Update gravimeter script
This commit is contained in:
parent
93e9366c0e
commit
cd38200cc8
@ -13,10 +13,10 @@ open('gravimeter.slx')
|
|||||||
% Parameters
|
% Parameters
|
||||||
|
|
||||||
l = 1.0; % Length of the mass [m]
|
l = 1.0; % Length of the mass [m]
|
||||||
la = 0.5; % Position of Act. [m]
|
h = 1.7; % Height of the mass [m]
|
||||||
|
|
||||||
h = 3.4; % Height of the mass [m]
|
la = l/2; % Position of Act. [m]
|
||||||
ha = 1.7; % Position of Act. [m]
|
ha = h/2; % Position of Act. [m]
|
||||||
|
|
||||||
m = 400; % Mass [kg]
|
m = 400; % Mass [kg]
|
||||||
I = 115; % Inertia [kg m^2]
|
I = 115; % Inertia [kg m^2]
|
||||||
@ -47,20 +47,36 @@ G = linearize(mdl, io);
|
|||||||
G.InputName = {'F1', 'F2', 'F3'};
|
G.InputName = {'F1', 'F2', 'F3'};
|
||||||
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% #+name: fig:gravimeter_plant_schematic
|
||||||
|
% #+caption: Schematic of the gravimeter plant
|
||||||
|
% #+RESULTS:
|
||||||
|
% [[file:figs/gravimeter_plant_schematic.png]]
|
||||||
|
|
||||||
|
% \begin{equation}
|
||||||
|
% \bm{a} = \begin{bmatrix} a_{1x} \\ a_{1z} \\ a_{2x} \\ a_{2z} \end{bmatrix}
|
||||||
|
% \end{equation}
|
||||||
|
|
||||||
|
% \begin{equation}
|
||||||
|
% \bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}
|
||||||
|
% \end{equation}
|
||||||
|
|
||||||
|
% We can check the poles of the plant:
|
||||||
|
|
||||||
|
|
||||||
pole(G)
|
pole(G)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+RESULTS:
|
% #+RESULTS:
|
||||||
% #+begin_example
|
% #+begin_example
|
||||||
% pole(G)
|
% -0.000183495485977108 + 13.546056874877i
|
||||||
% ans =
|
% -0.000183495485977108 - 13.546056874877i
|
||||||
% -0.000473481142385795 + 21.7596190728632i
|
% -7.49842878906757e-05 + 8.65934902322567i
|
||||||
% -0.000473481142385795 - 21.7596190728632i
|
% -7.49842878906757e-05 - 8.65934902322567i
|
||||||
% -7.49842879459172e-05 + 8.6593576906982i
|
% -1.33171230256362e-05 + 3.64924169037897i
|
||||||
% -7.49842879459172e-05 - 8.6593576906982i
|
% -1.33171230256362e-05 - 3.64924169037897i
|
||||||
% -5.1538686792578e-06 + 2.27025295182756i
|
|
||||||
% -5.1538686792578e-06 - 2.27025295182756i
|
|
||||||
% #+end_example
|
% #+end_example
|
||||||
|
|
||||||
% The plant as 6 states as expected (2 translations + 1 rotation)
|
% The plant as 6 states as expected (2 translations + 1 rotation)
|
||||||
@ -72,408 +88,463 @@ size(G)
|
|||||||
% #+RESULTS:
|
% #+RESULTS:
|
||||||
% : State-space model with 4 outputs, 3 inputs, and 6 states.
|
% : State-space model with 4 outputs, 3 inputs, and 6 states.
|
||||||
|
|
||||||
|
% The bode plot of all elements of the plant are shown in Figure [[fig:open_loop_tf]].
