Add two open-loop plant figures
This commit is contained in:
		
							
								
								
									
										5170
									
								
								figs/gravimeter_analytical_system_open_loop_models.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5170
									
								
								figs/gravimeter_analytical_system_open_loop_models.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								figs/gravimeter_analytical_system_open_loop_models.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								figs/gravimeter_analytical_system_open_loop_models.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 243 KiB  | 
							
								
								
									
										5178
									
								
								figs/open_loop_tf_g.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5178
									
								
								figs/open_loop_tf_g.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								figs/open_loop_tf_g.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								figs/open_loop_tf_g.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 246 KiB  | 
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										1098
									
								
								index.html
									
									
									
									
									
								
							
							
						
						
									
										1098
									
								
								index.html
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										650
									
								
								index.org
									
									
									
									
									
								
							
							
						
						
									
										650
									
								
								index.org
									
									
									
									
									
								
							@@ -44,6 +44,9 @@
 | 
				
			|||||||
:END:
 | 
					:END:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
* Gravimeter - Simscape Model
 | 
					* Gravimeter - Simscape Model
 | 
				
			||||||
 | 
					:PROPERTIES:
 | 
				
			||||||
 | 
					:header-args:matlab+: :tangle gravimeter/script.m
 | 
				
			||||||
 | 
					:END:
 | 
				
			||||||
** Matlab Init                                             :noexport:ignore:
 | 
					** Matlab Init                                             :noexport:ignore:
 | 
				
			||||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
					#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
				
			||||||
  <<matlab-dir>>
 | 
					  <<matlab-dir>>
 | 
				
			||||||
@@ -53,11 +56,35 @@
 | 
				
			|||||||
  <<matlab-init>>
 | 
					  <<matlab-init>>
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
** Simulink
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  addpath('gravimeter');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					** Simscape Model - Parameters
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  open('gravimeter.slx')
 | 
					  open('gravimeter.slx')
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Parameters
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  l  = 0.5; % Length of the mass [m]
 | 
				
			||||||
 | 
					  la = 0.5; % Position of Act. [m]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  h  = 1.7; % Height of the mass [m]
 | 
				
			||||||
 | 
					  ha = 1.7; % Position of Act. [m]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  m = 400; % Mass [kg]
 | 
				
			||||||
 | 
					  I = 115; % Inertia [kg m^2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  k = 15e3; % Actuator Stiffness [N/m]
 | 
				
			||||||
 | 
					  c = 0.03; % Actuator Damping [N/(m/s)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  deq = 0.2; % Length of the actuators [m]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  g = 0; % Gravity [m/s2]
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					** System Identification - Without Gravity
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  %% Name of the Simulink File
 | 
					  %% Name of the Simulink File
 | 
				
			||||||
  mdl = 'gravimeter';
 | 
					  mdl = 'gravimeter';
 | 
				
			||||||
@@ -77,8 +104,23 @@
 | 
				
			|||||||
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
The plant as 6 states as expected (2 translations + 1 rotation)
 | 
					#+begin_src matlab :results output replace :exports results
 | 
				
			||||||
 | 
					  pole(G)
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+RESULTS:
 | 
				
			||||||
 | 
					#+begin_example
 | 
				
			||||||
 | 
					pole(G)
 | 
				
			||||||
 | 
					ans =
 | 
				
			||||||
 | 
					      -0.000473481142385801 +      21.7596190728632i
 | 
				
			||||||
 | 
					      -0.000473481142385801 -      21.7596190728632i
 | 
				
			||||||
 | 
					      -7.49842879459177e-05 +       8.6593576906982i
 | 
				
			||||||
 | 
					      -7.49842879459177e-05 -       8.6593576906982i
 | 
				
			||||||
 | 
					      -5.15386867925747e-06 +      2.27025295182755i
 | 
				
			||||||
 | 
					      -5.15386867925747e-06 -      2.27025295182755i
 | 
				
			||||||
 | 
					#+end_example
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The plant as 6 states as expected (2 translations + 1 rotation)
 | 
				
			||||||
#+begin_src matlab :results output replace
 | 
					#+begin_src matlab :results output replace
 | 
				
			||||||
  size(G)
 | 
					  size(G)
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
@@ -108,181 +150,108 @@ The plant as 6 states as expected (2 translations + 1 rotation)
 | 
				
			|||||||
#+RESULTS:
 | 
					#+RESULTS:
 | 
				
			||||||
[[file:figs/open_loop_tf.png]]
 | 
					[[file:figs/open_loop_tf.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
** Matlab Code                                                     :noexport:
 | 
					** System Identification - With Gravity
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  clc;
 | 
					  g = 9.80665; % Gravity [m/s2]
 | 
				
			||||||
  % close all
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  g = 100000;
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  Gg = linearize(mdl, io);
 | 
				
			||||||
 | 
					  Gg.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
 | 
					  Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					We can now see that the system is unstable due to gravity.
 | 
				
