Clean simscape models

This commit is contained in:
2020-11-25 09:40:17 +01:00
parent 9b29c73fff
commit a1581cb873
17 changed files with 11319 additions and 10289 deletions

338
index.org
View File

@@ -1,4 +1,4 @@
#+TITLE: SVD Control
#+TITLE: Diagonal control using the SVD and the Jacobian Matrix
:DRAWER:
#+STARTUP: overview
@@ -38,12 +38,34 @@
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
* Introduction :ignore:
In this document, the use of the Jacobian matrix and the Singular Value Decomposition to render a physical plant diagonal dominant is studied.
Then, a diagonal controller is used.
These two methods are tested on two plants:
- In Section [[sec:gravimeter]] on a 3-DoF gravimeter
- In Section [[sec:stewart_platform]] on a 6-DoF Stewart platform
* Gravimeter - Simscape Model
:PROPERTIES:
:header-args:matlab+: :tangle gravimeter/script.m
:END:
<<sec:gravimeter>>
** Introduction
In this part, diagonal control using both the SVD and the Jacobian matrices are applied on a gravimeter model:
- Section [[sec:gravimeter_model]]: the model is described and its parameters are defined.
- Section [[sec:gravimeter_identification]]: the plant dynamics from the actuators to the sensors is computed from a Simscape model.
- Section [[sec:gravimeter_jacobian_decoupling]]: the plant is decoupled using the Jacobian matrices.
- Section [[sec:gravimeter_svd_decoupling]]: the Singular Value Decomposition is performed on a real approximation of the plant transfer matrix and further use to decouple the system.
- Section [[sec:gravimeter_gershgorin_radii]]: the effectiveness of the decoupling is computed using the Gershorin radii
- Section [[sec:gravimeter_rga]]: the effectiveness of the decoupling is computed using the Relative Gain Array
- Section [[sec:gravimeter_decoupled_plant]]: the obtained decoupled plants are compared
- Section [[sec:gravimeter_diagonal_control]]: the diagonal controller is developed
- Section [[sec:gravimeter_closed_loop_results]]: the obtained closed-loop performances for the two methods are compared
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
@@ -57,16 +79,24 @@
addpath('gravimeter');
#+end_src
** Simscape Model - Parameters
#+begin_src matlab
freqs = logspace(-1, 2, 1000);
#+end_src
** Gravimeter Model - Parameters
<<sec:gravimeter_model>>
#+begin_src matlab :exports none
open('gravimeter.slx')
#+end_src
The model of the gravimeter is schematically shown in Figure [[fig:gravimeter_model]].
#+name: fig:gravimeter_model
#+caption: Model of the gravimeter
[[file:figs/gravimeter_model.png]]
Parameters
The parameters used for the simulation are the following:
#+begin_src matlab
l = 1.0; % Length of the mass [m]
h = 1.7; % Height of the mass [m]
@@ -85,7 +115,9 @@ Parameters
g = 0; % Gravity [m/s2]
#+end_src
** System Identification - Without Gravity
** System Identification
<<sec:gravimeter_identification>>
#+begin_src matlab
%% Name of the Simulink File
mdl = 'gravimeter';
@@ -155,8 +187,6 @@ As expected, the plant as 6 states (2 translations + 1 rotation)
The bode plot of all elements of the plant are shown in Figure [[fig:open_loop_tf]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(4, 3, 'TileSpacing', 'None', 'Padding', 'None');
@@ -191,7 +221,7 @@ The bode plot of all elements of the plant are shown in Figure [[fig:open_loop_t
#+RESULTS:
[[file:figs/open_loop_tf.png]]
** Physical Decoupling using the Jacobian
** Decoupling using the Jacobian
<<sec:gravimeter_jacobian_decoupling>>
Consider the control architecture shown in Figure [[fig:gravimeter_decouple_jacobian]].
@@ -265,8 +295,6 @@ And the plant $\bm{G}_x$ is computed:
The diagonal and off-diagonal elements of $G_x$ are shown in Figure [[fig:gravimeter_jacobian_plant]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
% Magnitude
@@ -299,12 +327,11 @@ The diagonal and off-diagonal elements of $G_x$ are shown in Figure [[fig:gravim
#+RESULTS:
[[file:figs/gravimeter_jacobian_plant.png]]
** SVD Decoupling
** Decoupling using the SVD
<<sec:gravimeter_svd_decoupling>>
In order to decouple the plant using the SVD, first a real approximation of the plant transfer function matrix as the crossover frequency is required.
