Rework some figures + add some control diagrams

This commit is contained in:
2020-11-06 16:59:03 +01:00
parent 3b14dd83d8
commit 9bc1cf7e34
43 changed files with 108040 additions and 71196 deletions

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

After

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 94 KiB

BIN
figs/gravimeter_model.pdf Normal file

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.9 KiB

BIN
figs/plant_decouple_svd.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 172 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 128 KiB

After

Width:  |  Height:  |  Size: 171 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 145 KiB

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 103 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 127 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -3,7 +3,7 @@
1 0 obj 1 0 obj
<< <<
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) /Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
/CreationDate (D:20201106122210+01'00') /CreationDate (D:20201106165408+01'00')
>> >>
endobj endobj
2 0 obj 2 0 obj
@@ -2517,286 +2517,399 @@ Xe,
)ïjãrº&u5تœœÛ?Å5ù9 ¡RV<52>-Êl»qhÍË>°\aæ®52+üÔäèLktü1t×€c“ðÿ¡v,2&ó#B£LÝv¤¤+6<03>ƒÜ¨ãJéÃT-siS0My°ëÐ*q×SWÒWͧ_26$2­zꬰLY£k,Ê`“¨©S)†ñ=ØÐðN!Ã>פìtªuŠ[š?-¬¼ã¿.o&(”k6«D3ËtªvR÷fµ!hxö<E2809A>ÓI¢¬µ'»d8<64><38>ZÓ¦YǸÔ<C2B8>Œ3k<>ÜLðü©¶sF2kñªÉŒ—iý^ )ïjãrº&u5تœœÛ?Å5ù9 ¡RV<52>-Êl»qhÍË>°\aæ®52+üÔäèLktü1t×€c“ðÿ¡v,2&ó#B£LÝv¤¤+6<03>ƒÜ¨ãJéÃT-siS0My°ëÐ*q×SWÒWͧ_26$2­zꬰLY£k,Ê`“¨©S)†ñ=ØÐðN!Ã>פìtªuŠ[š?-¬¼ã¿.o&(”k6«D3ËtªvR÷fµ!hxö<E2809A>ÓI¢¬µ'»d8<64><38>ZÓ¦YǸÔ<C2B8>Œ3k<>ÜLðü©¶sF2kñªÉŒ—iý^
lT°w†Æž lT°w†Æž
[$öHà<qªHT­Ñ:[Ál}©Éc.{€ò8˜|åS5+¥c ŵBÑEÒsÇ [$öHà<qªHT­Ñ:[Ál}©Éc.{€ò8˜|åS5+¥c ŵBÑEÒsÇ
¼YEi$Éñªj Ƨ娬ýú~j\![ÛGbq"“4‡¿ùr§-œ¡Ék*-Ö±Lµ:¼ë Vܥ嘈<CB9C>*Ïjr­Œug´ÓRwºköËä()±%ŽÝÆÞfÅ&*F•k·'´ƒÕ¸Þ8=òÆØž°ñ ’‡-Jª‘ R¬0ë`Ú¼Kå¸_2pfËAÃú‰z ¼YEi$Éñªj Ƨ娬ýú~j\![ÛGbq"“4‡¿ùr§-œ¡Ék*-Ö±Lµ:¼ë Vܥ嘈<CB9C>*Ïjr­Œug´ÓRwºköËä()±%ŽÝÆÞfÅ&*F•k·'´ƒÕ¸Þ8=òÆØž°ñ ’‡-Jª‘ R¬0ë`Ú¼Kå¸_2pfËAÃú‰z
ÕZÕ¼ëìk8$BáêHÿ¶ðäA]²Ü3Õ4‡©ûOb>Vˆ…ä’Ù°4èËF'9<>jëaèÓ0ü…7 JJ8ØYÍ®ÉÓKшÉm<C389>©Qÿ„a :xåfWšwpH1­u<7F>Zr±Ù`ŠÖ<C5A0>¡`y¥þÜHØú°@£Þc'yëœYW\84éãˆßM«pŒÎ0´êïúžÄ9j…$4[ͪUœpŠ…‡¬ÂËMǃþçØtxtɃX“€&á°¨š<š¼Ñ5 âã ÕZÕ¼ëìk8$BáêHÿ¶ðäA]²Ü3Õ4‡©ûOb>Vˆ…ä’Ù°4èËF'9<>jëaèÓ0ü…7 JJ8ØYÍ®ÉÓKшÉm<C389>©Qÿ„a :xåfWšwpH1­u<7F>Zr±Ù`ŠÖ<C5A0>¡`y¥þÜHØú°@£Þc'yëœYW\84éãˆßM«pŒÎ0´êïúžÄ9j…$4[ͪUœpŠ…‡¬ÂËMǃþçØtxtɃX“€&á°¨š<š¼Ñ5 âã
9K ØKK_N°z~—RVI)‰Þ3J~´¶ûs§”UªJóÐVJY%ÄüŠo”2êælŠs§”U%Fœ®­”2bEK9»Sʪ&¸¸´@ÊFÂõ×HYÕSµÏ»AÊ䈶w~‡”U|bÊÐVHY-2æé°z‡”= ˆn<CB86>²Êfl~‰ÛżAÊ*i=frzƒ”ÉÔ!¸ëè 9K ØKK_N°z~—RVI)‰Þ3J~´¶ûs§”UªJóÐVJY%ÄüŠo”2êælŠs§”U%Fœ®­”2bEK9»Sʪ&¸¸´@ÊFÂõ×HYÕSµÏ»AÊ䈶w~‡”U|bÊÐVHY-2æé°z‡”= ˆn<CB86>²Êfl~‰ÛżAÊ*i=frzƒ”ÉÔ!¸ëè
RV1 RV1