|
||||||
|
|
||||||
freqs = logspace(-2, 2, 1000);
|
|
||||||
|
freqs = logspace(-1, 2, 1000);
|
||||||
|
|
||||||
figure;
|
figure;
|
||||||
for in_i = 1:3
|
tiledlayout(4, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
||||||
for out_i = 1:4
|
|
||||||
subplot(4, 3, 3*(out_i-1)+in_i);
|
for out_i = 1:4
|
||||||
|
for in_i = 1:3
|
||||||
|
nexttile;
|
||||||
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlim([1e-1, 2e1]); ylim([1e-4, 1e0]);
|
||||||
|
|
||||||
|
if in_i == 1
|
||||||
|
ylabel('Amplitude [m/N]')
|
||||||
|
else
|
||||||
|
set(gca, 'YTickLabel',[]);
|
||||||
|
end
|
||||||
|
|
||||||
|
if out_i == 4
|
||||||
|
xlabel('Frequency [Hz]')
|
||||||
|
else
|
||||||
|
set(gca, 'XTickLabel',[]);
|
||||||
|
end
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
% System Identification - With Gravity
|
|
||||||
|
|
||||||
g = 9.80665; % Gravity [m/s2]
|
|
||||||
|
|
||||||
Gg = linearize(mdl, io);
|
% #+name: fig:gravimeter_decouple_jacobian
|
||||||
Gg.InputName = {'F1', 'F2', 'F3'};
|
% #+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$
|
||||||
Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
% #+RESULTS:
|
||||||
|
% [[file:figs/gravimeter_decouple_jacobian.png]]
|
||||||
|
|
||||||
|
% The jacobian corresponding to the sensors and actuators are defined below.
|
||||||
|
|
||||||
|
Ja = [1 0 h/2
|
||||||
|
0 1 -l/2
|
||||||
|
1 0 -h/2
|
||||||
|
0 1 0];
|
||||||
|
|
||||||
|
Jt = [1 0 ha
|
||||||
|
0 1 -la
|
||||||
|
0 1 la];
|
||||||
|
|
||||||
|
Gx = pinv(Ja)*G*pinv(Jt');
|
||||||
|
Gx.InputName = {'Fx', 'Fz', 'My'};
|
||||||
|
Gx.OutputName = {'Dx', 'Dz', 'Ry'};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% We can now see that the system is unstable due to gravity.
|
% The diagonal and off-diagonal elements of $G_x$ are shown in Figure [[fig:gravimeter_jacobian_plant]].
|
||||||
|
|
||||||
pole(Gg)
|
|
||||||
|
freqs = logspace(-1, 2, 1000);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:3
|
||||||
|
for i_out = [1:i_in-1, i_in+1:3]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for i_in_out = 1:3
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||||
|
legend('location', 'southeast');
|
||||||
|
ylim([1e-8, 1e0]);
|
||||||
|
|
||||||
|
% Real Approximation of $G$ at the decoupling frequency
|
||||||
|
% <<sec:gravimeter_real_approx>>
|
||||||
|
|
||||||
|
% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
|
||||||
|
|
||||||
|
wc = 2*pi*10; % Decoupling frequency [rad/s]
|
||||||
|
|
||||||
|
H1 = evalfr(G, j*wc);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% The real approximation is computed as follows:
|
||||||
|
|
||||||
|
D = pinv(real(H1'*H1));
|
||||||
|
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
||||||
|
|
||||||
|
% SVD Decoupling
|
||||||
|
% <<sec:gravimeter_svd_decoupling>>
|
||||||
|
|
||||||
|
% First, the Singular Value Decomposition of $H_1$ is performed:
|
||||||
|
% \[ H_1 = U \Sigma V^H \]
|
||||||
|
|
||||||
|
|
||||||
|
[U,~,V] = svd(H1);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% #+name: fig:gravimeter_decouple_svd
|
||||||
|
% #+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
|
||||||
|
% #+RESULTS:
|
||||||
|
% [[file:figs/gravimeter_decouple_svd.png]]
|
||||||
|
|
||||||
|
% The decoupled plant is then:
|
||||||
|
% \[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
|
||||||
|
|
||||||
|
|
||||||
|
Gsvd = inv(U)*G*inv(V');
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% The diagonal and off-diagonal elements of the "SVD" plant are shown in Figure [[fig:gravimeter_svd_plant]].
|
||||||
|
|
||||||
|
|
||||||
|
freqs = logspace(-1, 2, 1000);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:3
|
||||||
|
for i_out = [1:i_in-1, i_in+1:3]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for i_in_out = 1:3
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||||
|
legend('location', 'southeast', 'FontSize', 8);
|
||||||
|
ylim([1e-8, 1e0]);
|
||||||
|
|
||||||
|
% TODO Verification of the decoupling using the "Gershgorin Radii"
|
||||||
|
% <<sec:comp_decoupling>>
|
||||||
|
|
||||||
|
% The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
|
||||||
|
|
||||||
|
% The "Gershgorin Radii" of a matrix $S$ is defined by:
|
||||||
|
% \[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
|
||||||
|
|
||||||
|
% This is computed over the following frequencies.