			||||||
 | 
					#+begin_src matlab :results output replace :exports results
 | 
				
			||||||
 | 
					  pole(Gg)
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+RESULTS:
 | 
				
			||||||
 | 
					#+begin_example
 | 
				
			||||||
 | 
					pole(G)
 | 
				
			||||||
 | 
					ans =
 | 
				
			||||||
 | 
					          -10.9848275341276 +                     0i
 | 
				
			||||||
 | 
					           10.9838836405193 +                     0i
 | 
				
			||||||
 | 
					      -7.49855396089326e-05 +      8.65962885769976i
 | 
				
			||||||
 | 
					      -7.49855396089326e-05 -      8.65962885769976i
 | 
				
			||||||
 | 
					      -6.68819341967921e-06 +      0.83296042226902i
 | 
				
			||||||
 | 
					      -6.68819341967921e-06 -      0.83296042226902i
 | 
				
			||||||
 | 
					#+end_example
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab :exports none
 | 
				
			||||||
 | 
					  freqs = logspace(-2, 2, 1000);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  figure;
 | 
				
			||||||
 | 
					  for in_i = 1:3
 | 
				
			||||||
 | 
					      for out_i = 1:4
 | 
				
			||||||
 | 
					          subplot(4, 3, 3*(out_i-1)+in_i);
 | 
				
			||||||
 | 
					          hold on;
 | 
				
			||||||
 | 
					          plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
 | 
				
			||||||
 | 
					          plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
 | 
				
			||||||
 | 
					          hold off;
 | 
				
			||||||
 | 
					          set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					      end
 | 
				
			||||||
 | 
					  end
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab :tangle no :exports results :results file replace
 | 
				
			||||||
 | 
					  exportFig('figs/open_loop_tf_g.pdf', 'width', 'full', 'height', 'full');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+name: fig:open_loop_tf_g
 | 
				
			||||||
 | 
					#+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity
 | 
				
			||||||
 | 
					#+RESULTS:
 | 
				
			||||||
 | 
					[[file:figs/open_loop_tf_g.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					** Analytical Model
 | 
				
			||||||
 | 
					*** Parameters
 | 
				
			||||||
 | 
					Control parameters
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  g = 1e5;
 | 
				
			||||||
 | 
					  g_svd = 1e5;
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					System parameters
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
  w0 = 2*pi*.5; % MinusK BM1 tablle
 | 
					  w0 = 2*pi*.5; % MinusK BM1 tablle
 | 
				
			||||||
  l = 0.5; %[m]
 | 
					
 | 
				
			||||||
  la = 1; %[m]
 | 
					  l  = 0.8; % [m]
 | 
				
			||||||
 | 
					  la = l;   % [m]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  h  = 1.7; % [m]
 | 
					  h  = 1.7; % [m]
 | 
				
			||||||
  ha = 1.7;% %[m]
 | 
					  ha = h;   % [m]
 | 
				
			||||||
  m = 400; %[kg]
 | 
					 | 
				
			||||||
  k = 15e3;%[N/m]
 | 
					 | 
				
			||||||
  kv = k;
 | 
					 | 
				
			||||||
  kh = 15e3;
 | 
					 | 
				
			||||||
  I = 115;%[kg m^2]
 | 
					 | 
				
			||||||
          % c = 0.06;
 | 
					 | 
				
			||||||
          % l = 0.4719; %[m]
 | 
					 | 
				
			||||||
          % la = .477; %[m]
 | 
					 | 
				
			||||||
          % h = 1.8973; %[m]
 | 
					 | 
				
			||||||
          % ha = 1.9060;% %[m]
 | 
					 | 
				
			||||||
          % m = 98.1421; %[kg]
 | 
					 | 
				
			||||||
          % k = 14512;%[N/m]
 | 
					 | 
				
			||||||
          % I = 28.5372;%[kg m^2]
 | 
					 | 
				
			||||||
  cv = 0.03;
 | 
					 | 
				
			||||||
  ch = 0.03;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  %% System definition
 | 
					  m = 70; % [kg]
 | 
				
			||||||
  [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot]...
 | 
					 | 
				
			||||||
      = modelGeneration(m,I,k,h,ha,l,la,cv,ch,kv,kh);
 | 
					 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
  %% Bode options
 | 
					  k = 3e3; % [N/m]
 | 
				
			||||||
 | 
					  I = 10;  % [kg m^2]
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Bode options.
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
  P = bodeoptions;
 | 
					  P = bodeoptions;
 | 
				
