 1 rotation) The plant as 6 states as expected (2 translations + 1 rotation)
#+begin_src matlab :results output replace #+begin_src matlab :results output replace
size(G) size(G)
#+end_src #+end_src
@ -150,108 +108,181 @@ The plant as 6 states as expected (2 translations + 1 rotation)
#+RESULTS: #+RESULTS:
[[file:figs/open_loop_tf.png]] [[file:figs/open_loop_tf.png]]
** System Identification - With Gravity ** Matlab Code :noexport:
#+begin_src matlab #+begin_src matlab
g = 9.80665; % Gravity [m/s2] clc;
#+end_src % close all
#+begin_src matlab g = 100000;
Gg = linearize(mdl, io);
Gg.InputName = {'F1', 'F2', 'F3'};
Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
#+end_src
We can now see that the system is unstable due to gravity.
#+begin_src matlab :results output replace :exports results
pole(Gg)
#+end_src
#+RESULTS:
#+begin_example
pole(G)
ans =
-10.9848275341276 + 0i
10.9838836405193 + 0i
-7.49855396089326e-05 + 8.65962885769976i
-7.49855396089326e-05 - 8.65962885769976i
-6.68819341967921e-06 + 0.83296042226902i
-6.68819341967921e-06 - 0.83296042226902i
#+end_example
#+begin_src matlab :exports none
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
hold on;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/open_loop_tf_g.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:open_loop_tf_g
#+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity
#+RESULTS:
[[file:figs/open_loop_tf_g.png]]
** Analytical Model
*** Parameters
Control parameters
#+begin_src matlab
g = 1e5;
g_svd = 1e5;
#+end_src
System parameters
#+begin_src matlab
w0 = 2*pi*.5; % MinusK BM1 tablle w0 = 2*pi*.5; % MinusK BM1 tablle
l = 0.5; %[m]
l = 0.8; % [m] la = 1; %[m]
la = l; % [m]
h = 1.7; %[m] h = 1.7; %[m]
ha = h; % [m] ha = 1.7;% %[m]
m = 400; %[kg]
k = 15e3;%[N/m]
kv = k;
kh = 15e3;
I = 115;%[kg m^2]
% c = 0.06;
% l = 0.4719; %[m]
% la = .477; %[m]
% h = 1.8973; %[m]
% ha = 1.9060;% %[m]
% m = 98.1421; %[kg]
% k = 14512;%[N/m]
% I = 28.5372;%[kg m^2]
cv = 0.03;
ch = 0.03;
m = 70; % [kg] %% System definition
[Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot]...
= modelGeneration(m,I,k,h,ha,l,la,cv,ch,kv,kh);
k = 3e3; % [N/m] %% Bode options
I = 10; % [kg m^2]
#+end_src
Bode options.
#+begin_src matlab
P = bodeoptions; P = bodeoptions;
P.FreqUnits = 'Hz'; P.FreqUnits = 'Hz';
P.MagUnits = 'abs'; P.MagUnits = 'abs';
P.MagScale = 'log'; P.MagScale = 'log';
P.Grid = 'on'; P.Grid = 'on';
P.PhaseWrapping = 'on'; P.PhaseWrapping = 'on';
P.Title.FontSize = 14;
P.XLabel.FontSize = 14;
P.YLabel.FontSize = 14;
P.TickLabel.FontSize = 12;
P.Xlim = [1e-1,1e2]; P.Xlim = [1e-1,1e2];
P.MagLowerLimMode = 'manual';
P.MagLowerLim= 1e-3;
%P.PhaseVisible = 'off'; %P.PhaseVisible = 'off';
w = 2*pi*logspace(-1,2,1000);
%% curves points
% slide 4
F_sl4 = [2e-1 4e-1 7e-1 1 2 3 5];
Amp_sl4 = [ 1 2 4 2.5 1 7e-1 7e-1];
F_sl4_phase = [2e-1 4e-1 7e-1 1 ];
Phase_sl4 = (180/pi).*[0 0 -0.5 -1.7];
%slide 6
F_sl6 = [2e-1 4e-1 1 2 3 5];
Amp_sl6 = [1 1 6e-1 2e-1 3e-1 3e-1];
F_sl6_phase = [2e-1 4e-1 1 ];
Phase_sl6 = (180/pi).*[0 0 0 ];
%slide 9
F_sl9 = [2.5e-1 4e-1 6e-1 1 1.7 2.2 3 5 10];
Amp_sl9 = [3 6 1 5e-1 1 2 7e-1 2.5e-1 7e-2];
Phase_sl9 = (180/pi)*[0 -1 -pi 0 -1 -1.5 -pi -pi -pi];
% slide 14
F_sl14 = [ 2e-1 4e-1 6e-1 8e-1 1 2 3 5 10];
Amp_sl14 = [9e-1 1.5 1.2 0.35 .3 1.2 .3 .1 5e-2];
F_sl14_phase = [ 2e-1 4e-1 6e-1 8e-1 ];