|
||||||
|
|
||||||
|
freqs = logspace(-2, 2, 1000); % [Hz]
|
||||||
|
|
||||||
|
% Gershgorin Radii for the coupled plant:
|
||||||
|
Gr_coupled = zeros(length(freqs), size(Gu,2));
|
||||||
|
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
|
||||||
|
for out_i = 1:size(Gu,2)
|
||||||
|
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
||||||
|
end
|
||||||
|
|
||||||
|
% Gershgorin Radii for the decoupled plant using SVD:
|
||||||
|
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
|
||||||
|
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
|
||||||
|
for out_i = 1:size(Gsvd,2)
|
||||||
|
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
||||||
|
end
|
||||||
|
|
||||||
|
% Gershgorin Radii for the decoupled plant using the Jacobian:
|
||||||
|
Gr_jacobian = zeros(length(freqs), size(Gx,2));
|
||||||
|
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
|
||||||
|
for out_i = 1:size(Gx,2)
|
||||||
|
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
||||||
|
end
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
|
||||||
|
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
|
||||||
|
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
|
||||||
|
for in_i = 2:6
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
|
||||||
|
set(gca,'ColorOrderIndex',2)
|
||||||
|
plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
|
||||||
|
set(gca,'ColorOrderIndex',3)
|
||||||
|
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
hold off;
|
||||||
|
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
||||||
|
legend('location', 'northwest');
|
||||||
|
ylim([1e-3, 1e3]);
|
||||||
|
|
||||||
|
% TODO Obtained Decoupled Plants
|
||||||
|
% <<sec:gravimeter_decoupled_plant>>
|
||||||
|
|
||||||
|
% The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
|
||||||
|
|
||||||
|
|
||||||
|
freqs = logspace(-1, 2, 1000);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
ax1 = nexttile([2, 1]);
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:6
|
||||||
|
for i_out = [1:i_in-1, i_in+1:6]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
|
||||||
|
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for ch_i = 1:6
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
|
||||||
|
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
||||||
|
legend('location', 'northwest');
|
||||||
|
ylim([1e-1, 1e5])
|
||||||
|
|
||||||
|
% Phase
|
||||||
|
ax2 = nexttile;
|
||||||
|
hold on;
|
||||||
|
for ch_i = 1:6
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||||
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||||
|
ylim([-180, 180]);
|
||||||
|
yticks([-180:90:360]);
|
||||||
|
|
||||||
|
linkaxes([ax1,ax2],'x');
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% #+name: fig:simscape_model_decoupled_plant_svd
|
||||||
|
% #+caption: Decoupled Plant using SVD
|
||||||
|
% #+RESULTS:
|
||||||
|
% [[file:figs/simscape_model_decoupled_plant_svd.png]]
|
||||||
|
|
||||||
|
% Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
|
||||||
|
|
||||||
|
|
||||||
|
freqs = logspace(-1, 2, 1000);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
ax1 = nexttile([2, 1]);
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:6
|
||||||
|
for i_out = [1:i_in-1, i_in+1:6]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
|
||||||
|
'DisplayName', '$G_x(i,j),\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$');
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$');
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$');
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
||||||
|
legend('location', 'northwest');
|
||||||
|
ylim([1e-2, 2e6])
|
||||||
|
|
||||||
|
% Phase
|
||||||
|
ax2 = nexttile;
|
||||||
|
hold on;
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||||
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||||
|
ylim([0, 180]);
|
||||||
|
yticks([0:45:360]);
|
||||||
|
|
||||||
|
linkaxes([ax1,ax2],'x');
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% #+name: fig:svd_control
|
||||||
|
% #+caption: Control Diagram for the SVD control
|
||||||
|
% #+RESULTS:
|
||||||
|
% [[file:figs/svd_control.png]]
|
||||||
|
|
||||||
|
|
||||||
|
% We choose the controller to be a low pass filter:
|
||||||
|
% \[ K_c(s) = \frac{G_0}{1 + \frac{s}{\omega_0}} \]
|
||||||
|
|
||||||
|
% $G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
|
||||||
|
|
||||||
|
|
||||||
|
wc = 2*pi*80; % Crossover Frequency [rad/s]
|
||||||
|
w0 = 2*pi*0.1; % Controller Pole [rad/s]
|
||||||
|
|
||||||
|
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
||||||
|
L_cen = K_cen*Gx;
|
||||||
|
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
|
||||||
|
|
||||||
|
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
||||||
|
L_svd = K_svd*Gsvd;
|
||||||
|
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% The obtained diagonal elements of the loop gains are shown in Figure [[fig:gravimeter_comp_loop_gain_diagonal]].
