Correct wrong computation of Gershgorin radii
This commit is contained in:
153
index.org
153
index.org
@@ -649,10 +649,10 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
|
||||
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
|
||||
#+begin_src matlab
|
||||
wc = 2*pi*20; % Decoupling frequency [rad/s]
|
||||
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
|
||||
{'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
|
||||
|
||||
H1 = evalfr(Gc, j*wc);
|
||||
#+end_src
|
||||
|
||||
@@ -673,61 +673,74 @@ First, the Singular Value Decomposition of $H_1$ is performed:
|
||||
Then, the "Gershgorin Radii" is computed for the plant $G_c(s)$ and the "SVD Decoupled Plant" $G_d(s)$:
|
||||
\[ G_d(s) = U^T G_c(s) V \]
|
||||
|
||||
It is done over the following frequencies.
|
||||
This is computed over the following frequencies.
|
||||
#+begin_src matlab
|
||||
freqs = logspace(-1,2,1000); % [Hz]
|
||||
freqs = logspace(-2, 2, 1000); % [Hz]
|
||||
#+end_src
|
||||
|
||||
Gershgorin Radii for the coupled plant:
|
||||
#+begin_src matlab
|
||||
for i = 1:length(freqs)
|
||||
H = abs(evalfr(Gc, j*2*pi*freqs(i)));
|
||||
for j = 1:size(H,2)
|
||||
g_r1(i,j) = (sum(H(j,:)) - H(j,j))/H(j,j);
|
||||
end
|
||||
Gr_coupled = zeros(length(freqs), size(Gc,2));
|
||||
|
||||
H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
|
||||
for out_i = 1:size(Gc,2)
|
||||
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
||||
end
|
||||
#+end_src
|
||||
|
||||
Gershgorin Radii for the decoupled plant using SVD:
|
||||
#+begin_src matlab
|
||||
Gd = U'*Gc*V;
|
||||
|
||||
for i = 1:length(freqs)
|
||||
H_dec = abs(evalfr(Gd, j*2*pi*freqs(i)));
|
||||
for j = 1:size(H,2)
|
||||
g_r2(i,j) = (sum(H_dec(j,:)) - H_dec(j,j))/H_dec(j,j);
|
||||
end
|
||||
Gr_decoupled = zeros(length(freqs), size(Gd,2));
|
||||
|
||||
H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
|
||||
for out_i = 1:size(Gd,2)
|
||||
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
||||
end
|
||||
#+end_src
|
||||
|
||||
Gershgorin Radii for the decoupled plant using the Jacobian:
|
||||
#+begin_src matlab
|
||||
Gj = Gc*inv(J');
|
||||
Gr_jacobian = zeros(length(freqs), size(Gj,2));
|
||||
|
||||
H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));
|
||||
|
||||
for out_i = 1:size(Gj,2)
|
||||
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports results
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, g_r1(:,1), 'DisplayName', '$a_x$')
|
||||
plot(freqs, g_r1(:,2), 'DisplayName', '$a_y$')
|
||||
plot(freqs, g_r1(:,3), 'DisplayName', '$a_z$')
|
||||
plot(freqs, g_r1(:,4), 'DisplayName', '$a_{R_x}$')
|
||||
plot(freqs, g_r1(:,5), 'DisplayName', '$a_{R_y}$')
|
||||
plot(freqs, g_r1(:,6), 'DisplayName', '$a_{R_z}$')
|
||||
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
|
||||
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
|
||||
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
|
||||
for i = 2:6
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, Gr_coupled(:,i), 'HandleVisibility', 'off');
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, Gr_decoupled(:,i), 'HandleVisibility', 'off');
|
||||
set(gca,'ColorOrderIndex',3)
|
||||
plot(freqs, Gr_jacobian(:,i), 'HandleVisibility', 'off');
|
||||
end
|
||||
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
hold off;
|
||||
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports results
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, g_r2(:,1), 'DisplayName', '$a_x$')
|
||||
plot(freqs, g_r2(:,2), 'DisplayName', '$a_y$')
|
||||
plot(freqs, g_r2(:,3), 'DisplayName', '$a_z$')
|
||||
plot(freqs, g_r2(:,4), 'DisplayName', '$a_{R_x}$')
|
||||
plot(freqs, g_r2(:,5), 'DisplayName', '$a_{R_y}$')
|
||||
plot(freqs, g_r2(:,6), 'DisplayName', '$a_{R_z}$')
|
||||
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/simscape_model_gershgorin_radii.pdf', 'width', 'full', 'height', 'full');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:simscape_model_gershgorin_radii
|
||||
#+caption: Gershgorin Radii of the Coupled and Decoupled plants
|
||||
#+RESULTS:
|
||||
[[file:figs/simscape_model_gershgorin_radii.png]]
|
||||
|
||||
** Decoupled Plant
|
||||
Let's see the bode plot of the decoupled plant $G_d(s)$.
|
||||
\[ G_d(s) = U^T G_c(s) V \]
|
||||
@@ -737,13 +750,13 @@ Let's see the bode plot of the decoupled plant $G_d(s)$.
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gd(i, i), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$G(%i, %i)$', i, i));
|
||||
for ch_i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i));
|
||||
end
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
|
||||
for in_i = 1:5
|
||||
for out_i = in_i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gd(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
@@ -753,6 +766,45 @@ Let's see the bode plot of the decoupled plant $G_d(s)$.
|
||||
legend('location', 'southeast');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/simscape_model_decoupled_plant_svd.pdf', 'width', 'full', 'height', 'full');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:simscape_model_decoupled_plant_svd
|
||||
#+caption: Decoupled Plant using SVD
|
||||
#+RESULTS:
|
||||
[[file:figs/simscape_model_decoupled_plant_svd.png]]
|
||||
|
||||
#+begin_src matlab :exports results
|
||||
freqs = logspace(-1, 2, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
for ch_i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gj(ch_i, ch_i), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i));
|
||||
end
|
||||
for in_i = 1:5
|
||||
for out_i = in_i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gj(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'southeast');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/simscape_model_decoupled_plant_jacobian.pdf', 'width', 'full', 'height', 'full');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:simscape_model_decoupled_plant_jacobian
|
||||
#+caption: Decoupled Plant using the Jacobian
|
||||
#+RESULTS:
|
||||
[[file:figs/simscape_model_decoupled_plant_jacobian.png]]
|
||||
|
||||
** Diagonal Controller
|
||||
The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$.
|
||||
|
||||
@@ -829,6 +881,25 @@ SVD Control
|
||||
#+end_src
|
||||
|
||||
** Results
|
||||
Let's first verify the stability of the closed-loop systems:
|
||||
#+begin_src matlab :results output replace text
|
||||
isstable(G_cen)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: ans =
|
||||
: logical
|
||||
: 1
|
||||
|
||||
#+begin_src matlab :results output replace text
|
||||
isstable(G_svd)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: ans =
|
||||
: logical
|
||||
: 1
|
||||
|
||||
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
|
||||
|
||||
#+begin_src matlab :exports results
|
||||
|
Reference in New Issue
Block a user