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
#+begin_src matlab
wc = 2*pi*10; % Decoupling frequency [rad/s]
@@ -386,8 +413,6 @@ The 4th output (corresponding to the null singular value) is discarded, and we o
The diagonal and off-diagonal elements of the "SVD" plant are shown in Figure [[fig:gravimeter_svd_plant]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
% Magnitude
@@ -421,18 +446,13 @@ The diagonal and off-diagonal elements of the "SVD" plant are shown in Figure [[
[[file:figs/gravimeter_svd_plant.png]]
** Verification of the decoupling using the "Gershgorin Radii"
<<sec:comp_decoupling>>
<<sec:gravimeter_gershgorin_radii>>
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
The "Gershgorin Radii" of a matrix $S$ is defined by:
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
This is computed over the following frequencies.
#+begin_src matlab
freqs = logspace(-2, 2, 1000); % [Hz]
#+end_src
#+begin_src matlab :exports none
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(G,2));
@@ -473,7 +493,7 @@ This is computed over the following frequencies.
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northwest');
legend('location', 'southwest');
ylim([1e-4, 1e2]);
#+end_src
@@ -486,14 +506,100 @@ This is computed over the following frequencies.
#+RESULTS:
[[file:figs/gravimeter_gershgorin_radii.png]]
** Verification of the decoupling using the "Relative Gain Array"
<<sec:gravimeter_rga>>
The relative gain array (RGA) is defined as:
\begin{equation}
\Lambda\big(G(s)\big) = G(s) \times \big( G(s)^{-1} \big)^T
\end{equation}
where $\times$ denotes an element by element multiplication and $G(s)$ is an $n \times n$ square transfer matrix.
The obtained RGA elements are shown in Figure [[fig:gravimeter_rga]].
#+begin_src matlab :exports none
% Relative Gain Array for the decoupled plant using SVD:
RGA_svd = zeros(length(freqs), size(Gsvd,1), size(Gsvd,2));
Gsvd_inv = inv(Gsvd);
for f_i = 1:length(freqs)
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
end
% Relative Gain Array for the decoupled plant using the Jacobian:
RGA_x = zeros(length(freqs), size(Gx,1), size(Gx,2));
Gx_inv = inv(Gx);
for f_i = 1:length(freqs)
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
end
#+end_src
#+begin_src matlab :exports none
figure;
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, RGA_svd(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_svd(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{SVD}(i,j),\ i \neq j$');
plot(freqs, RGA_svd(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{SVD}(i,i)$');
for ch_i = 1:3
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); xlabel('Frequency [Hz]');
legend('location', 'southwest');
ax2 = nexttile;
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, RGA_x(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_x(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{X}(i,j),\ i \neq j$');
plot(freqs, RGA_x(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{X}(i,i)$');
for ch_i = 1:3
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
legend('location', 'southwest');
linkaxes([ax1,ax2],'y');
ylim([1e-5, 1e1]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/gravimeter_rga.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:gravimeter_rga
#+caption: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled plant
#+RESULTS:
[[file:figs/gravimeter_rga.png]]
** Obtained Decoupled Plants
<<sec:gravimeter_decoupled_plant>>
The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:gravimeter_decoupled_plant_svd]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@@ -546,8 +652,6 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:gravimeter_decoupled_plant_jacobian]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@@ -686,8 +790,6 @@ $G_0$ is tuned such that the crossover frequency corresponding to the diagonal t
The obtained diagonal elements of the loop gains are shown in Figure [[fig:gravimeter_comp_loop_gain_diagonal]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@@ -806,7 +908,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
linkaxes([ax1,ax2,ax3],'xy');
xlim([freqs(1), freqs(end)]);
ylim([1e-7, 1e-2]);
xlim([1e-2, 5e1]); ylim([1e-7, 1e-2]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
@@ -820,8 +922,10 @@ The obtained transmissibility in Open-loop, for the centralized control as well
* Stewart Platform - Simscape Model
:PROPERTIES:
:header-args:matlab+: :tangle stewart_platform/simscape_model.m
:header-args:matlab+: :tangle stewart_platform/script.m
:END:
<<sec:stewart_platform>>
** Introduction :ignore:
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure [[fig:SP_assembly]].