Phase_sl14 = (180/pi).*[0 0 -1.7 -2];
%rotation
F_rot = [1e-1 2e-1 4e-1 5e-1 7e-1 1 2 3 6.5 10 20];
Amp_rot = [7e-8 2.2e-7 3e-7 1e-7 2e-8 9e-9 3e-8 9e-9 1e-9 4e-10 8e-11];
%% Plots
% %slide 3
% figure
% loglog(Fr,abs(x2).^.5,Fr,abs(x1).^.5,Fr,abs(xsum).^.5,Fr,abs(xdelta).^.5)
% xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
% legend('Top sensor','Bottom sensor','Half sum','Half difference');
% title('Horizontal')
% xlim([7e-2 1e1]);
%slide 4
figure
subplot 211
loglog(Fr, abs(x12)./abs(x1));hold on;
loglog(F_sl4,Amp_sl4,'*');
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
title('X direction Top/bottom sensor');
xlim([7e-2 1e1]);
subplot 212
semilogx(Fr, (180/pi).*angle(x12./abs(x1)));hold on;
loglog(F_sl4_phase,Phase_sl4,'*');
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
xlim([7e-2 1e1]);
%slide 6
figure
subplot 211
loglog(Fr, abs(z12)./abs(z1));hold on;
loglog(F_sl6,Amp_sl6,'*');
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
title('Z direction Top/bottom sensor');
xlim([7e-2 1e1]);
subplot 212
semilogx(Fr, (180/pi).*angle(z12./abs(z1)));hold on;
loglog(F_sl6_phase,Phase_sl6,'*');
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
xlim([7e-2 1e1]);ylim([-180 180]);
% %slide 6
% figure
% loglog(Fr,abs(z2).^.5,Fr,abs(z1).^.5,Fr,abs(zsum).^.5,Fr,abs(zdelta).^.5)
% xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
% legend('Top sensor','Bottom sensor','Half sum','Half difference');
% title('Vertical')
% xlim([7e-2 1e1]);
%slide 9
figure
subplot 211
loglog(Fr, abs(PHIwx)./abs(wx));hold on;
loglog(F_sl9,Amp_sl9,'*');
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
title('X direction bottom/ground sensor');
xlim([7e-2 1e1]);
ylim([0.01 10]);
subplot 212
semilogx(Fr, (180/pi).*angle(PHIwx./abs(wx)));hold on;
loglog(F_sl9,Phase_sl9,'*');
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
xlim([7e-2 1e1]);
% %slide 8
% figure
% loglog(Fr,abs(wx).^.5,Fr,abs(x1).^.5,'-.',Fr,abs(x2).^.5,'.');
% grid on;xlabel('Frequency [Hz]');
% ylabel('ASD [m/s^2/rtHz]');
% xlim([7e-2 1e1]);
% legend('Ground','Bottom sensor','Top sensor');
% title('Horizontal');
%
% %slide 13
% figure
% loglog(Fr,abs(wz).^.5,Fr,abs(z1).^.5,'-.',Fr,abs(z2).^.5,'.');
% grid on;xlabel('Frequency [Hz]');
% ylabel('ASD [m/s^2/rtHz]');
% xlim([7e-2 1e1]);
% legend('Ground','Bottom sensor','Top sensor');
% title('Vertical');
%slide 14
figure
subplot 211
loglog(Fr, abs(PHIwz)./abs(wz));hold on;
loglog(F_sl14,Amp_sl14,'*');
xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
title('Z direction bottom/ground sensor');
xlim([7e-2 1e1]);
ylim([0.01 10]);
subplot 212
semilogx(Fr, (180/pi).*angle(PHIwz./abs(wz)));hold on;
loglog(F_sl14_phase,Phase_sl14,'*');
xlabel('Frequency [Hz]');ylabel('Phase [deg]');
xlim([7e-2 1e1]);
%rotation
figure
loglog(Fr,abs(rot).^.5./((2*pi*Fr').^2),F_rot,Amp_rot,'*');
xlabel('Frequency [Hz]');ylabel('Rotation [rad/rtHz]')
xlim([7e-2 1e1]);
#+end_src #+end_src
Frequency vector. ** Model Generation :noexport:
#+begin_src matlab
w = 2*pi*logspace(-1,2,1000); % [rad/s]
#+end_src
*** generation of the state space model
#+begin_src matlab #+begin_src matlab
function [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot] = modelGeneration(m,I,k,h,ha,l,la,dampv,damph,kv,kh)
%% generation of the state space model
M = [m 0 0 M = [m 0 0
0 m 0 0 m 0
0 0 I]; 0 0 I];
@ -268,9 +299,14 @@ Frequency vector.