ˆÏ!eÔƒts½Aʪ„MV?t‡”Á1pûÆR†ÅTð«²CÊéwH™ŒUÙ*[­ª{†”JàÍü0î<30>²{®Ÿú)c<>×vûï<C3BB>2eƒ=-7HYIÚiþ¨¤¬ÈtÎ*ï<>²¢UÉÏ!e˶?‡”=|î<E280B9><32>§[wß eÔsf¿b¤ ÿ ÷h¼AÊ*ñ§Ù€Þ edÿ»Õç ˆÏ!eÔƒts½Aʪ„MV?t‡”Á1pûÆR†ÅTð«²CÊéwH™ŒUÙ*[­ª{†”JàÍü0î<30>²{®Ÿú)c<>×vûï<C3BB>2eƒ=-7HYIÚiþ¨¤¬ÈtÎ*ï<>²¢UÉÏ!e˶?‡”=|î<E280B9><32>§[wß eÔsf¿b¤ ÿ ÷h¼AÊ*ñ§Ù€Þ edÿ»Õç
RV<EFBFBD>H Ú)ÃÎвUï<55>2‰5ÎêÏí)£ÞÊM\o<>2iX³ùÁ RV<EFBFBD>H Ú)ÃÎвUï<55>2‰5ÎêÏí)£ÞÊM\o<>2iX³ùÁ
RÆ®{6+꤬jRrm…”I3ü¶Þe„JÉ07F|ÞçÜedöÆÞe…âù>´•QƤÖ¢ïŒ2ÒÌÍÄâÎ(“É\´r¹;£¬°|eÆ©7FÖîrzc”M¸zÎ(+@=¼<>;£Lz×ÞìÁ½1Ê$èWLÕ×F™ÄXgøgEsx½1Êpö<>Qv°kvÔ7F™$ùôÇeg”Mস7F9sÍ`;£ìQhw‡”xzús¶SÊdZpZ9÷S&Wý´µ;§ì<C2A7>θû½Ý@eLym³þN*³äOÃ-í¨2™:4óf¹±Ê$Øó’‰;«Œ)N4«à«,šzäÚÊ*#½ÓÊï¬2K_̱•U)¿1Sð«Lú#ªI][Ye2G[Þ¿±ÊØÇ³ÙÈ<C399>UÈñŽÏYe¬éXZÇ<5A>U&On°­µ;«,f/ß<>UFÆ<46>Ílï¬2Ì OÿÍ<C3BF>U®šÚ<C5A1>U†Áu²îãÆ*$¬¤ç¬2<…³<E280A6>¤7V2µ<g•ÑŽîÚ+cû¼e—VXÈs§•a¹ý¾î¸²@^<5E>?Ò;¯,4sáúz, rôfoå RÆ®{6+꤬jRrm…”I3ü¶Þe„JÉ07F|ÞçÜedöÆÞe…âù>´•QƤÖ¢ïŒ2ÒÌÍÄâÎ(“É\´r¹;£¬°|eÆ©7FÖîrzc”M¸zÎ(+@=¼<>;£Lz×ÞìÁ½1Ê$èWLÕ×F™ÄXgøgEsx½1Êpö<>Qv°kvÔ7F™$ùôÇeg”Mস7F9sÍ`;£ìQhw‡”xzús¶SÊdZpZ9÷S&Wý´µ;§ì<C2A7>θû½Ý@eLym³þN*³äOÃ-í¨2™:4óf¹±Ê$Øó’‰;«Œ)N4«à«,šzäÚÊ*#½ÓÊï¬2K_̱•U)¿1Sð«Lú#ªI][Ye2G[Þ¿±ÊØÇ³ÙÈ<C399>UÈñŽÏYe¬éXZÇ<5A>U&On°­µ;«,f/ß<>UFÆ<46>Ílï¬2Ì OÿÍ<C3BF>U®šÚ<C5A1>U†Áu²îãÆ*$¬¤ç¬2<…³<E280A6>¤7V2µ<g•ÑŽîÚ+cû¼e—VXÈs§•a¹ý¾î¸²@^<5E>?Ò;¯,4sáúz, rôfoå
˜àÜ€e?¨;°Œí1óöÞyeÌEK:ŸòÊ(ʷ⇮,Ê„¹Ú;²Óʈ<C38A>khOie¤Bqm¡•ÅN˜<4E>žÑÊØ;¨¶¢~£•E¢üŽï´2ö9[mï´2¶9³åãÝheD<65>Ì\[heÃs[<5B>¹ÑÊ O{Òî<C392>V[3çܯ­ [<5B>è!ÞN+“'&'sm°²èKï®-´2Æ£à„WÆjA²ÕÚ¯Œ4ÖîX&<0F>܆6´Øa+š;° ˜ü1Ú€eÒ)ɨr ˜Ù,£<Wk@¾îÀ²ˆ_ÛẠ˜àÜ€e?¨;°Œí1óöÞyeÌEK:ŸòÊ(ʷ⇮,Ê„¹Ú;²Óʈ<C38A>khOie¤Bqm¡•ÅN˜<4E>žÑÊØ;¨¶¢~£•E¢üŽï´2ö9[mï´2¶9³åãÝheD<65>Ì\[heÃs[<5B>¹ÑÊ O{Òî<C392>V[3çܯ­ [<5B>è!ÞN+“'&'sm°²èKï®-´2Æ£à„WÆjA²ÕÚ¯Œ4ÖîX&<0F>܆6´Øa+š;° ˜ü1Ú€eÒ)ɨr ˜Ù,£<Wk@¾îÀ²ˆ_Ûáº
X†d¬ih °Œ…ƒÃÖöoÀ2\¤|+è,“&†jù”7`%ÙäM¢íÀ2v˜«9 Þ€e¬ì'·²ß<C2B2> X†d¬ih °Œ…ƒÃÖöoÀ2\¤|+è,“&†jù”7`%ÙäM¢íÀ2v˜«9 Þ€e¬ì'·²ß<C2B2>
f[%½ËxÓÛÎïÀ2¹Îé°tѰ,2ô^`EŠõ;°LŸ•Rk °Lïª0ò¯;°,'Z8½óÊ(t ææ³ËX†b¡ÒF,ÓRx{Mv`E\ÑIE;°,rjÅÂâXFÿlî, ƒÖòu…NBGä±X¦ñ<C2A6>í»ïÀ²ÀŽòiXF´þ°Œ¸âlyh °Lþa f[%½ËxÓÛÎïÀ2¹Îé°tѰ,2ô^`EŠõ;°LŸ•Rk °Lïª0ò¯;°,'Z8½óÊ(t ææ³ËX†b¡ÒF,ÓRx{Mv`E\ÑIE;°,rjÅÂâXFÿlî, ƒÖòu…NBGä±X¦ñ<C2A6>í»ïÀ²ÀŽòiXF´þ°Œ¸âlyh °Lþa
ÕŸ• ÕŸ•
XFÿ-)ñ,ãXÕê€nÀ²0\j¾îÀ²À«í`Š XFÿ-)ñ,ãXÕê€nÀ²0\j¾îÀ²À«í`Š
X†¤<™ƒJ¶Ëð­º<>XÆRÙéÁûŽ,“ <E2809C>-®-È2,6miëF, òV&gíÄ2&ÆVät–±<03>,Só,#ÁÀ6¦o¼2ò*¢ózv^YET_w^[âÕ¨<>W†K{8ªm¼2¶¿mAÜxe @$¸¶ËHö:£C»ŽX¦vX£êe–©ÖÙl¤Yyelötê;žðÊÐXýñûºðʲVé<0F>V^™:e•Ã|6^š¢”Ù„+ÓªÁêÛ‚®,kùñý\^.Ä­¼2´|â#ìÚÄ+Ã)«ËDÂA3¯,kÝh´<44>WFÉb®¯,kæì9Înæ•!ñ@8ná•á¯UÌ¿ïkç•©÷V®‡ã<E280A1>^Y%^ òµóÊÐÂ…I]ye<S…Ô,C8-¼24ó~smâ•1Ó/ w^ÏfL²‰W¦]rÝÊl•áØÅÍó3XpehGÖ{õµãÊÔÍ+X‰þF+C"'Õéh ­ 3/wbÜXeæ^\ÛV;7ê7€d« <0C>Õˆs|m•á&/r±5¼VÕÛÏKF6XÃ)ÞD<16>¬°2*<2A>zõíÞ X†¤<™ƒJ¶Ëð­º<>XÆRÙéÁûŽ,“ <E2809C>-®-È2,6miëF, òV&gíÄ2&ÆVät–±<03>,Só,#ÁÀ6¦o¼2ò*¢ózv^YET_w^[âÕ¨<>W†K{8ªm¼2¶¿mAÜxe @$¸¶ËHö:£C»ŽX¦vX£êe–©ÖÙl¤Yyelötê;žðÊÐXýñûºðʲVé<0F>V^™:e•Ã|6^š¢”Ù„+ÓªÁêÛ‚®,kùñý\^.Ä­¼2´|â#ìÚÄ+Ã)«ËDÂA3¯,kÝh´<44>WFÉb®¯,kæì9Înæ•!ñ@8ná•á¯UÌ¿ïkç•©÷V®‡ã<E280A1>^Y%^ òµóÊÐÂ…I]ye<S…Ô,C8-¼24ó~smâ•1Ó/ w^ÏfL²‰W¦]rÝÊl•áØÅÍó3XpehGÖ{õµãÊÔÍ+X‰þF+C"'Õéh ­ 3/wbÜXeæ^\ÛV;7ê7€d« <0C>Õˆs|m•á&/r±5¼VÕÛÏKF6XÃ)ÞD<16>¬°2*<2A>zõíÞ