			||||||
  P.FreqUnits = 'Hz';
 | 
					  P.FreqUnits = 'Hz';
 | 
				
			||||||
  P.MagUnits = 'abs';
 | 
					  P.MagUnits = 'abs';
 | 
				
			||||||
  P.MagScale = 'log';
 | 
					  P.MagScale = 'log';
 | 
				
			||||||
  P.Grid = 'on';
 | 
					  P.Grid = 'on';
 | 
				
			||||||
  P.PhaseWrapping = 'on';
 | 
					  P.PhaseWrapping = 'on';
 | 
				
			||||||
 | 
					  P.Title.FontSize = 14;
 | 
				
			||||||
 | 
					  P.XLabel.FontSize = 14;
 | 
				
			||||||
 | 
					  P.YLabel.FontSize = 14;
 | 
				
			||||||
 | 
					  P.TickLabel.FontSize = 12;
 | 
				
			||||||
  P.Xlim = [1e-1,1e2];
 | 
					  P.Xlim = [1e-1,1e2];
 | 
				
			||||||
 | 
					  P.MagLowerLimMode = 'manual';
 | 
				
			||||||
 | 
					  P.MagLowerLim= 1e-3;
 | 
				
			||||||
  %P.PhaseVisible = 'off';
 | 
					  %P.PhaseVisible = 'off';
 | 
				
			||||||
  w = 2*pi*logspace(-1,2,1000);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %% curves points
 | 
					 | 
				
			||||||
  % slide 4
 | 
					 | 
				
			||||||
  F_sl4 = [2e-1 4e-1 7e-1 1 2 3 5];
 | 
					 | 
				
			||||||
  Amp_sl4 = [ 1 2 4 2.5 1 7e-1 7e-1];
 | 
					 | 
				
			||||||
  F_sl4_phase = [2e-1 4e-1 7e-1 1 ];
 | 
					 | 
				
			||||||
  Phase_sl4 = (180/pi).*[0 0 -0.5 -1.7];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %slide 6
 | 
					 | 
				
			||||||
  F_sl6 = [2e-1 4e-1 1 2 3 5];
 | 
					 | 
				
			||||||
  Amp_sl6 = [1 1 6e-1 2e-1 3e-1 3e-1];
 | 
					 | 
				
			||||||
  F_sl6_phase = [2e-1 4e-1 1 ];
 | 
					 | 
				
			||||||
  Phase_sl6 = (180/pi).*[0 0 0 ];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %slide 9
 | 
					 | 
				
			||||||
  F_sl9 = [2.5e-1 4e-1 6e-1 1 1.7 2.2 3 5 10];
 | 
					 | 
				
			||||||
  Amp_sl9 = [3 6 1 5e-1 1 2 7e-1 2.5e-1 7e-2];
 | 
					 | 
				
			||||||
  Phase_sl9 = (180/pi)*[0 -1 -pi 0 -1 -1.5 -pi -pi -pi];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  % slide 14
 | 
					 | 
				
			||||||
  F_sl14 = [ 2e-1 4e-1 6e-1 8e-1 1 2 3 5 10];
 | 
					 | 
				
			||||||
  Amp_sl14 = [9e-1 1.5 1.2 0.35 .3 1.2 .3 .1 5e-2];
 | 
					 | 
				
			||||||
  F_sl14_phase = [ 2e-1 4e-1 6e-1 8e-1 ];
 | 
					 | 
				
			||||||
  Phase_sl14 = (180/pi).*[0 0 -1.7 -2];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %rotation
 | 
					 | 
				
			||||||
  F_rot = [1e-1 2e-1 4e-1 5e-1 7e-1 1 2 3 6.5 10 20];
 | 
					 | 
				
			||||||
  Amp_rot = [7e-8 2.2e-7 3e-7 1e-7 2e-8 9e-9 3e-8 9e-9 1e-9 4e-10 8e-11];
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %% Plots
 | 
					 | 
				
			||||||
  % %slide 3
 | 
					 | 
				
			||||||
  % figure
 | 
					 | 
				
			||||||
  % loglog(Fr,abs(x2).^.5,Fr,abs(x1).^.5,Fr,abs(xsum).^.5,Fr,abs(xdelta).^.5)
 | 
					 | 
				
			||||||
  % xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
 | 
					 | 
				
			||||||
  % legend('Top sensor','Bottom sensor','Half sum','Half difference');
 | 
					 | 
				
			||||||
  % title('Horizontal')
 | 
					 | 
				
			||||||
  % xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %slide 4
 | 
					 | 
				
			||||||
  figure
 | 
					 | 
				
			||||||
  subplot 211
 | 
					 | 
				
			||||||
  loglog(Fr, abs(x12)./abs(x1));hold on;
 | 
					 | 
				
			||||||
  loglog(F_sl4,Amp_sl4,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
 | 
					 | 
				
			||||||
  title('X direction Top/bottom sensor');
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
  subplot 212
 | 
					 | 
				
			||||||
  semilogx(Fr, (180/pi).*angle(x12./abs(x1)));hold on;
 | 
					 | 
				
			||||||
  loglog(F_sl4_phase,Phase_sl4,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Phase [deg]');
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %slide 6
 | 
					 | 
				