@@ -835,13 +939,13 @@ Some notes about the system:
#+caption: Stewart Platform CAD View
[[file:figs/SP_assembly.png]]
The analysis of the SVD control applied to the Stewart platform is performed in the following sections:
The analysis of the SVD/Jacobian control applied to the Stewart platform is performed in the following sections:
- Section [[sec:stewart_simscape]]: The parameters of the Simscape model of the Stewart platform are defined
- Section [[sec:stewart_identification]]: The plant is identified from the Simscape model and the system coupling is shown
- Section [[sec:stewart_jacobian_decoupling]]: The plant is first decoupled using the Jacobian
- Section [[sec:stewart_real_approx]]: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)
- Section [[sec:stewart_svd_decoupling]]: The decoupling is performed thanks to the SVD
- Section [[sec:comp_decoupling]]: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii
- Section [[sec:stewart_svd_decoupling]]: The decoupling is performed thanks to the SVD. To do so a real approximation of the plant is computed.
- Section [[sec:stewart_gershorin_radii]]: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii
- Section [[sec:stewart_rga]]:
- Section [[sec:stewart_decoupled_plant]]: The dynamics of the decoupled plants are shown
- Section [[sec:stewart_diagonal_control]]: A diagonal controller is defined to control the decoupled plant
- Section [[sec:stewart_closed_loop_results]]: Finally, the closed loop system properties are studied
@@ -1047,7 +1151,7 @@ One can easily see that the system is strongly coupled.
#+RESULTS:
[[file:figs/stewart_platform_coupled_plant.png]]
** Physical Decoupling using the Jacobian
** Decoupling using the Jacobian
<<sec:stewart_jacobian_decoupling>>
Consider the control architecture shown in Figure [[fig:plant_decouple_jacobian]].
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
@@ -1099,8 +1203,10 @@ $G_x(s)$ correspond to the transfer function from forces and torques applied to
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
#+end_src
** Real Approximation of $G$ at the decoupling frequency
<<sec:stewart_real_approx>>
** Decoupling using the SVD
<<sec:stewart_svd_decoupling>>
In order to decouple the plant using the SVD, first a real approximation of the plant transfer function matrix as the crossover frequency is required.
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
#+begin_src matlab
@@ -1146,10 +1252,7 @@ This can be verified below where only the real value of $G_u(\omega_c)$ is shown
| -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 |
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
** SVD Decoupling
<<sec:stewart_svd_decoupling>>
First, the Singular Value Decomposition of $H_1$ is performed:
Now, the Singular Value Decomposition of $H_1$ is performed:
\[ H_1 = U \Sigma V^H \]
#+begin_src matlab
@@ -1217,7 +1320,7 @@ The decoupled plant is then:
#+end_src
** Verification of the decoupling using the "Gershgorin Radii"
<<sec:comp_decoupling>>
<<sec:stewart_gershorin_radii>>
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
@@ -1279,6 +1382,8 @@ This is computed over the following frequencies.
[[file:figs/simscape_model_gershgorin_radii.png]]
** Verification of the decoupling using the "Relative Gain Array"
<<sec:stewart_rga>>
The relative gain array (RGA) is defined as:
\begin{equation}
\Lambda\big(G(s)\big) = G(s) \times \big( G(s)^{-1} \big)^T
@@ -1713,156 +1818,3 @@ The obtained transmissibility in Open-loop, for the centralized control as well
#+RESULTS:
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
** Small error on the sensor location :no_export:
Let's now consider a small position error of the sensor:
#+begin_src matlab
sens_pos_error = [105 5 -1]*1e-3; % [m]
#+end_src
The system is identified again:
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'drone_platform';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
G = linearize(mdl, io);
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
% Plant
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
% Disturbance dynamics
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
#+end_src
#+begin_src matlab
Gx = Gu*inv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
#+end_src
#+begin_src matlab
Gsvd = inv(U)*Gu*inv(V');
#+end_src
#+begin_src matlab :exports none
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
for out_i = 1:size(Gu,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using SVD:
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
for out_i = 1:size(Gsvd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using the Jacobian:
Gr_jacobian = zeros(length(freqs), size(Gx,2));
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
for out_i = 1:size(Gx,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
#+end_src
#+begin_src matlab :exports results
figure;
hold on;
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
for in_i = 2:6
set(gca,'ColorOrderIndex',1)
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northwest');
ylim([1e-3, 1e3]);
#+end_src
#+begin_src matlab
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
#+end_src
#+begin_src matlab
L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
#+end_src
#+begin_src matlab :results output replace text
isstable(G_cen)
#+end_src
#+begin_src matlab :results output replace text
isstable(G_svd)
#+end_src
#+begin_src matlab :exports results
figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
ax3 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
ax4 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4],'xy');
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 1e2]);
#+end_src