V†& Uün°2@åmò7r…•©w˜ÄF[`exPT+/ùÚaehQÚwm•á+VlQòk…•á*f)[®L¸²¬îÕCªW¦Öí”Ô V†& Uün°2@åmò7r…•©w˜ÄF[`exPT+/ùÚaehQÚwm•á+VlQòk…•á*f)[®L¸²¬îÕCªW¦Öí”Ô
ìØ„+CK¡þÌ.¸2v¶Ùk³©ÎŠ+Ó4a3µáÊÈ6¦¨Î¦A+®Œ Å©þ5_­ [\ie”xV­vm¢•¡áÕógW8²ÂÊHU¢Ì£G×&X™¦1üÚ]`el¦±•| Ù+C£ÈzÚV¦51,—&Xù9ž•ðµÃÊ4w‡²æÚ+ãý¬¤Ïm•±(Ò ue•!ez¿'¬2ŠJÚ€‰l¬2-8!?h`Ç´2¬ØðŸ(OheY4Ø7sm¢•eµ˜ÏŽZZieYg6¡ÅA$hehlf Ù+Ëj¯Q¬`wƒ•áî&ÓÐ`<60>Ø ìØ„+CK¡þÌ.¸2v¶Ùk³©ÎŠ+Ó4a3µáÊÈ6¦¨Î¦A+®Œ Å©þ5_­ [\ie”xV­vm¢•¡áÕógW8²ÂÊHU¢Ì£G×&X™¦1üÚ]`el¦±•| Ù+C£ÈzÚV¦51,—&Xù9ž•ðµÃÊ4w‡²æÚ+ãý¬¤Ïm•±(Ò ue•!ez¿'¬2ŠJÚ€‰l¬2-8!?h`Ç´2¬ØðŸ(OheY4Ø7sm¢•eµ˜ÏŽZZieYg6¡ÅA$hehlf Ù+Ëj¯Q¬`wƒ•áî&ÓÐ`<60>Ø
+Ë:é­V6¥'~í°24&€68­°2*ÅŠ- }í°2…{[ +Ë:é­V6¥'~í°24&€68­°2*ÅŠ- }í°2…{[
-c¨=¨c­L}9º.©~í´24ÜšÓ ™M´2jߤC ÇZYVé|<Õ‘í‚ó¿-¨­¸2õ¨c‰p É&\Ó¸A2heº×¯þh®M´2´Hø ŽM´2²°+ Ohej{ùhPÎ&Z°’Ým£•±ù%ј^+® MQ_;¬ ï!ÏϹÂÊÐò5¯ZaeÛêä•£­ -ƒÛ­L=d<>Í4—&Z¼—sh­ ž> qPÇ&Z™²>Jð½•VFº“ŸöD*Ó$(s„ùÚIeÚÕ]áJ*SÀÓîVPKOÀâLZ8eH™U¡Mœ2*w(çöºpÊÐðW57Ì•SY?g)º»6qʲ&ä5Gm¬œ24u{Â)Ãä<C383>e -c¨=¨c­L}9º.©~í´24ÜšÓ ™M´2jߤC ÇZYVé|<Õ‘í‚ó¿-¨­¸2õ¨c‰p É&\Ó¸A2heº×¯þh®M´2´Hø ŽM´2²°+ Ohej{ùhPÎ&Z°’Ým£•±ù%ј^+® MQ_;¬ ï!ÏϹÂÊÐò5¯ZaeÛêä•£­ -ƒÛ­L=d<>Í4—&Z¼—sh­ ž> qPÇ&Z™²>Jð½•VFº“ŸöD*Ó$(s„ùÚIeÚÕ]áJ*SÀÓîVPKOÀâLZ8eH™U¡Mœ2*w(çöºpÊÐðW57Ì•SY?g)º»6qʲ&ä5Gm¬œ24u{Â)Ãä<C383>e
3òZ9ehÉ&._;§ 'Ãs$ˆlœ2´ƒ 3òZ9ehÉ&._;§ 'Ãs$ˆlœ2´ƒ
z;ÞÂ)ËTeŒ|Ñ<>S†&Ñ´L’Šl”eMsoÅ·`ÊÐ`$<>èŠ)Cjé¨Ú1cÊ4õ°ñg£”!aæàwh¡”¡QƒýŽ$³Ù)Cã¦ä z;ÞÂ)ËTeŒ|Ñ<>S†&Ñ´L’Šl”eMsoÅ·`ÊÐ`$<>èŠ)Cjé¨Ú1cÊ4õ°ñg£”!aæàwh¡”¡QƒýŽ$³Ù)Cã¦ä
)C“1ÚýíWH™n+\>Á+¤ )C“1ÚýíWH™n+\>Á+¤
s0Ð-<2D>2´dÎ!_;¤Ìì$s‰D6AÊШ9Àì‚”¡ó£-<2D>24²k.€Ù)ËJš:ú0 ehM¦8涸BÊÐØ€JO ej ª\2×&HšÇW_;¤,“='ý ƒ®fHR)C“ÔáR ¤ )j ² R†Žèt¬…Q†ÝHmC”áÚ‰D² Q††câõ½ Q¦ s0Ð-<2D>2´dÎ!_;¤Ìì$s‰D6AÊШ9Àì‚”¡ó£-<2D>24²k.€Ù)ËJš:ú0 ehM¦8涸BÊÐØ€JO ej ª\2×&HšÇW_;¤,“='ý ƒ®fHR)C“ÔáR ¤ )j ² R†Žèt¬…Q†ÝHmC”áÚ‰D² Q††câõ½ Q¦
GÃ\-ˆ²¬¹©goOehÇËæÚ„(S-öcðÄ&BYž0â¡L¥±N³Êò ey†oˆ²<Ç7DÙMeÛo.ˆ2kK?ÓDYžÙ+£,ÏÀö<C380> 'µèÚÄ(Ó›†¹íÊ(S­³\«ÚÂ(ÓÛY`rmb”éÃ|1fc”ñŒêŸ0Êôùk¾¯¹2Êô‰ÐË1k £ <0C>Ò GÃ\-ˆ²¬¹©goOehÇËæÚ„(S-öcðÄ&BYž0â¡L¥±N³Êò ey†oˆ²<Ç7DÙMeÛo.ˆ2kK?ÓDYžÙ+£,ÏÀö<C380> 'µèÚÄ(Ó›†¹íÊ(S­³\«ÚÂ(ÓÛY`rmb”éÃ|1fc”ñŒêŸ0Êôùk¾¯¹2Êô‰ÐË1k £ <0C>Ò
³x^ehU]°]eúÞÁªÂ(³÷5[aÙÆ(Ó÷Ü!1+¢,?¿vD™ö*êÀ§ÚŒ(Ó¼|é™Ò<E284A2>&DYV¨êÄ Q¦ÝbŠ¶Î¾!Ê´;ew¹¸6!Ê´Æ®÷pmB”i÷m€†¯Q†FF¤½Ì+¢Œá‚ÛúQ¦#Ð(zÜe \rÝ—|e”¡28ÁÂ(CÒ5¯<E280BA>oôUÜ<55>öiË•¡Œqžr÷c<C3B7>Æ&Bšzä»4ʈ8ب¶m”¡±<C2A1>vº4ñÉppt4€ÅÊ'Ó I]\{ðɲ"LÛù®€2­ÊÎ$ª«¶Ê4î“ÉkÚ(#^d€vüÚ(#<02>«Æ'€24êêŽ'€2"^ž®ñµ‰O¦Ïa;ºÃ±f@¹ù‡K L#yMdpm”1à`ŽQ[e:©(JEøÚeLS"QÿøÞ(c꣙²ÖPÕ<02>ê9×&@Ó)îV¿ʘvÕæñ¡Œß¨cr#”eµIÊÁü|BóOrœ&¶ʘӖ A´ʘ'“dïÏJ(Ó¹÷9 Ž+¡,ëÀÜoy%”iô;,7Bk täÖÌ…PÆŠDWoM×.pk#Q ³x^ehU]°]eúÞÁªÂ(³÷5[aÙÆ(Ó÷Ü!1+¢,?¿vD™ö*êÀ§ÚŒ(Ó¼|é™Ò<E284A2>&DYV¨êÄ Q¦ÝbŠ¶Î¾!Ê´;ew¹¸6!Ê´Æ®÷pmB”i÷m€†¯Q†FF¤½Ì+¢Œá‚ÛúQ¦#Ð(zÜe \rÝ—|e”¡28ÁÂ(CÒ5¯<E280BA>oôUÜ<55>öiË•¡Œqžr÷c<C3B7>Æ&Bšzä»4ʈ8ب¶m”¡±<C2A1>vº4ñÉppt4€ÅÊ'Ó I]\{ðɲ"LÛù®€2­ÊÎ$ª«¶Ê4î“ÉkÚ(#^d€vüÚ(#<02>«Æ'€24êêŽ'€2"^ž®ñµ‰O¦Ïa;ºÃ±f@¹ù‡K L#yMdpm”1à`ŽQ[e:©(JEøÚeLS"QÿøÞ(c꣙²ÖPÕ<02>ê9×&@Ó)îV¿ʘvÕæñ¡Œß¨cr#”eµIÊÁü|BóOrœ&¶ʘӖ A´ʘ'“dïÏJ(Ó¹÷9 Ž+¡,ëÀÜoy%”iô;,7Bk täÖÌ…PÆŠDWoM×.pk#Q