|
||||||
|
|
||||||
|
|
||||||
|
freqs = logspace(-1, 2, 1000);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
ax1 = nexttile([2, 1]);
|
||||||
|
hold on;
|
||||||
|
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
|
||||||
|
for i_in_out = 2:6
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
|
||||||
|
set(gca,'ColorOrderIndex',2)
|
||||||
|
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
|
||||||
|
'DisplayName', '$L_{J}(i,i)$');
|
||||||
|
for i_in_out = 2:6
|
||||||
|
set(gca,'ColorOrderIndex',2)
|
||||||
|
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
||||||
|
legend('location', 'northwest');
|
||||||
|
ylim([5e-2, 2e3])
|
||||||
|
|
||||||
|
% Phase
|
||||||
|
ax2 = nexttile;
|
||||||
|
hold on;
|
||||||
|
for i_in_out = 1:6
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||||
|
end
|
||||||
|
set(gca,'ColorOrderIndex',2)
|
||||||
|
for i_in_out = 1:6
|
||||||
|
set(gca,'ColorOrderIndex',2)
|
||||||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||||
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||||
|
ylim([-180, 180]);
|
||||||
|
yticks([-180:90:360]);
|
||||||
|
|
||||||
|
linkaxes([ax1,ax2],'x');
|
||||||
|
|
||||||
|
% TODO Closed-Loop system Performances
|
||||||
|
% <<sec:gravimeter_closed_loop_results>>
|
||||||
|
|
||||||
|
% Let's first verify the stability of the closed-loop systems:
|
||||||
|
|
||||||
|
isstable(G_cen)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+RESULTS:
|
% #+RESULTS:
|
||||||
% #+begin_example
|
% : ans =
|
||||||
% pole(Gg)
|
% : logical
|
||||||
% ans =
|
% : 1
|
||||||
% -10.9848275341252 + 0i
|
|
||||||
% 10.9838836405201 + 0i
|
|
||||||
% -7.49855379478109e-05 + 8.65962885770051i
|
isstable(G_svd)
|
||||||
% -7.49855379478109e-05 - 8.65962885770051i
|
|
||||||
% -6.68819548733559e-06 + 0.832960422243848i
|
|
||||||
% -6.68819548733559e-06 - 0.832960422243848i
|
|
||||||
% #+end_example
|
% #+RESULTS:
|
||||||
|
% : ans =
|
||||||
|
% : logical
|
||||||
|
% : 1
|
||||||
|
|
||||||
|
% The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:gravimeter_platform_simscape_cl_transmissibility]].
|
||||||
|
|
||||||
|
|
||||||
freqs = logspace(-2, 2, 1000);
|
freqs = logspace(-2, 2, 1000);
|
||||||
|
|
||||||
figure;
|
figure;
|
||||||
for in_i = 1:3
|
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
||||||
for out_i = 1:4
|
|
||||||
subplot(4, 3, 3*(out_i-1)+in_i);
|
ax1 = nexttile;
|
||||||
hold on;
|
hold on;
|
||||||
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
||||||
plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
||||||
hold off;
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
set(gca,'ColorOrderIndex',1)
|
||||||
end
|
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||||
end
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||||
% Parameters
|
hold off;
|
||||||
% Bode options.
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
|
||||||
P = bodeoptions;
|
legend('location', 'southwest');
|
||||||
P.FreqUnits = 'Hz';
|
|
||||||
P.MagUnits = 'abs';
|
ax2 = nexttile;
|
||||||
P.MagScale = 'log';
|
hold on;
|
||||||
P.Grid = 'on';
|
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
|
||||||
P.PhaseWrapping = 'on';
|
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
|
||||||
P.Title.FontSize = 14;
|
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
|
||||||
P.XLabel.FontSize = 14;
|
hold off;
|
||||||
P.YLabel.FontSize = 14;
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
P.TickLabel.FontSize = 12;
|
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
|
||||||
P.Xlim = [1e-1,1e2];
|
|
||||||
P.MagLowerLimMode = 'manual';
|
ax3 = nexttile;
|
||||||
P.MagLowerLim= 1e-3;
|
hold on;
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
|
||||||
% Frequency vector.