%1 0 h/2 %Right horizontal actuator %1 0 h/2 %Right horizontal actuator
0 1 -la/2 %Left vertical actuator 0 1 -la/2 %Left vertical actuator
0 1 la/2]; %Right vertical actuator 0 1 la/2]; %Right vertical actuator
Jah = [1 0 ha/2];
Jav = [0 1 -la/2 %Left vertical actuator
0 1 la/2]; %Right vertical actuator
Jta = Ja'; Jta = Ja';
K = k*Jta*Ja; Jtah = Jah';
C = 0.06*k*Jta*Ja; Jtav = Jav';
K = kv*Jtav*Jav + kh*Jtah*Jah;
C = dampv*kv*Jtav*Jav+damph*kh*Jtah*Jah;
E = [1 0 0 E = [1 0 0
0 1 0 0 1 0
@ -282,12 +318,6 @@ Frequency vector.
BB = [zeros(3,6) BB = [zeros(3,6)
M\Jta M\(k*Jta*E)]; M\Jta M\(k*Jta*E)];
% BB = [zeros(3,3)
% M\Jta ];
%
% CC = [Ja zeros(3)];
% DD = zeros(3,3);
CC = [[Js1;Js2] zeros(4,3); CC = [[Js1;Js2] zeros(4,3);
zeros(2,6) zeros(2,6)
(Js1+Js2)./2 zeros(2,3) (Js1+Js2)./2 zeros(2,3)
@ -299,272 +329,11 @@ Frequency vector.
zeros(6,6)]; zeros(6,6)];
system_dec = ss(AA,BB,CC,DD); system_dec = ss(AA,BB,CC,DD);
#+end_src %input = three actuators and three ground motions
%output = the bottom sensor; the top sensor; the ground motion; the half
%sum; the half difference; the rotation
- Input = three actuators and three ground motions %% Injecting ground motion in the system to have the output
- Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
#+begin_src matlab :results output replace
size(system_dec)
#+end_src
#+RESULTS:
: State-space model with 12 outputs, 6 inputs, and 6 states.
*** Comparison with the Simscape Model
#+begin_src matlab :exports none
freqs = logspace(-2, 2, 1000);
figure;
for in_i = 1:3
for out_i = 1:4
subplot(4, 3, 3*(out_i-1)+in_i);
hold on;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
end
end
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/gravimeter_analytical_system_open_loop_models.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:gravimeter_analytical_system_open_loop_models
#+caption: Comparison of the analytical and the Simscape models
#+RESULTS:
[[file:figs/gravimeter_analytical_system_open_loop_models.png]]
*** Analysis
#+begin_src matlab
% figure
% bode(system_dec,P);
% return
#+end_src
#+begin_src matlab
%% svd decomposition
% system_dec_freq = freqresp(system_dec,w);
% S = zeros(3,length(w));
% for m = 1:length(w)
% S(:,m) = svd(system_dec_freq(1:4,1:3,m));
% end
% figure
% loglog(w./(2*pi), S);hold on;
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
% ylim([1e-8 1e-2]);
%
% %condition number
% figure
% loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
% xlabel('Frequency [Hz]');ylabel('Condition number [-]');
% % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
%
% %performance indicator
% system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
% [U,S,V] = svd(system_dec_svd);
% H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
% H_svd = pinv(V')*H_svd_OL*pinv(U);
% % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
%
% OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
% OL_freq = freqresp(OL_dec,w); % OL = G*H
% CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
% CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
% % CL_system_2 = feedback(system_dec,H);
% % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
% for i = 1:size(w,2)
% OL(:,i) = svd(OL_freq(:,:,i));
% CL (:,i) = svd(CL_freq(:,:,i));
% %CL2 (:,i) = svd(CL_freq_2(:,:,i));
% end
%
% un = ones(1,length(w));
% figure
% loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
%
% figure
% loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
% legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
#+end_src
*** Control Section
#+begin_src matlab
system_dec_10Hz = freqresp(system_dec,2*pi*10);
system_dec_0Hz = freqresp(system_dec,0);
system_decReal_10Hz = pinv(align(system_dec_10Hz));
[Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
[U,S,V] = svd(system_dec_10Hz(1:4,1:3));
normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
0 0 0 zpk(-2*pi,-2*pi*10,10)]);
H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
% H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
% 0 1/normalizationMatrix(2,2) 0 0
% 0 0 1/normalizationMatrix(3,3) 0];
% H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
% 0 1/normalizationMatrixReal(2,2) 0 0
% 0 0 1/normalizationMatrixReal(3,3) 0];
H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
% H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
% H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
H_svd = pinv(V')*H_svd_OL*pinv(U);
H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
OL_dec = g*H_dec*system_dec(1:4,1:3);
OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
#+end_src
#+begin_src matlab
% figure
% bode(OL_dec,w,P);title('OL Decentralized');
% figure
% bode(OL_cen,w,P);title('OL Centralized');
#+end_src
#+begin_src matlab
figure
bode(g*system_dec(1:4,1:3),w,P);
title('gain * Plant');
#+end_src
#+begin_src matlab
figure
bode(OL_svd,OL_svd_real,w,P);
title('OL SVD');