ß¿v@+*Y½äT[eùáòõµÊ´ÈSQ\eDüK ôWDYÖ‰Rs¢èŠ(cÍ óh'î-ˆ2]bc1ûŽ(cÕŽbÇ‚-ˆÏØ-M|C”麣<p6.­ˆ2Ö2)TICe¬œÊ5r~áŠ(ÓdUV“k¢L7Z˜­Ú‚(c±à„ \{ Êò§[<5B>f—&Dì2PùäaE”i­÷… ß¿v@+*Y½äT[eùáòõµÊ´ÈSQ\eDüK ôWDYÖ‰Rs¢èŠ(cÍ óh'î-ˆ2]bc1ûŽ(cÕŽbÇ‚-ˆÏØ-M|C”麣<p6.­ˆ2Ö2)TICe¬œÊ5r~áŠ(ÓdUV“k¢L7Z˜­Ú‚(c±à„ \{ Êò§[<5B>f—&Dì2PùäaE”i­÷…
]eº…0¼|7D™Î¯°u¨± Q¦tŠE³k¢L÷qR²­ ]eº…0¼|7D™Î¯°u¨± Q¦tŠE³k¢L÷qR²­
Q¦[Jòà¦'ˆ2ò ÙRÕµQ6agvBY`±ÊíæwB+Éh Lót¾ñ(“N ^ûÚ(£Šþ ²•OÆŒ÷ȃk¶òÉä4‡ Ýødl/;xiç“MTëõ½…O†Z8½-+Ÿ °æò<>@·—É„k  L»ËŒ}”eÌ”Û![exÆ<78>°|”QR_œ&´Êðþ”‡±º¶ÊðܰRõ<52>OvP~nÅ»7>ý15Á®-|²BLszK6>Ù•öuç“ƒÇ¤Úød8ZVóܼÊ ÑXýÖ<C3BD>OS^•k3ŸŒ<ßh~7>¨<>à³´<C2B3>OÉ.ÙnÆ<6E>O&ã<fu͵…O&½w®¥má“Q­öàÆ'Ó4zç7ï|2|žã`žm|²ÎêÈ9d žL.žL¾Ã@—Mx2 @<1F>A6ãÉp7<68>'+šp_<70>ÿ°âÉH@ÁÂt Ÿ µÛ{[ødä-KjQÓŠ'£;ƒ‹~ižŒl̦©h+Ÿ¬`ÏK¹Ø`—M|2¬<1q-.=ðd<C3B0>²Øªmƒ36áÉÈ Ix×%×&>YÁSšì€Á.ød¸Áœ‡¿ä+ž ¾‰ô‡sº<Ÿ2&Ö k6ñÉÀ6<C380>3j×r哱§ã¥_ŸŒ*ŠÂNui\±=g]íJ(#ƒÁ6­]e8žâ\Ç÷&Dû³çá…(¢¬ð¢‘Ô{º6!ʘ(ÉPTªµ Ê4‰:è<>e•Uµ²"ÊX,x#$×&D9¸Õ Ú(ÃK 7ç¶-€2*g1o² ö Q¦[Jòà¦'ˆ2ò ÙRÕµQ6agvBY`±ÊíæwB+Éh Lót¾ñ(“N ^ûÚ(£Šþ ²•OÆŒ÷ȃk¶òÉä4‡ Ýødl/;xiç“MTëõ½…O†Z8½-+Ÿ °æò<>@·—É„k  L»ËŒ}”eÌ”Û![exÆ<78>°|”QR_œ&´Êðþ”‡±º¶ÊðܰRõ<52>OvP~nÅ»7>ý15Á®-|²BLszK6>Ù•öuç“ƒÇ¤Úød8ZVóܼÊ ÑXýÖ<C3BD>OS^•k3ŸŒ<ßh~7>¨<>à³´<C2B3>OÉ.ÙnÆ<6E>O&ã<fu͵…O&½w®¥má“Q­öàÆ'Ó4zç7ï|2|žã`žm|²ÎêÈ9d žL.žL¾Ã@—Mx2 @<1F>A6ãÉp7<68>'+šp_<70>ÿ°âÉH@ÁÂt Ÿ µÛ{[ødä-KjQÓŠ'£;ƒ‹~ižŒl̦©h+Ÿ¬`ÏK¹Ø`—M|2¬<1q-.=ðd<C3B0>²Øªmƒ36áÉÈ Ix×%×&>YÁSšì€Á.ød¸Áœ‡¿ä+ž ¾‰ô‡sº<Ÿ2&Ö k6ñÉÀ6<C380>3j×r哱§ã¥_ŸŒ*ŠÂNui\±=g]íJ(#ƒÁ6­]e8žâ\Ç÷&Dû³çá…(¢¬ð¢‘Ô{º6!ʘ(ÉPTªµ Ê4‰:è<>e•Uµ²"ÊX,x#$×&D9¸Õ Ú(ÃK 7ç¶-€2*g1o² ö
(#3 (#3
‡sëqV@.?ºÿA!eXu<58>VšñµÊص¦îÚD(3ÏØê]ûŠ(ãT%.wèæŠ(«êýó…6e$™ØÂ;ÚŠ(ÃÉã\qVD<19><>H!|vmB”1_¥fÞæ¡+¢ Gé¥ áVDE˺xq¸6!ÊpŽ ]w.Ø‚(£œž¥M¯ˆ¡kœCeÔWÚþÆ×N(Ã~#_Üœ…P†#UºÇøÚD(S'Úë[eøÂ×äqíJ(ƒÌuŽÐ ‡sëqV@.?ºÿA!eXu<58>VšñµÊص¦îÚD(3ÏØê]ûŠ(ãT%.wèæŠ(«êýó…6e$™ØÂ;ÚŠ(ÃÉã\qVD<19><>H!|vmB”1_¥fÞæ¡+¢ Gé¥ áVDE˺xq¸6!ÊpŽ ]w.Ø‚(£œž¥M¯ˆ¡kœCeÔWÚþÆ×N(Ã~#_Üœ…P†#UºÇøÚD(S'Úë[eøÂ×äqíJ(ƒÌuŽÐ
(ƒ,Dà|¯Pf}yóxq<>š)ÅNŒk ŒÑ“ÐÏîÝ (;5i5{4W@Ù©ÙVÝ6I7D™n/5Ùeì#E_ (ƒ,Dà|¯Pf}yóxq<>š)ÅNŒk ŒÑ“ÐÏîÝ (;5i5{4W@Ù©ÙVÝ6I7D™n/5Ùeì#E_
Xe,[R¾k  3Ê¥lùm”±¯ËÌÒIp ¡Œ­©«ÓÃDëꬨ´0ÊX<!s Xe,[R¾k  3Ê¥lùm”±¯ËÌÒIp ¡Œ­©«ÓÃDëꬨ´0ÊX<!s
~ÙÄ(ciã Hã £¬Ó5u¯ÏßeD:yI®MŒ²®„pò¨\e]­‰Í¿}C”áî/Q¡_±Q¦ÉôÄú‡K£ŒMk—ÏÁeºñFqòà—MŒ2<pXg·ñbe”uåG®Œ2åtXÃ×)RíQY e¬?r:k†”QÃ<51>[]¶Éæ)£h ~ÙÄ(ciã Hã £¬Ó5u¯ÏßeD:yI®MŒ²®„pò¨\e]­‰Í¿}C”áî/Q¡_±Q¦ÉôÄú‡K£ŒMk—ÏÁeºñFqòà—MŒ2<pXg·ñbe”uåG®Œ2åtXÃ×)RíQY e¬?r:k†”QÃ<51>[]¶Éæ)£h
<10>˜HYÂd7<>:´¤ŒXŠ÷šÓàfJÕn즥 ”Q3ÎnJ¸¾÷ ”±rË¢ÈÙŠìA)£JŽ¥½x ¥ X }°Í<1E>2 <10>˜HYÂd7<>:´¤ŒXŠ÷šÓàfJÕn즥 ”Q3ÎnJ¸¾÷ ”±rË¢ÈÙŠìA)£JŽ¥½x ¥ X }°Í<1E>2