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
|
||||||
w = 2*pi*logspace(-1,2,1000); % [rad/s]
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
|
||||||
% Generation of the State Space Model
|
hold off;
|
||||||
% Mass matrix
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
|
||||||
M = [m 0 0
|
|
||||||
0 m 0
|
ax4 = nexttile;
|
||||||
0 0 I];
|
hold on;
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
|
||||||
% Jacobian of the bottom sensor
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
Js1 = [1 0 h/2
|
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
|
||||||
0 1 -l/2];
|
|
||||||
|
linkaxes([ax1,ax2,ax3,ax4],'xy');
|
||||||
|
xlim([freqs(1), freqs(end)]);
|
||||||
|
ylim([1e-3, 1e2]);
|
||||||
% Jacobian of the top sensor
|
|
||||||
|
|
||||||
Js2 = [1 0 -h/2
|
|
||||||
0 1 0];
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Jacobian of the actuators
|
|
||||||
|
|
||||||
Ja = [1 0 ha % Left horizontal actuator
|
|
||||||
0 1 -la % Left vertical actuator
|
|
||||||
0 1 la]; % Right vertical actuator
|
|
||||||
Jta = Ja';
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Stiffness and Damping matrices
|
|
||||||
|
|
||||||
K = k*Jta*Ja;
|
|
||||||
C = c*Jta*Ja;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% State Space Matrices
|
|
||||||
|
|
||||||
E = [1 0 0
|
|
||||||
0 1 0
|
|
||||||
0 0 1]; %projecting ground motion in the directions of the legs
|
|
||||||
|
|
||||||
AA = [zeros(3) eye(3)
|
|
||||||
-M\K -M\C];
|
|
||||||
|
|
||||||
BB = [zeros(3,6)
|
|
||||||
M\Jta M\(k*Jta*E)];
|
|
||||||
|
|
||||||
CC = [[Js1;Js2] zeros(4,3);
|
|
||||||
zeros(2,6)
|
|
||||||
(Js1+Js2)./2 zeros(2,3)
|
|
||||||
(Js1-Js2)./2 zeros(2,3)
|
|
||||||
(Js1-Js2)./(2*h) zeros(2,3)];
|
|
||||||
|
|
||||||
DD = [zeros(4,6)
|
|
||||||
zeros(2,3) eye(2,3)
|
|
||||||
zeros(6,6)];
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% State Space model:
|
|
||||||
% - Input = three actuators and three ground motions
|
|
||||||
% - Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
|
|
||||||
|
|
||||||
|
|
||||||
system_dec = ss(AA,BB,CC,DD);
|
|
||||||
|
|
||||||
size(system_dec)
|
|
||||||
|
|
||||||
% Comparison with the Simscape Model
|
|
||||||
|
|
||||||
freqs = logspace(-2, 2, 1000);
|
|
||||||
|
|
||||||
figure;
|
|
||||||
for in_i = 1:3
|
|
||||||
for out_i = 1:4
|
|
||||||
subplot(4, 3, 3*(out_i-1)+in_i);
|
|
||||||
hold on;
|
|
||||||
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
|
||||||
plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
% Analysis
|
|
||||||
|
|
||||||
% figure
|
|
||||||
% bode(system_dec,P);
|
|
||||||
% return
|
|
||||||
|
|
||||||
%% svd decomposition
|
|
||||||
% system_dec_freq = freqresp(system_dec,w);
|
|
||||||
% S = zeros(3,length(w));
|
|
||||||
% for m = 1:length(w)
|
|
||||||
% S(:,m) = svd(system_dec_freq(1:4,1:3,m));
|
|
||||||
% end
|
|
||||||
% figure
|
|
||||||
% loglog(w./(2*pi), S);hold on;
|
|
||||||
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
|
|
||||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
|
||||||
% legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
|
|
||||||
% ylim([1e-8 1e-2]);
|
|
||||||
%
|
|
||||||
% %condition number
|
|
||||||
% figure
|
|
||||||
% loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
|
|
||||||
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
|
|
||||||
% xlabel('Frequency [Hz]');ylabel('Condition number [-]');
|
|
||||||
% % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
|
|
||||||
%
|
|
||||||
% %performance indicator
|
|
||||||
% system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
|
|
||||||
% [U,S,V] = svd(system_dec_svd);
|
|
||||||
% H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
|
|
||||||
% H_svd = pinv(V')*H_svd_OL*pinv(U);
|
|
||||||
% % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
|
|
||||||
%
|
|
||||||
% OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
|
|
||||||
% OL_freq = freqresp(OL_dec,w); % OL = G*H
|
|
||||||
% CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
|
|
||||||
% CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
|
|
||||||
% % CL_system_2 = feedback(system_dec,H);
|
|
||||||
% % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
|
|
||||||
% for i = 1:size(w,2)
|
|
||||||