legend('SVD of Complex plant','SVD of real approximation of the complex plant')
#+end_src
#+begin_src matlab
figure
bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
#+end_src
#+begin_src matlab
CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
#+end_src
#+begin_src matlab
pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
title('Decentralized control');
#+end_src
#+begin_src matlab
pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
title('Centralized control');
#+end_src
#+begin_src matlab
pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
title('SVD control');
#+end_src
#+begin_src matlab
pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
title('Real approximation SVD control');
#+end_src
#+begin_src matlab
P.Ylim = [1e-8 1e-3];
figure
bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
title('Motion/actuator')
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
#+end_src
#+begin_src matlab
P.Ylim = [1e-5 1e1];
figure
bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
title('Transmissibility');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
#+end_src
#+begin_src matlab
figure
bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
title('Transmissibility from half sum and half difference in the X direction');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
#+end_src
#+begin_src matlab
figure
bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
title('Transmissibility from half sum and half difference in the Z direction');
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
#+end_src
*** Greshgorin radius
#+begin_src matlab
system_dec_freq = freqresp(system_dec,w);
x1 = zeros(1,length(w));
z1 = zeros(1,length(w));
x2 = zeros(1,length(w));
S1 = zeros(1,length(w));
S2 = zeros(1,length(w));
S3 = zeros(1,length(w));
for t = 1:length(w)
x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
end
limit = 0.5*ones(1,length(w));
#+end_src
#+begin_src matlab
figure
loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
legend('x_1','z_1','x_2','Limit');
xlabel('Frequency [Hz]');
ylabel('Greshgorin radius [-]');
#+end_src
#+begin_src matlab
figure
loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
legend('S1','S2','S3','Limit');
xlabel('Frequency [Hz]');
ylabel('Greshgorin radius [-]');
% set(gcf,'color','w')
#+end_src
*** Injecting ground motion in the system to have the output
#+begin_src matlab
Fr = logspace(-2,3,1e3); Fr = logspace(-2,3,1e3);
w=2*pi*Fr*1i; w=2*pi*Fr*1i;
%fit of the ground motion data in m/s^2/rtHz %fit of the ground motion data in m/s^2/rtHz
@ -613,83 +382,6 @@ Frequency vector.
rot = PHI(:,11,11); rot = PHI(:,11,11);
#+end_src #+end_src
* Gravimeter - Functions
:PROPERTIES:
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
** =align=
:PROPERTIES:
:header-args:matlab+: :tangle gravimeter/align.m
:END:
<<sec:align>>
This Matlab function is accessible [[file:gravimeter/align.m][here]].
#+begin_src matlab
function [A] = align(V)
%A!ALIGN(V) returns a constat matrix A which is the real alignment of the
%INVERSE of the complex input matrix V
%from Mohit slides
if (nargin ==0) || (nargin > 1)
disp('usage: mat_inv_real = align(mat)')
return
end
D = pinv(real(V'*V));
A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
end
#+end_src
** =pzmap_testCL=
:PROPERTIES:
:header-args:matlab+: :tangle gravimeter/pzmap_testCL.m
:END:
<<sec:pzmap_testCL>>
This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
#+begin_src matlab
function [] = pzmap_testCL(system,H,gain,feedin,feedout)
% evaluate and plot the pole-zero map for the closed loop system for
% different values of the gain
[~, n] = size(gain);
[m1, n1, ~] = size(H);
[~,n2] = size(feedin);
figure
for i = 1:n
% if n1 == n2
system_CL = feedback(system,gain(i)*H,feedin,feedout);
[P,Z] = pzmap(system_CL);
plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
% clear P Z
% else
% system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
%
% [P,Z] = pzmap(system_CL);
% plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
% xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
% clear P Z
% end
end
str = {strcat('gain = ' , num2str(gain(1)))}; % at the end of first loop, z being loop output
str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
for i = 2:n
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
end
legend(str{:})
end
#+end_src
* Stewart Platform - Simscape Model * Stewart Platform - Simscape Model
** Matlab Init :noexport:ignore: ** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
@ -1283,7 +975,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
#+RESULTS: #+RESULTS:
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]] [[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
* Stewart Platform - Analytical Model :noexport: * Stewart Platform - Analytical Model
** Matlab Init :noexport:ignore: ** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>> <<matlab-dir>>