肺:Ù×fH6ÖDjãa™!e¬SÄå£á)ÃQ y:Ì×)£(¯«©X!e”½kvauéÁ(Kê“-á—Ò £ŒZ¾Æhd í £ ¤Ãy™Ä¯Œ25¯5Ÿ´…Qî<>*¸Kz ÊX´Î„ uhDå<>”U%‡c͈2( 肺:Ù×fH6ÖDjãa™!e¬SÄå£á)ÃQ y:Ì×)£(¯«©X!e”½kvauéÁ(Kê“-á—Ò £ŒZ¾Æhd í £ ¤Ãy™Ä¯Œ25¯5Ÿ´…Qî<>*¸Kz ÊX´Î„ uhDå<>”U%‡c͈2(
píD™-vcÍ9ðeD™j&˜Á±fDYÒ]¦ž<Œ[e,ˈWÍÑee”QŽˆcL²¸ja”±€Žå<C5BD>ÏøFYÒå;,ºîŒ2Lʵ<C38A>¸ ÊXw׈Qt­ƒüæA6{ Ê’®"ȳeãù(S[6TlÀXeJÁˆÌCö@”±”A/8ŒkF”%uÅÅáÏš9#ÊÔëàO_efÑñríb”Ö<>ënf”±=@?æÝ…Q6FFYÒÉyªv píD™-vcÍ9ðeD™j&˜Á±fDYÒ]¦ž<Œ[e,ˈWÍÑee”QŽˆcL²¸ja”±€Žå<C5BD>ÏøFYÒå;,ºîŒ2Lʵ<C38A>¸ ÊXw׈Qt­ƒüæA6{ Ê’®"ȳeãù(S[6TlÀXeJÁˆÌCö@”±”A/8ŒkF”%uÅÅáÏš9#ÊÔëàO_efÑñríb”Ö<>ënf”±=@?æÝ…Q6FFYÒÉyªv
÷ ¸`¾2¶0Ê0^`{¢X·0ÊØr`´<l<>ua”)ȃ2•4øeƒQÆ~ŽÇ1”£ŒªOuç6ﺅQÔÏ”J®Á!{0ʨ%O¤8­jf”©<E2809D>³9Œô43Ê0¨ѤÁ!{0Ê¥n'×Ï¥¢Œý¦Š¡ ÷ ¸`¾2¶0Ê0^`{¢X·0ÊØr`´<l<>ua”)ȃ2•4øeƒQÆ~ŽÇ1”£ŒªOuç6ﺅQÔÏ”J®Á!{0ʨ%O¤8­jf”©<E2809D>³9Œô43Ê0¨ѤÁ!{0Ê¥n'×Ï¥¢Œý¦Š¡
Ù…(£Æt8€~mˆKr¸ö@”%<25>ï<!|%”±ms‡ÍÁWB™¦²¾y íA(S3` e<>:HcB™úT6x»kBY:µR5×r'”©]ǵ¶¼Ê€HCuÜL(cŸæšj¯€2|±qÅ´ÆPF%,ë[Ù ^3  c<>ú%-„2<@p)qSÌ…PF-­n¾ñ ¡Œ½ŸŒuµy$/„²¤¡ÇêWB™î •aåµʲ&3`}ºö ”±gTÍ!^µ™Pj§;/„²¬ùyúŽºö ”Q³s­í¤®„260ѶíÒ•PÕÇ:%·%\elD˜Ì,ta”eõ²£4ÄÈS3£,+$/f<>³Bʨfâíïú)ËQ<C38B>Çu™!e”ãÊlg·0Êto3<>o=eT“òç¶Òqf”é¾réÎ(Ã+]~48/(ÎŒ2öÄtŒÕ¼2ʨ:.çeÙgFûe CcvĉQFE2/°£#HYÖ-èuí)Ëš=rìWHÕÊŽÑsª6CÊ@ÙœÑ\;6HYVç€Òß{@Ê2#¢<19>¨6SÊØŸëŒ&þ M”28SåF)£þ™Œ0³€] eìÜ] †+£ŒÊhߢpíÁ(ÓM½hNF_£Œªir&ƒ—/Œ26üpBma°ÍŒ2jª± ˆCö@”eC\Ô60d¡ èÎðÅûÚ«ÏWB»„lîØbÕJ(ËÄã§z3ºö ”eŒD˜SAÍ„²¬Å®úÚel/&¯¢ÿÚe m<6D>à_ ŒÍÇS¡Þö“3¡ ÔO=uŸÍµ¡,ã Ù…(£Æt8€~mˆKr¸ö@”%<25>ï<!|%”±ms‡ÍÁWB™¦²¾y íA(S3` e<>:HcB™úT6x»kBY:µR5×r'”©]ǵ¶¼Ê€HCuÜL(cŸæšj¯€2|±qÅ´ÆPF%,ë[Ù ^3  c<>ú%-„2<@p)qSÌ…PF-­n¾ñ ¡Œ½ŸŒuµy$/„²¤¡ÇêWB™î •aåµʲ&3`}ºö ”±gTÍ!^µ™Pj§;/„²¬ùyúŽºö ”Q³s­í¤®„260ѶíÒ•PÕÇ:%·%\elD˜Ì,ta”eõ²£4ÄÈS3£,+$/f<>³Bʨfâíïú)ËQ<C38B>Çu™!e”ãÊlg·0Êto3<>o=eT“òç¶Òqf”é¾réÎ(Ã+]~48/(ÎŒ2öÄtŒÕ¼2ʨ:.çeÙgFûe CcvĉQFE2/°£#HYÖ-èuí)Ëš=rìWHÕÊŽÑsª6CÊ@ÙœÑ\;6HYVç€Òß{@Ê2#¢<19>¨6SÊØŸëŒ&þ M”28SåF)£þ™Œ0³€] eìÜ] †+£ŒÊhߢpíÁ(ÓM½hNF_£Œªir&ƒ—/Œ26üpBma°ÍŒ2jª± ˆCö@”eC\Ô60d¡ èÎðÅûÚ«ÏWB»„lîØbÕJ(ËÄã§z3ºö ”eŒD˜SAÍ„²¬Å®úÚel/&¯¢ÿÚe m<6D>à_ ŒÍÇS¡Þö“3¡ ÔO=uŸÍµ¡,ã
ÚÕ3ʵ¢,Ÿš—ÝJ¼#Ê(üŽØ„ù%e`‚ú£#^e…7¯¾ÿÚelhÖAr_ ej;Ï6õE6{Ê2n ¹ýB(ËjåÆMvíA(c”™vzB(?ÄúhºHcB•æ\#'-„2Ý$ÍŽh@l"üï»™ /„2Üñq¨q€ÌL(Cã䨄qíB”QjN¸O F6ØØ¹vAÊ´|½ÑQø8QÊ¢î»FJŒ IõÀ”!<21> =@eT¨KðÈrsé"•¡áŽU:£Ê´ê]^ø`y> « ÚÕ3ʵ¢,Ÿš—ÝJ¼#Ê(üŽØ„ù%e`‚ú£#^e…7¯¾ÿÚelhÖAr_ ej;Ï6õE6{Ê2n ¹ýB(ËjåÆMvíA(c”™vzB(?ÄúhºHcB•æ\#'-„2Ý$ÍŽh@l"üï»™ /„2Üñq¨q€ÌL(Cã䨄qíB”QjN¸O F6ØØ¹vAÊ´|½ÑQø8QÊ¢î»FJŒ IõÀ”!<21> =@eT¨KðÈrsé"•¡áŽU:£Ê´ê]^ø`y> «
·t÷[`eZOЍ»\Ï´24Pçy&Ù…+£ê<C2A3>Ùx &^áò`<60> ·t÷[`eZOЍ»\Ï´24Pçy&Ù…+£ê<C2A3>Ùx &^áò`<60>
`<1E>![—9Ë´Žž¹¯#vgdšÓwì &fYTS `<1E>![—9Ë´Žž¹¯#vgdšÓwì &fYTS