			||||||
  figure
 | 
					 | 
				
			||||||
  subplot 211
 | 
					 | 
				
			||||||
  loglog(Fr, abs(z12)./abs(z1));hold on;
 | 
					 | 
				
			||||||
  loglog(F_sl6,Amp_sl6,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
 | 
					 | 
				
			||||||
  title('Z direction Top/bottom sensor');
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
  subplot 212
 | 
					 | 
				
			||||||
  semilogx(Fr, (180/pi).*angle(z12./abs(z1)));hold on;
 | 
					 | 
				
			||||||
  loglog(F_sl6_phase,Phase_sl6,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Phase [deg]');
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);ylim([-180 180]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  % %slide 6
 | 
					 | 
				
			||||||
  % figure
 | 
					 | 
				
			||||||
  % loglog(Fr,abs(z2).^.5,Fr,abs(z1).^.5,Fr,abs(zsum).^.5,Fr,abs(zdelta).^.5)
 | 
					 | 
				
			||||||
  % xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
 | 
					 | 
				
			||||||
  % legend('Top sensor','Bottom sensor','Half sum','Half difference');
 | 
					 | 
				
			||||||
  % title('Vertical')
 | 
					 | 
				
			||||||
  % xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %slide 9
 | 
					 | 
				
			||||||
  figure
 | 
					 | 
				
			||||||
  subplot 211
 | 
					 | 
				
			||||||
  loglog(Fr, abs(PHIwx)./abs(wx));hold on;
 | 
					 | 
				
			||||||
  loglog(F_sl9,Amp_sl9,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
 | 
					 | 
				
			||||||
  title('X direction bottom/ground sensor');
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
  ylim([0.01 10]);
 | 
					 | 
				
			||||||
  subplot 212
 | 
					 | 
				
			||||||
  semilogx(Fr, (180/pi).*angle(PHIwx./abs(wx)));hold on;
 | 
					 | 
				
			||||||
  loglog(F_sl9,Phase_sl9,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Phase [deg]');
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  % %slide 8
 | 
					 | 
				
			||||||
  % figure
 | 
					 | 
				
			||||||
  % loglog(Fr,abs(wx).^.5,Fr,abs(x1).^.5,'-.',Fr,abs(x2).^.5,'.');
 | 
					 | 
				
			||||||
  % grid on;xlabel('Frequency [Hz]');
 | 
					 | 
				
			||||||
  % ylabel('ASD [m/s^2/rtHz]');
 | 
					 | 
				
			||||||
  % xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
  % legend('Ground','Bottom sensor','Top sensor');
 | 
					 | 
				
			||||||
  % title('Horizontal');
 | 
					 | 
				
			||||||
  %
 | 
					 | 
				
			||||||
  % %slide 13
 | 
					 | 
				
			||||||
  % figure
 | 
					 | 
				
			||||||
  % loglog(Fr,abs(wz).^.5,Fr,abs(z1).^.5,'-.',Fr,abs(z2).^.5,'.');
 | 
					 | 
				
			||||||
  % grid on;xlabel('Frequency [Hz]');
 | 
					 | 
				
			||||||
  % ylabel('ASD [m/s^2/rtHz]');
 | 
					 | 
				
			||||||
  % xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
  % legend('Ground','Bottom sensor','Top sensor');
 | 
					 | 
				
			||||||
  % title('Vertical');
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %slide 14
 | 
					 | 
				
			||||||
  figure
 | 
					 | 
				
			||||||
  subplot 211
 | 
					 | 
				
			||||||
  loglog(Fr, abs(PHIwz)./abs(wz));hold on;
 | 
					 | 
				
			||||||
  loglog(F_sl14,Amp_sl14,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
 | 
					 | 
				
			||||||
  title('Z direction bottom/ground sensor');
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
  ylim([0.01 10]);
 | 
					 | 
				
			||||||
  subplot 212
 | 
					 | 
				
			||||||
  semilogx(Fr, (180/pi).*angle(PHIwz./abs(wz)));hold on;
 | 
					 | 
				
			||||||
  loglog(F_sl14_phase,Phase_sl14,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Phase [deg]');
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %rotation
 | 
					 | 
				
			||||||
  figure
 | 
					 | 
				
			||||||
  loglog(Fr,abs(rot).^.5./((2*pi*Fr').^2),F_rot,Amp_rot,'*');
 | 
					 | 
				
			||||||
  xlabel('Frequency [Hz]');ylabel('Rotation [rad/rtHz]')
 | 
					 | 
				
			||||||
  xlim([7e-2 1e1]);
 | 
					 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
** Model Generation                                                :noexport:
 | 
					Frequency vector.
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  w = 2*pi*logspace(-1,2,1000); % [rad/s]
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*** generation of the state space model
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  function [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot] = modelGeneration(m,I,k,h,ha,l,la,dampv,damph,kv,kh)
 | 
					 | 
				