% OL(:,i) = svd(OL_freq(:,:,i));
|
|
||||||
% CL (:,i) = svd(CL_freq(:,:,i));
|
|
||||||
% %CL2 (:,i) = svd(CL_freq_2(:,:,i));
|
|
||||||
% end
|
|
||||||
%
|
|
||||||
% un = ones(1,length(w));
|
|
||||||
% figure
|
|
||||||
% loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
|
|
||||||
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
|
|
||||||
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
|
|
||||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
|
||||||
% legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
|
|
||||||
%
|
|
||||||
% figure
|
|
||||||
% loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
|
|
||||||
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
|
|
||||||
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
|
|
||||||
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
|
||||||
% legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
|
|
||||||
|
|
||||||
% Control Section
|
|
||||||
|
|
||||||
system_dec_10Hz = freqresp(system_dec,2*pi*10);
|
|
||||||
system_dec_0Hz = freqresp(system_dec,0);
|
|
||||||
|
|
||||||
system_decReal_10Hz = pinv(align(system_dec_10Hz));
|
|
||||||
[Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
|
|
||||||
normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
|
|
||||||
|
|
||||||
[U,S,V] = svd(system_dec_10Hz(1:4,1:3));
|
|
||||||
normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
|
|
||||||
|
|
||||||
H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
|
|
||||||
0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
|
|
||||||
0 0 0 zpk(-2*pi,-2*pi*10,10)]);
|
|
||||||
H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
|
|
||||||
0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
|
|
||||||
H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
|
|
||||||
% H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
|
|
||||||
% 0 1/normalizationMatrix(2,2) 0 0
|
|
||||||
% 0 0 1/normalizationMatrix(3,3) 0];
|
|
||||||
% H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
|
|
||||||
% 0 1/normalizationMatrixReal(2,2) 0 0
|
|
||||||
% 0 0 1/normalizationMatrixReal(3,3) 0];
|
|
||||||
H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
|
|
||||||
0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
|
|
||||||
0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
|
|
||||||
H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
|
|
||||||
0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
|
|
||||||
0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
|
|
||||||
% H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
|
|
||||||
% H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
|
|
||||||
H_svd = pinv(V')*H_svd_OL*pinv(U);
|
|
||||||
H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
|
|
||||||
|
|
||||||
OL_dec = g*H_dec*system_dec(1:4,1:3);
|
|
||||||
OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
|
|
||||||
OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
|
|
||||||
OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
|
|
||||||
|
|
||||||
% figure
|
|
||||||
% bode(OL_dec,w,P);title('OL Decentralized');
|
|
||||||
% figure
|
|
||||||
% bode(OL_cen,w,P);title('OL Centralized');
|
|
||||||
|
|
||||||
figure
|
|
||||||
bode(g*system_dec(1:4,1:3),w,P);
|
|
||||||
title('gain * Plant');
|
|
||||||
|
|
||||||
figure
|
|
||||||
bode(OL_svd,OL_svd_real,w,P);
|
|
||||||
title('OL SVD');
|
|
||||||
legend('SVD of Complex plant','SVD of real approximation of the complex plant')
|
|
||||||
|
|
||||||
figure
|
|
||||||
bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
|
|
||||||
|
|
||||||
CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
|
|
||||||
CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
|
|
||||||
CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
|
|
||||||
CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
|
|
||||||
|
|
||||||
pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
|
|
||||||
title('Decentralized control');
|
|
||||||
|
|
||||||
pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
|
|
||||||
title('Centralized control');
|
|
||||||
|
|
||||||
pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
|
|
||||||
title('SVD control');
|
|
||||||
|
|
||||||
pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
|
|
||||||