^M·@Ë´ÆžeLK&]¨ehì¶èß°eZ¯Leç!ñ¯<06>e—ii¾ÄÑa Œ@3º MZde ºL«ö5öúÖÅ.C#ð(ff—iA¿Ü<C2BF>üæLô24yŒœõµàË<C3A0>íÔëká—i©¹3¿Lñ õÌ3Jö¥ßaýä†0CSŸGxÌ 3ã64…׸vAÌÔ" «£ƒQÚ u7Yð3cÌ(õø]žf >s̵<>•«bd†vè$®ÝHfê,<2C>ä<EFBFBD>h6™™Qfhg2“Õ&™2$xm<78>f1ÃÌÔuÀìµo434ÖÍ1ùkÅ™¡UuqÎÕÄ3C;‰?R¬³ hæ¤Û![xfêUððtY€fh¾<68>7`gÑ ­:Ûk¢™©…ARhGrí™)æBË#-ìž<C3AC>fjo<6A>¯Rà…h†£«Z&ì4S>†¥2ië®]L3µ><3E>7¬†:ðdÔ %÷¸vQÍЦØN>ž±fhšmêèã™k¦Ì ^M·@Ë´ÆžeLK&]¨ehì¶èß°eZ¯Leç!ñ¯<06>e—ii¾ÄÑa Œ@3º MZde ºL«ö5öúÖÅ.C#ð(ff—iA¿Ü<C2BF>üæLô24yŒœõµàË<C3A0>íÔëká—i©¹3¿Lñ õÌ3Jö¥ßaýä†0CSŸGxÌ 3ã64…׸vAÌÔ" «£ƒQÚ u7Yð3cÌ(õø]žf >s̵<>•«bd†vè$®ÝHfê,<2C>ä<EFBFBD>h6™™Qfhg2“Õ&™2$xm<78>f1ÃÌÔuÀìµo434ÖÍ1ùkÅ™¡UuqÎÕÄ3C;‰?R¬³ hæ¤Û![xfêUððtY€fh¾<68>7`gÑ ­:Ûk¢™©…ARhGrí™)æBË#-ìž<C3AC>fjo<6A>¯Rà…h†£«Z&ì4S>†¥2ië®]L3µ><3E>7¬†:ðdÔ %÷¸vQÍЦØN>ž±fhšmêèã™k¦Ì
f÷VlºÍ°L`S×Ê þL†Nç²Í`3ø[Ã÷òk›á§24Z¿·<C2BF>ÍŠæW—4ÞŸ™l†×¾m`³²ø¬`3Èìka|ï›ÁÿÀÄÖª°6 dVŸ,`3r˜NÜšÉfX4àÊfu+ÚŒü‚Ã<>~G<47>ái¶ÕŸ•m†}Ce-- HÙƒm¦¹Q+<2B>\»Øf8;€æ4c“…mFVB0kY `uBü²Û L˜<n×=˜ÙfE·þŠS²´ в߂m†!eãÁO|FÍPI”w\Ú„6.&qB÷<42>vFaq:öækCa˜Ý×;ÚŒL‡8l/W²YÑ =^µA={<7B>ÍŠ^äÅNw²T2vΫ·r&a1A±3'´ù,& —f´émæxgá=´bÙ¥ÛŒÌ f)Õæ Û ˜Y-ÃtweUMùK>Œ/h3l)¸‰[Ðf¤UP1fÞˆ+ÛŒ¿ 3௠f÷VlºÍ°L`S×Ê þL†Nç²Í`3ø[Ã÷òk›á§24Z¿·<C2BF>ÍŠæW—4ÞŸ™l†×¾m`³²ø¬`3Èìka|ï›ÁÿÀÄÖª°6 dVŸ,`3r˜NÜšÉfX4àÊfu+ÚŒü‚Ã<>~G<47>ái¶ÕŸ•m†}Ce-- HÙƒm¦¹Q+<2B>\»Øf8;€æ4c“…mFVB0kY `uBü²Û L˜<n×=˜ÙfE·þŠS²´ в߂m†!eãÁO|FÍPI”w\Ú„6.&qB÷<42>vFaq:öækCa˜Ý×;ÚŒL‡8l/W²YÑ =^µA={<7B>ÍŠ^äÅNw²T2vΫ·r&a1A±3'´ù,& —f´émæxgá=´bÙ¥ÛŒÌ f)Õæ Û ˜Y-ÃtweUMùK>Œ/h3l)¸‰[Ðf¤UP1fÞˆ+ÛŒ¿ 3à¯
nFÊE¥DÔ.×R€ë+<2B> ÜŒ(Ýcwþë—ÖÁéšÙf¤c@<40>õya°B©¯<C2A9>mFªF×ÑfðÒl3R5Ž÷lfU-œRÀ”k¶YÕrÒQݾ²ÍÈã<C388>ŽáôWkaUR¤äˆÝ/ËÌ6«jØG˜:´ÛŒ0§V¾²ÍÈñÉR~¾6¶ nFÊE¥DÔ.×R€ë+<2B> ÜŒ(Ýcwþë—ÖÁéšÙf¤c@<40>õya°B©¯<C2A9>mFªF×ÑfðÒl3R5Ž÷lfU-œRÀ”k¶YÕrÒQݾ²ÍÈã<C388>ŽáôWkaUR¤äˆÝ/ËÌ6«jØG˜:´ÛŒ0§V¾²ÍÈñÉR~¾6¶
³3ܳÛ¬÷Û‡ÕòÊ6«8øÚØf4:RCæ×eftnFnˆ.C{ÀÍÈ ³3ܳÛ¬÷Û‡ÕòÊ6«8øÚØf4:RCæ×eftnFnˆ.C{ÀÍÈ
aÚü+g¸§s˜Ëóׯ6#iÄÞÁ¯<C381>lVÕ aÚü+g¸§s˜Ëóׯ6#iÄÞÁ¯<C381>lVÕ
={îãJ6ã<<3C>¢lb´mfL<66>cL#¶YÕ:„l1ÇÂ6¸S˜ØÛP±°Í0ë°íŒÛ ·xn$Ú`i¦ ËNÙfdš„l¤<6C>¯<EFBFBD>mV-E2¦{ö`UË?>Ì¿l….nÆÕ«å ={îãJ6ã<<3C>¢lb´mfL<66>cL#¶YÕ:„l1ÇÂ6¸S˜ØÛP±°Í0ë°íŒÛ ·xn$Ú`i¦ ËNÙfdš„l¤<6C>¯<EFBFBD>mV-E2¦{ö`UË?>Ì¿l….nÆÕ«å
®¸W/8²çk…5¦Ý±¸×7ƒûCl³>l<>5-§ÁÆÎ`†aÿq^^ò+Ý û<>l7ĵÞŒÜ•Æ bƒÖ7MBI·/[éfXƒ4²)ýpÝ k<>Dy¬Cð&ºI-Ï…•nFRšrZü¹Ð͸ ®¸W/8²çk…5¦Ý±¸×7ƒûCl³>l<>5-§ÁÆÎ`†aÿq^^ò+Ý û<>l7ĵÞŒÜ•Æ bƒÖ7MBI·/[éfXƒ4²)ýpÝ k<>Dy¬Cð&ºI-Ï…•nFRšrZü¹Ð͸
Ã2 º¶!$î Ã2 º¶!$î
ÎÚL7kjÉ#ÓMëºY3c<33>³žã{º÷JºàjUý+ÞŒ›%ýMs¶ÏÂ7ÃU$°V•ûìÁ7#!†„Pž 1)^I¿òÍšš"PðÛ]{ð͸“‡¦-$jæá8ŒçãÚƒoF² <0C>Y»¯|3²e¨¼8ì<38>\øfÜföª}R¾ð͸ό½¾µðÍš®GI·e#ìÂ7#—†9Íqi¾YÓéåmYkáK3*d¿6¾™>gµòÍð*©ìAÛ\yááUuÓÞŽ7óÍð*a|ðµ²…oF¢Íå<C38D>³âÍÛ,—Á<E28094>){àÍx>¨"ö)œ)Õ£úã2ãÍÔÆ$TwéXùfç”}ýµñÍH¡²Å£ï…ovjÁÆé`˜=øfdá0~„aöàñìt¼ªýÜg¾Ù©îáÄÿµñÍp9©Z5f¾.'Ü=Kt^øfgVG±R<C2B1>W¸ðÍHÐÁÖêBŸ=ðfšŸ¨v ³ßìTªWpöã7;ÕéÓnò׆7ã¡Ò Þ ÿ“A¢úÚðf ß»ÓͰ?91:¶ g¡<C2A1>øJ¼r¡¸ÃNt®ÛL7#qgŠ5º™;ÔšÄ8´ÝLSwp<77>±ÁžêÙWõOë»fIµ°ÍÈÛ1XŒ*3ÛŒ´ŠªšmY,l3˜T‰}¿3ÛŒgm i¾v¶X¨ô0Øfú¬=®×<11>©@³ n¦†ã×k0ÃÍxذµ9œ66ÓÍxØ08ñ´9 7SŒ|Öd>×p3lQd<¾œ´ÀÍxب¦ná7ãi˺\\{ÀÍðE©Ôç:"j†árZÖßÇN7ãq£StÐB7ëêô"7*6ÓÍðE±õñãc§ñ¸Å`uV;ÝŒNFK>vº\ëj¢ò±ÓÍôÓ¼¨óc§ñÈlS<6C>þ5ÓÍxä:“«6ÈgºY'-Žü…Ü>nt3önšæ«~Üèf8wÅQi³ÑÍ(3¯µLr£¹“‡A÷F7kÊ×;£ÃéºÙ©”2§?nt3Âir¼ûÐ&º™ÚöRÄF7Ã¥éõq£\ÊÕ62ÎL7SwYÞàfHLìOPÏp3$è©ËŠÜ Ãb5ëˆRž+Û í<©®jécc©Ï‰$š3·±ÍÔçdd<64>op35:‘ß,Íoì7ð„<04>Óà” ÎÚL7kjÉ#ÓMëºY3c<33>³žã{º÷JºàjUý+ÞŒ›%ýMs¶ÏÂ7ÃU$°V•ûìÁ7#!