			||||||
      %% generation of the state space model
 | 
					 | 
				
			||||||
  M = [m 0 0
 | 
					  M = [m 0 0
 | 
				
			||||||
       0 m 0
 | 
					       0 m 0
 | 
				
			||||||
       0 0 I];
 | 
					       0 0 I];
 | 
				
			||||||
@@ -299,14 +268,9 @@ The plant as 6 states as expected (2 translations + 1 rotation)
 | 
				
			|||||||
                 %1 0 h/2 %Right horizontal actuator
 | 
					                 %1 0 h/2 %Right horizontal actuator
 | 
				
			||||||
        0 1 -la/2 %Left vertical actuator
 | 
					        0 1 -la/2 %Left vertical actuator
 | 
				
			||||||
        0 1 la/2]; %Right vertical actuator
 | 
					        0 1 la/2]; %Right vertical actuator
 | 
				
			||||||
      Jah = [1 0 ha/2];
 | 
					 | 
				
			||||||
      Jav = [0 1 -la/2 %Left vertical actuator
 | 
					 | 
				
			||||||
             0 1 la/2]; %Right vertical actuator
 | 
					 | 
				
			||||||
  Jta = Ja';
 | 
					  Jta = Ja';
 | 
				
			||||||
      Jtah = Jah';
 | 
					  K = k*Jta*Ja;
 | 
				
			||||||
      Jtav = Jav';
 | 
					  C = 0.06*k*Jta*Ja;
 | 
				
			||||||
      K = kv*Jtav*Jav + kh*Jtah*Jah;
 | 
					 | 
				
			||||||
      C = dampv*kv*Jtav*Jav+damph*kh*Jtah*Jah;
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
  E = [1 0 0
 | 
					  E = [1 0 0
 | 
				
			||||||
       0 1 0
 | 
					       0 1 0
 | 
				
			||||||
@@ -318,6 +282,12 @@ The plant as 6 states as expected (2 translations + 1 rotation)
 | 
				
			|||||||
  BB = [zeros(3,6)
 | 
					  BB = [zeros(3,6)
 | 
				
			||||||
        M\Jta M\(k*Jta*E)];
 | 
					        M\Jta M\(k*Jta*E)];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  % BB = [zeros(3,3)
 | 
				
			||||||
 | 
					  %     M\Jta ];
 | 
				
			||||||
 | 
					  %
 | 
				
			||||||
 | 
					  % CC = [Ja zeros(3)];
 | 
				
			||||||
 | 
					  % DD = zeros(3,3);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  CC = [[Js1;Js2] zeros(4,3);
 | 
					  CC = [[Js1;Js2] zeros(4,3);
 | 
				
			||||||
        zeros(2,6)
 | 
					        zeros(2,6)
 | 
				
			||||||
        (Js1+Js2)./2 zeros(2,3)
 | 
					        (Js1+Js2)./2 zeros(2,3)
 | 
				
			||||||
@@ -329,11 +299,272 @@ The plant as 6 states as expected (2 translations + 1 rotation)
 | 
				
			|||||||
        zeros(6,6)];
 | 
					        zeros(6,6)];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  system_dec = ss(AA,BB,CC,DD);
 | 
					  system_dec = ss(AA,BB,CC,DD);
 | 
				
			||||||
      %input = three actuators and three ground motions
 | 
					#+end_src
 | 
				
			||||||
      %output = the bottom sensor; the top sensor; the ground motion; the half
 | 
					 | 
				
			||||||
      %sum; the half difference; the rotation
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
      %% Injecting ground motion in the system to have the output
 | 
					- Input = three actuators and three ground motions
 | 
				
			||||||
 | 
					- Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab :results output replace
 | 
				
			||||||
 | 
					  size(system_dec)
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+RESULTS:
 | 
				
			||||||
 | 
					: State-space model with 12 outputs, 6 inputs, and 6 states.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*** Comparison with the Simscape Model
 | 
				
			||||||
 | 
					#+begin_src matlab :exports none
 | 
				
			||||||
 | 
					  freqs = logspace(-2, 2, 1000);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  figure;
 | 
				
			||||||
 | 
					  for in_i = 1:3
 | 
				
			||||||
 | 
					      for out_i = 1:4
 | 
				
			||||||
 | 
					          subplot(4, 3, 3*(out_i-1)+in_i);
 | 
				
			||||||
 | 
					          hold on;
 | 
				
			||||||
 | 
					          plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
 | 
				
			||||||
 | 
					          plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
 | 
				
			||||||
 | 
					          hold off;
 | 
				
			||||||
 | 
					          set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					      end
 | 
				
			||||||
 | 
					  end
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab :tangle no :exports results :results file replace
 | 
				
			||||||
 | 
					  exportFig('figs/gravimeter_analytical_system_open_loop_models.pdf', 'width', 'full', 'height', 'full');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+name: fig:gravimeter_analytical_system_open_loop_models
 | 
				