title('Real approximation SVD control');
|
|
||||||
|
|
||||||
P.Ylim = [1e-8 1e-3];
|
|
||||||
figure
|
|
||||||
bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
|
|
||||||
title('Motion/actuator')
|
|
||||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
|
||||||
|
|
||||||
P.Ylim = [1e-5 1e1];
|
|
||||||
figure
|
|
||||||
bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
|
|
||||||
title('Transmissibility');
|
|
||||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
|
||||||
|
|
||||||
figure
|
|
||||||
bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
|
|
||||||
title('Transmissibility from half sum and half difference in the X direction');
|
|
||||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
|
||||||
|
|
||||||
figure
|
|
||||||
bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
|
|
||||||
title('Transmissibility from half sum and half difference in the Z direction');
|
|
||||||
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
|
||||||
|
|
||||||
% Greshgorin radius
|
|
||||||
|
|
||||||
system_dec_freq = freqresp(system_dec,w);
|
|
||||||
x1 = zeros(1,length(w));
|
|
||||||
z1 = zeros(1,length(w));
|
|
||||||
x2 = zeros(1,length(w));
|
|
||||||
S1 = zeros(1,length(w));
|
|
||||||
S2 = zeros(1,length(w));
|
|
||||||
S3 = zeros(1,length(w));
|
|
||||||
|
|
||||||
for t = 1:length(w)
|
|
||||||
x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
|
|
||||||
z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
|
|
||||||
x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
|
|
||||||
system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
|
|
||||||
S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
|
|
||||||
S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
|
|
||||||
S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
|
|
||||||
end
|
|
||||||
|
|
||||||
limit = 0.5*ones(1,length(w));
|
|
||||||
|
|
||||||
figure
|
|
||||||
loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
|
|
||||||
legend('x_1','z_1','x_2','Limit');
|
|
||||||
xlabel('Frequency [Hz]');
|
|
||||||
ylabel('Greshgorin radius [-]');
|
|
||||||
|
|
||||||
figure
|
|
||||||
loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
|
|
||||||
legend('S1','S2','S3','Limit');
|
|
||||||
xlabel('Frequency [Hz]');
|
|
||||||
ylabel('Greshgorin radius [-]');
|
|
||||||
% set(gcf,'color','w')
|
|
||||||
|
|
||||||
% Injecting ground motion in the system to have the output
|
|
||||||
|
|
||||||
Fr = logspace(-2,3,1e3);
|
|
||||||
w=2*pi*Fr*1i;
|
|
||||||
%fit of the ground motion data in m/s^2/rtHz
|
|
||||||
Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10];
|
|
||||||
n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5];
|
|
||||||
Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10];
|
|
||||||
n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5];
|
|
||||||
|
|
||||||
n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear');
|
|
||||||
n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear');
|
|
||||||
% figure
|
|
||||||
% loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*');
|
|
||||||
% xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]');
|
|
||||||
% return
|
|
||||||
|
|
||||||
%converting into PSD
|
|
||||||
n_ground_x = (n_ground_x).^2;
|
|
||||||
n_ground_v = (n_ground_v).^2;
|
|
||||||
|
|
||||||
%Injecting ground motion in the system and getting the outputs
|
|
||||||
system_dec_f = (freqresp(system_dec,abs(w)));
|
|
||||||
PHI = zeros(size(Fr,2),12,12);
|
|
||||||
for p = 1:size(Fr,2)
|
|
||||||
Sw=zeros(6,6);
|
|
||||||
Iact = zeros(3,3);
|
|
||||||
Sw(4,4) = n_ground_x(p);
|
|
||||||
Sw(5,5) = n_ground_v(p);
|
|
||||||
Sw(6,6) = n_ground_v(p);
|
|
||||||
Sw(1:3,1:3) = Iact;
|
|
||||||
PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))';
|
|
||||||
end
|
|
||||||
x1 = PHI(:,1,1);
|
|
||||||
z1 = PHI(:,2,2);
|
|
||||||
x2 = PHI(:,3,3);
|
|
||||||
z2 = PHI(:,4,4);
|
|
||||||
wx = PHI(:,5,5);
|
|
||||||
wz = PHI(:,6,6);
|
|
||||||
x12 = PHI(:,1,3);
|
|
||||||
z12 = PHI(:,2,4);
|
|
||||||
PHIwx = PHI(:,1,5);
|
|
||||||
PHIwz = PHI(:,2,6);
|
|
||||||
xsum = PHI(:,7,7);
|
|
||||||
zsum = PHI(:,8,8);
|
|
||||||
xdelta = PHI(:,9,9);
|
|
||||||
zdelta = PHI(:,10,10);
|
|
||||||
rot = PHI(:,11,11);
|
|
||||||
|
Loading…
Reference in New Issue
Block a user