†„Pž 1)^I¿òÍšš"PðÛ]{ð͸“‡¦-$jæá8ŒçãÚƒoF² <0C>Y»¯|3²e¨¼8ì<38>\øfÜföª}R¾ð͸ό½¾µðÍš®GI·e#ìÂ7#—†9Íqi¾YÓéåmYkáK3*d¿6¾™>gµòÍð*©ìAÛ\yááUuÓÞŽ7óÍð*a|ðµ²…oF¢Íå<C38D>³âÍÛ,—Á<E28094>){àÍx>¨"ö)œ)Õ£úã2ãÍÔÆ$TwéXùfç”}ýµñÍH¡²Å£ï…ovjÁÆé`˜=øfdá0~„aöàñìt¼ªýÜg¾Ù©îáÄÿµñÍp9©Z5f¾.'Ü=Kt^øfgVG±R<C2B1>W¸ðÍHÐÁÖêBŸ=ðfšŸ¨v ³ßìTªWpöã7;ÕéÓnò׆7ã¡Ò Þ ÿ“A¢úÚðf ß»ÓͰ?91:¶ g¡<C2A1>øJ¼r¡¸ÃNt®ÛL7#qgŠ5º™;ÔšÄ8´ÝLSwp<77>±ÁžêÙWõOë»fIµ°ÍÈÛ1XŒ*3ÛŒ´ŠªšmY,l3˜T‰}¿3ÛŒgm i¾v¶X¨ô0Øfú¬=®×<11>©@³ n¦†ã×k0ÃÍxذµ9œ66ÓÍxØ08ñ´9 7SŒ|Öd>×p3lQd<¾œ´ÀÍxب¦ná7ãi˺\\{ÀÍðE©Ôç:"j†árZÖßÇN7ãq£StÐB7ëêô"7*6ÓÍðE±õñãc§ñ¸Å`uV;ÝŒNFK>vº\ëj¢ò±ÓÍôÓ¼¨óc§ñÈlS<6C>þ5ÓÍxä:“«6ÈgºY'-Žü…Ü>nt3önšæ«~Üèf8wÅQi³ÑÍ(3¯µLr£¹“‡A÷F7kÊ×;£ÃéºÙ©”2§?nt3Âir¼ûÐ&º™ÚöRÄF7Ã¥éõq£\ÊÕ62ÎL7SwYÞàfHLìOPÏp3$è©ËŠÜ Ãb5ëˆRž+Û í<©®jécc©Ï‰$š3·±ÍÔçdd<64>op35:‘ß,Íoì7ð„<04>Óà”
¸RÃùÎ\<5C>º¦$º±Á7SŽƳØðf$`“)iˆžofI_†<5F>ÝèfL»±¶ÍFE[èf 4$¨¶A>èf”ä@äÇN7cI¸Zõ<>nF¸æF7Óú:™<øq£ñ¸Íè<C38D>nvšU‡U=ot³S+?ed;?nt³þi¡½Í+ÝŒ 0jÜ6º“@ùÒé—s¢EÍÕ!Çt3e@¦¤R?vºÖ#xäX5áJ7ãNVóxúØéfÜJyž<79>ÓO}¦›‘Ó4 ¸RÃùÎ\<5C>º¦$º±Á7SŽƳØðf$`“)iˆžofI_†<5F>ÝèfL»±¶ÍFE[èf 4$¨¶A>èf”ä@äÇN7cI¸Zõ<>nF¸æF7Óú:™<øq£ñ¸Íè<C38D>nvšU‡U=ot³S+?ed;?nt³þi¡½Í+ÝŒ 0jÜ6º“@ùÒé—s¢EÍÕ!Çt3e@¦¤R?vºÖ#xäX5áJ7ãNVóxúØéfÜJyž<79>ÓO}¦›‘Ó4
??vºd0i }|ïA7Ã`äô­‘ÝŒÂíªÏÜÇ<C39C>n¦ž§¬ª•<C2AA>ÝìPÖÀ®t3îÉ£S]éf¬ËXÉ÷Ç<C3B7>nVÔ×9;qk<71>iò¥N”>np3%¯P¾ônF]I2{µÜŒž«ÉÝníã7£À£‹>´ nF´ƒM¿#W¸Ùpn·¸±ÍÎÇ”÷Æ6ë¬sžÁüÔ6¶Y×¾d”ä•m¦¹è8Q[w»°Í4ßDÕÐ ??vºd0i }|ïA7Ã`äô­‘ÝŒÂíªÏÜÇ<C39C>n¦ž§¬ª•<C2AA>ÝìPÖÀ®t3îÉ£S]éf¬ËXÉ÷Ç<C3B7>nVÔ×9;qk<71>iò¥N”>np3%¯P¾ônF]I2{µÜŒž«ÉÝníã7£À£‹>´ nF´ƒM¿#W¸Ùpn·¸±ÍÎÇ”÷Æ6ë¬sžÁüÔ6¶Y×¾d”ä•m¦¹è8Q[w»°Í4ßDÕÐ
6³ÍpîS­<53>mÆe芫;ÛŒœy:Žq‡¶YRòOmõ ÛŒ{Û?v¶YV¿äÃÒu6¶™ÎÙÀ8>nl³Cá¹\ÚÄ6ãùK§£ºV´Yy,±ÝÐfÌÅ©]r”ÚÂ6cÖg»T7¶Y¥Ð¹ÇpîÙƒmÆ>D³}ûÜL£ÏzfG¢-p3ÜðïòÇ}<7D>é>k=ýÉ\Øf'%¶¾·‘Íë5G&}ÜÈfxq=mcÐʈTŒÌ h3Í´ÐZ®ü h3 6³ÍpîS­<53>mÆe芫;ÛŒœy:Žq‡¶YRòOmõ ÛŒ{Û?v¶YV¿äÃÒu6¶™ÎÙÀ8>nl³Cá¹\ÚÄ6ãùK§£ºV´Yy,±ÝÐfÌÅ©]r”ÚÂ6cÖg»T7¶Y¥Ð¹ÇpîÙƒmÆ>D³}ûÜL£ÏzfG¢-p3ÜðïòÇ}<7D>é>k=ýÉ\Øf'%¶¾·‘Íë5G&}ÜÈfxq=mcÐʈTŒÌ h3Í´ÐZ®ü h3
?(89@œÁUø6ܬb üÏÀÍØG4Ãä;ܬbW\ÛàflýëÆ6Ó<36>É¡ml3Rˆó?Ã6;Î<1C>(vcI”`®Fw¸™[á|=ƒYa„j7¸uh®mp³¤Ž®mp3° æÖ{‡·vm…El)]ÙØfxlÖÁ/ÛØf¬B™ïä<C3AF>m¦ÅKɵ<C389>m†§¹<C2A7>ù<EFBFBD>mf=ƒ{¶²Í&¢Ó<C2A2>m†ç•ûÅÇ<C385>m6óÄv¶ÙÌ»±ÍHƒ_¶±Í®Üf­w_Ùf59ÝS«¾W¶Ùµ­ô„m†±wü²<C3BC>m ?(89@œÁUø6ܬb üÏÀÍØG4Ãä;ܬbW\ÛàflýëÆ6Ó<36>É¡ml3Rˆó?Ã6;Î<1C>(vcI”`®Fw¸™[á|=ƒYa„j7¸uh®mp³¤Ž®mp3° æÖ{‡·vm…El)]ÙØfxlÖÁ/ÛØf¬B™ïä<C3AF>m¦ÅKɵ<C389>m†§¹<C2A7>ù<EFBFBD>mf=ƒ{¶²Í&¢Ó<C2A2>m†ç•ûÅÇ<C385>m6óÄv¶ÙÌ»±ÍHƒ_¶±Í®Üf­w_Ùf59ÝS«¾W¶Ùµ­ô„m†±wü²<C3BC>m
É<0w¶ÙÁî¤}ëÆ6ƒ ågpc%Œ¶£kÛ,ePnd3 —SÔ³<C394>KÝÈf<C388>%»«;Ùì€0mô¡ÙL:8§ÜÀfYrf²zQ¾nI¬w°ÙÑ”û6£ld<D;Ø  pºèe ØŒyïpn`3¬>c<´lv`ˆdVØ7²YVw}'›áìNë7²®<>ή¸ÍøW†T¿“ÍfRÕN6üát É<0w¶ÙÁî¤}ëÆ6ƒ ågpc%Œ¶£kÛ,ePnd3 —SÔ³<C394>KÝÈf<C388>%»«;Ùì€0mô¡ÙL:8§ÜÀfYrf²zQ¾nI¬w°ÙÑ”û6£ld<D;Ø  pºèe ØŒyïpn`3¬>c<´lv`ˆdVØ7²YVw}'›áìNë7²®<>ή¸ÍøW†T¿“ÍfRÕN6üát