			||||||
 | 
					#+caption: Comparison of the analytical and the Simscape models
 | 
				
			||||||
 | 
					#+RESULTS:
 | 
				
			||||||
 | 
					[[file:figs/gravimeter_analytical_system_open_loop_models.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*** Analysis
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  % figure
 | 
				
			||||||
 | 
					  % bode(system_dec,P);
 | 
				
			||||||
 | 
					  % return
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  %% svd decomposition
 | 
				
			||||||
 | 
					  % system_dec_freq = freqresp(system_dec,w);
 | 
				
			||||||
 | 
					  % S = zeros(3,length(w));
 | 
				
			||||||
 | 
					  % for m = 1:length(w)
 | 
				
			||||||
 | 
					  %     S(:,m) = svd(system_dec_freq(1:4,1:3,m));
 | 
				
			||||||
 | 
					  % end
 | 
				
			||||||
 | 
					  % figure
 | 
				
			||||||
 | 
					  % loglog(w./(2*pi), S);hold on;
 | 
				
			||||||
 | 
					  % % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
 | 
				
			||||||
 | 
					  % xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
 | 
				
			||||||
 | 
					  % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
 | 
				
			||||||
 | 
					  % ylim([1e-8 1e-2]);
 | 
				
			||||||
 | 
					  %
 | 
				
			||||||
 | 
					  % %condition number
 | 
				
			||||||
 | 
					  % figure
 | 
				
			||||||
 | 
					  % loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
 | 
				
			||||||
 | 
					  % % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
 | 
				
			||||||
 | 
					  % xlabel('Frequency [Hz]');ylabel('Condition number [-]');
 | 
				
			||||||
 | 
					  % % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
 | 
				
			||||||
 | 
					  %
 | 
				
			||||||
 | 
					  % %performance indicator
 | 
				
			||||||
 | 
					  % system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
 | 
				
			||||||
 | 
					  % [U,S,V] = svd(system_dec_svd);
 | 
				
			||||||
 | 
					  % H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
 | 
				
			||||||
 | 
					  % H_svd = pinv(V')*H_svd_OL*pinv(U);
 | 
				
			||||||
 | 
					  % % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
 | 
				
			||||||
 | 
					  %
 | 
				
			||||||
 | 
					  % OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
 | 
				
			||||||
 | 
					  % OL_freq = freqresp(OL_dec,w); % OL = G*H
 | 
				
			||||||
 | 
					  % CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
 | 
				
			||||||
 | 
					  % CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
 | 
				
			||||||
 | 
					  % % CL_system_2 = feedback(system_dec,H);
 | 
				
			||||||
 | 
					  % % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
 | 
				
			||||||
 | 
					  % for i = 1:size(w,2)
 | 
				
			||||||
 | 
					  %     OL(:,i) = svd(OL_freq(:,:,i));
 | 
				
			||||||
 | 
					  %     CL (:,i) = svd(CL_freq(:,:,i));
 | 
				
			||||||
 | 
					  %     %CL2 (:,i) = svd(CL_freq_2(:,:,i));
 | 
				
			||||||
 | 
					  % end
 | 
				
			||||||
 | 
					  %
 | 
				
			||||||
 | 
					  % un = ones(1,length(w));
 | 
				
			||||||
 | 
					  % figure
 | 
				
			||||||
 | 
					  % loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
 | 
				
			||||||
 | 
					  % % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
 | 
				
			||||||
 | 
					  % % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
 | 
				
			||||||
 | 
					  % xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
 | 
				
			||||||
 | 
					  % legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
 | 
				
			||||||
 | 
					  %
 | 
				
			||||||
 | 
					  % figure
 | 
				
			||||||
 | 
					  % loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
 | 
				
			||||||
 | 
					  % % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
 | 
				
			||||||
 | 
					  % % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
 | 
				
			||||||
 | 
					  % xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
 | 
				
			||||||
 | 
					  % legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*** Control Section
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  system_dec_10Hz = freqresp(system_dec,2*pi*10);
 | 
				
			||||||
 | 
					  system_dec_0Hz = freqresp(system_dec,0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  system_decReal_10Hz = pinv(align(system_dec_10Hz));
 | 
				
			||||||
 | 
					  [Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
 | 
				
			||||||
 | 
					  normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  [U,S,V] = svd(system_dec_10Hz(1:4,1:3));
 | 
				
			||||||
 | 
					  normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
 | 
				
			||||||
 | 
					            0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
 | 
				
			||||||
 | 
					            0 0 0 zpk(-2*pi,-2*pi*10,10)]);
 | 
				
			||||||
 | 
					  H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
 | 
				
			||||||
 | 
					              0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
 | 
				
			||||||
 | 
					  H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
 | 
				
			||||||
 | 
					  % H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
 | 
				
			||||||
 | 
					  %     0 1/normalizationMatrix(2,2) 0 0
 | 
				
			||||||
 | 
					  %     0 0 1/normalizationMatrix(3,3) 0];
 | 
				
			||||||
 | 
					  % H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
 | 
				
			||||||
 | 
					  %     0 1/normalizationMatrixReal(2,2) 0 0
 | 
				
			||||||
 | 
					  %     0 0 1/normalizationMatrixReal(3,3) 0];
 | 
				
			||||||
 | 
					  H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
 | 
				
			||||||
 | 
					               0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
 | 
				
			||||||
 | 
					               0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
 | 
				
			||||||
 | 
					  H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
 | 
				
			||||||
 | 
					                    0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
 | 
				
			||||||
 | 
					                    0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
 | 
				
			||||||
 | 
					  % H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
 | 
				
			||||||
 | 
					  % H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
 | 
				
			||||||
 | 
					  H_svd = pinv(V')*H_svd_OL*pinv(U);
 | 
				
			||||||
 | 
					  H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  OL_dec = g*H_dec*system_dec(1:4,1:3);
 | 
				
			||||||
 | 
					  OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
 | 
				
			||||||
 | 
					  OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
 | 
				
			||||||
 | 
					  OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  % figure
 | 
				
			||||||
 | 
					  % bode(OL_dec,w,P);title('OL Decentralized');
 | 
				
			||||||
 | 
					  % figure
 | 
				
			||||||
 | 
					  % bode(OL_cen,w,P);title('OL Centralized');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  bode(g*system_dec(1:4,1:3),w,P);
 | 
				
			||||||
 | 
					  title('gain * Plant');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  bode(OL_svd,OL_svd_real,w,P);
 | 
				
			||||||
 | 
					  title('OL SVD');
 | 
				
			||||||
 | 
					  legend('SVD of Complex plant','SVD of real approximation of the complex plant')
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
 | 
				
			||||||
 | 
					  CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
 | 
				
			||||||
 | 
					  CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
 | 
				
			||||||
 | 
					  CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
 | 
				
			||||||
 | 
					  title('Decentralized control');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
 | 
				
			||||||
 | 
					  title('Centralized control');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
 | 
				
			||||||
 | 
					  title('SVD control');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
 | 
				
			||||||
 | 
					  title('Real approximation SVD control');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  P.Ylim = [1e-8 1e-3];
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
 | 
				
			||||||
 | 
					  title('Motion/actuator')
 | 
				
			||||||
 | 
					  legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  P.Ylim = [1e-5 1e1];
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
 | 
				
			||||||
 | 
					  title('Transmissibility');
 | 
				
			||||||
 | 
					  legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
 | 
				
			||||||
 | 
					  title('Transmissibility from half sum and half difference in the X direction');
 | 
				
			||||||
 | 
					  legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
 | 
				
			||||||
 | 
					  title('Transmissibility from half sum and half difference in the Z direction');
 | 
				
			||||||
 | 
					  legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*** Greshgorin radius
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  system_dec_freq = freqresp(system_dec,w);
 | 
				
			||||||
 | 
					  x1 = zeros(1,length(w));
 | 
				
			||||||
 | 
					  z1 = zeros(1,length(w));
 | 
				
			||||||
 | 
					  x2 = zeros(1,length(w));
 | 
				
			||||||
 | 
					  S1 = zeros(1,length(w));
 | 
				
			||||||
 | 
					  S2 = zeros(1,length(w));
 | 
				
			||||||
 | 
					  S3 = zeros(1,length(w));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for t = 1:length(w)
 | 
				
			||||||
 | 
					      x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
 | 
				
			||||||
 | 
					      z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
 | 
				
			||||||
 | 
					      x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
 | 
				
			||||||
 | 
					      system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
 | 
				
			||||||
 | 
					      S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
 | 
				
			||||||
 | 
					      S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
 | 
				
			||||||
 | 
					      S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
 | 
				
			||||||
 | 
					  end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  limit = 0.5*ones(1,length(w));
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
 | 
				
			||||||
 | 
					  legend('x_1','z_1','x_2','Limit');
 | 
				
			||||||
 | 
					  xlabel('Frequency [Hz]');
 | 
				
			||||||
 | 
					  ylabel('Greshgorin radius [-]');
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  figure
 | 
				
			||||||
 | 
					  loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
 | 
				
			||||||
 | 
					  legend('S1','S2','S3','Limit');
 | 
				
			||||||
 | 
					  xlabel('Frequency [Hz]');
 | 
				
			||||||
 | 
					  ylabel('Greshgorin radius [-]');
 | 
				
			||||||
 | 
					  % set(gcf,'color','w')
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*** Injecting ground motion in the system to have the output
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
  Fr = logspace(-2,3,1e3);
 | 
					  Fr = logspace(-2,3,1e3);
 | 
				
			||||||
  w=2*pi*Fr*1i;
 | 
					  w=2*pi*Fr*1i;
 | 
				
			||||||
  %fit of the ground motion data in m/s^2/rtHz
 | 
					  %fit of the ground motion data in m/s^2/rtHz
 | 
				
			||||||
@@ -382,6 +613,83 @@ The plant as 6 states as expected (2 translations + 1 rotation)
 | 
				
			|||||||
  rot = PHI(:,11,11);
 | 
					  rot = PHI(:,11,11);
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* Gravimeter - Functions
 | 
				
			||||||
 | 
					:PROPERTIES:
 | 
				
			||||||
 | 
					:header-args:matlab+: :comments none :mkdirp yes :eval no
 | 
				
			||||||
 | 
					:END:
 | 
				
			||||||
 | 
					** =align=
 | 
				
			||||||
 | 
					:PROPERTIES:
 | 
				
			||||||
 | 
					:header-args:matlab+: :tangle gravimeter/align.m
 | 
				
			||||||
 | 
					:END:
 | 
				
			||||||
 | 
					<<sec:align>>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This Matlab function is accessible [[file:gravimeter/align.m][here]].
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  function [A] = align(V)
 | 
				
			||||||
 | 
					  %A!ALIGN(V) returns a constat matrix A which is the real alignment of the
 | 
				
			||||||
 | 
					  %INVERSE of the complex input matrix V
 | 
				
			||||||
 | 
					  %from Mohit slides
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if (nargin ==0) || (nargin > 1)
 | 
				
			||||||
 | 
					          disp('usage: mat_inv_real = align(mat)')
 | 
				
			||||||
 | 
					          return
 | 
				
			||||||
 | 
					      end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      D = pinv(real(V'*V));
 | 
				
			||||||
 | 
					      A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  end
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					** =pzmap_testCL=
 | 
				
			||||||
 | 
					:PROPERTIES:
 | 
				
			||||||
 | 
					:header-args:matlab+: :tangle gravimeter/pzmap_testCL.m
 | 
				
			||||||
 | 
					:END:
 | 
				
			||||||
 | 
					<<sec:pzmap_testCL>>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  function [] = pzmap_testCL(system,H,gain,feedin,feedout)
 | 
				
			||||||
 | 
					  % evaluate and plot the pole-zero map for the closed loop system for
 | 
				
			||||||
 | 
					  % different values of the gain
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      [~, n] = size(gain);
 | 
				
			||||||
 | 
					      [m1, n1, ~] = size(H);
 | 
				
			||||||
 | 
					      [~,n2] = size(feedin);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      figure
 | 
				
			||||||
 | 
					      for i = 1:n
 | 
				
			||||||
 | 
					          %     if n1 == n2
 | 
				
			||||||
 | 
					          system_CL = feedback(system,gain(i)*H,feedin,feedout);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          [P,Z] = pzmap(system_CL);
 | 
				
			||||||
 | 
					          plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
 | 
				
			||||||
 | 
					          xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
 | 
				
			||||||
 | 
					          %         clear P Z
 | 
				
			||||||
 | 
					          %     else
 | 
				
			||||||
 | 
					          %         system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
 | 
				
			||||||
 | 
					          %
 | 
				
			||||||
 | 
					          %         [P,Z] = pzmap(system_CL);
 | 
				
			||||||
 | 
					          %         plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
 | 
				
			||||||
 | 
					          %         xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
 | 
				
			||||||
 | 
					          %         clear P Z
 | 
				
			||||||
 | 
					          %     end
 | 
				
			||||||
 | 
					      end
 | 
				
			||||||
 | 
					      str = {strcat('gain = ' , num2str(gain(1)))};  % at the end of first loop, z being loop output
 | 
				
			||||||
 | 
					      str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
 | 
				
			||||||
 | 
					      for i = 2:n
 | 
				
			||||||
 | 
					          str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
 | 
				
			||||||
 | 
					          str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
 | 
				
			||||||
 | 
					      end
 | 
				
			||||||
 | 
					      legend(str{:})
 | 
				
			||||||
 | 
					  end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
* Stewart Platform - Simscape Model
 | 
					* Stewart Platform - Simscape Model
 | 
				
			||||||
** Matlab Init                                             :noexport:ignore:
 | 
					** Matlab Init                                             :noexport:ignore:
 | 
				
			||||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
					#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
				
			||||||
@@ -975,7 +1283,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
 | 
				
			|||||||
#+RESULTS:
 | 
					#+RESULTS:
 | 
				
			||||||
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
 | 
					[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
* Stewart Platform - Analytical Model
 | 
					* Stewart Platform - Analytical Model                               :noexport:
 | 
				
			||||||
** Matlab Init                                              :noexport:ignore:
 | 
					** Matlab Init                                              :noexport:ignore:
 | 
				
			||||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
					#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
				
			||||||
  <<matlab-dir>>
 | 
					  <<matlab-dir>>
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user