ÙN6Ë@Ûãw#âs²YÖJ×A([Éf™|G31¾Í˜×üœlÆ Â¸[±ÞIßÈf"Åâ×z'a\n.$w²î¬þµl†qoµ÷õ6ÃÏ.ySv° ËÙ¸ƒÍd4Éi0ÏV®™¼é§Mwï\3%³Ü¹s͸õ‡¶rÍÈÌrˆÈ<CB86>kÆÂ<C386>»öï\³HY‰™-߸flã<e+× ×³žºqÍX:àµsÍ ŸF{Þo\3,oB첕kvYhߨf”Ô%?ÚN5,t×A<[©f<C2A9><ˆg+Õ,¨º}o£šIgT-w£šWoæN5 ˜çåJ[©f!š¹Ï<C2B9>i38¾kcšEú»3?eš±u¿;ÓŒ<C393>ÃlQîÆ4¸}¦2”…i&³£v¹3Í̧Ñ<C2A7>¶1ÍâI~wß[˜fòxY¢ß×<C39F>iƺ ®-P³ˆ9b/ã{ ÔŒ1FîœoƒšÉp-Ó6gñmP3jí|²tƒšáwœ mƒšaiqæ†4Lcú%-H3FÚlû<6C>•ÔùŸaša?‘œµCÍ$Tn¶þy§šUJuœTµSÍ(ñ{£š±þhãë5#gÇj^ïP³r¹cÝ¡fÒŽ`«\~™oP3è6×>J>Ü f¶ÅN<C385>Û¡fÐà<C390>-L3zgÿÒŽ4“Q¨;mùÆ4cqج¿îL3ÒQlÑàÎ4Ã~¶·çL3"ób&Ú7¦™ô'½<>C[™f‰Š,xw¦YlýÔ¼<C394>i¯"á;Ó,Úh®ÚÎ4S[rënL3èc©>gš]µïíL3| ŸúÆ4X•JÚÂ4c5¡Äð”i†KÊ 'ìL3JÑ©tmaš§Óã©¶1Íô§£ ÙN6Ë@Ûãw#âs²YÖJ×A([Éf™|G31¾Í˜×üœlÆ Â¸[±ÞIßÈf"Åâ×z'a\n.$w²î¬þµl†qoµ÷õ6ÃÏ.ySv° ËÙ¸ƒÍd4Éi0ÏV®™¼é§Mwï\3%³Ü¹s͸õ‡¶rÍÈÌrˆÈ<CB86>kÆÂ<C386>»öï\³HY‰™-߸flã<e+× ×³žºqÍX:àµsÍ ŸF{Þo\3,oB첕kvYhߨf”Ô%?ÚN5,t×A<[©f<C2A9><ˆg+Õ,¨º}o£šIgT-w£šWoæN5 ˜çåJ[©f!š¹Ï<C2B9>i38¾kcšEú»3?eš±u¿;ÓŒ<C393>ÃlQîÆ4¸}¦2”…i&³£v¹3Í̧Ñ<C2A7>¶1ÍâI~wß[˜fòxY¢ß×<C39F>iƺ ®-P³ˆ9b/ã{ ÔŒ1FîœoƒšÉp-Ó6gñmP3jí|²tƒšáwœ mƒšaiqæ†4Lcú%-H3FÚlû<6C>•ÔùŸaša?‘œµCÍ$Tn¶þy§šUJuœTµSÍ(ñ{£š±þhãë5#gÇj^ïP³r¹cÝ¡fÒŽ`«\~™oP3è6×>J>Ü f¶ÅN<C385>Û¡fÐà<C390>-L3zgÿÒŽ4“Q¨;mùÆ4cqج¿îL3ÒQlÑàÎ4Ã~¶·çL3"ób&Ú7¦™ô'½<>C[™f‰Š,xw¦YlýÔ¼<C394>i¯"á;Ó,Úh®ÚÎ4S[rënL3èc©>gš]µïíL3| ŸúÆ4X•JÚÂ4c5¡Äð”i†KÊ 'ìL3JÑ©tmaš§Óã©¶1Íô§£
nÙÂ4c!¥ßí<C39F>i˜#ZÉü<C389>i&Ñ6 Ùµ…iÆ^P(ÎeÛ˜fòä[ nÙÂ4c!¥ßí<C39F>i˜#ZÉü<C389>i&Ñ6 Ùµ…iÆ^P(ÎeÛ˜fòä[
Ñ×<EFBFBD>i†Õiد Ñ×<EFBFBD>i†Õiد
j†ËYÎ<¡fa8À}Ý¡fd½W'²ìT3ºÓÐú€¡-T3lÂòà«íT3œ¨2rm¥šI¯Fˆk+Õ,“§nAÎ<41>jÔ"gh Õ,aÎ m¥š±7êƒÉ<C692>jÆý7Ë j†ËYÎ<¡fa8À}Ý¡fd½W'²ìT3ºÓÐú€¡-T3lÂòà«íT3œ¨2rm¥šI¯Fˆk+Õ,“§nAÎ<41>jÔ"gh Õ,aÎ m¥š±7êƒÉ<C692>jÆý7Ë
jFnVûg fì™'g¶íP3 jFnVûg fì™'g¶íP3
Ê>¾BÍtŒœé¡MP3\I8vÜ¡fd&Zzî×Î4Cº|á‰ÕÝ ­L34Â_ëŠW¦Úµ±²Aͨ9³õOךîök¡šáx+Õ <0C>é«kFQ%[Ö Ê>¾BÍtŒœé¡MP3\I8vÜ¡fd&Zzî×Î4Cº|á‰ÕÝ ­L34Â_ëŠW¦Úµ±²Aͨ9³õOךîök¡šáx+Õ <0C>é«kFQ%[Ö
¬X3-ØÉÙé 7G`|v¥W¬æŽÄ<C5BD>m[°fh¬dú¹/X3rÈO°fh Î<E28099>.[±fCŒúkä€V2zãš<C3A3>] ¬X3-ØÉÙé 7G`|v¥W¬æŽÄ<C5BD>m[°fh¬dú¹/X3rÈO°fh Î<E28099>.[±fCŒúkä€V2zãš<C3A3>]
 Óµq͘ԩQü×<C3BC>kv¸<C2B8>k<06>¨W‡Òm\3<©ã6clžÚÁf'ð¿nýÇ6S£V3‰¸<E280B0>ÍH|ÊfqÉc}ó¾ßÀf'õôf|<><¾Ò¸ƒÍ¨OIã©^Áḟš­¿ßÀf˜¿×LbshUƒ]¶pÍÈXÈNÙ¹f  Óµq͘ԩQü×<C3BC>kv¸<C2B8>k<06>¨W‡Òm\3<©ã6clžÚÁf'ð¿nýÇ6S£V3‰¸<E280B0>ÍH|ÊfqÉc}ó¾ßÀf'õôf|<><¾Ò¸ƒÍ¨OIã©^Áḟš­¿ßÀf˜¿×LbshUƒ]¶pÍÈXÈNÙ¹f
ût‡í\32W³/¹qÍZÃS­?åšáˆ<µ™kF=Ìé«¶;׌ÝÉÓæ ût‡í\32W³/¹qÍZÃS­?åšáˆ<µ™kF=Ìé«¶;׌ÝÉÓæ
;×L¢3†àêÚÂ5ãz<C2A3>´sÍZÒD÷îÚ6kQÑÖOÁfTó ;×L¢3†àêÚÂ5ãz<C2A3>´sÍZÒD÷îÚ6kQÑÖOÁfTó
TÒŽ6«Äy²¡ÍHŽòõÚÌmÈmh3 Ä[ò›·¡Í*Eô²…lV™zD§md³ÉtçF6«xÙê<>%,®-d³á«ûu•±9óu›‘çÔ<ÝÁf¥±ÂQ¢l›Á;:¬„ë6+lõW‡—m`3 Åšg~ÞÀf,PŸÎÂÝÁf…ÚŸõï`3ÁÙ5.Ó6Óå¼ng°ƒÍÈu´Ü…lÆ¢Îaù17°™®6'<27>m`3ퟭÈûF6;t³ÝIcÙl`Ǿî`3¼H1tmQŸ´ºƒÍ2Vß¾ƒÍu³ñë6ËÃÝåë6c#<23>0ܵl&=-n ‡k Ø,3šw=íd³üÈf¾ÍäÅ%Gä)ÙŒèñÈÎþZÉf\Õî½þN6KXm×K[Èf¬,Sí¤ÚF6#1'+Ýr!Šk ÚŒ5Mj²\[ÐfÉWiTÛÐf3Q~G% žÚõ½mÆ„"$¿µڌڬæômFê`óm<C3B3>mFŽ^óÞ}G±æÝ|ìÝÑfõ¢£<C2A2>ï-h³HI±qˆnh³hP­ìÚ6ï¬va_w´ÓU­Mÿº£Í"è§õ·;ÛL¢#YÂжYÀÓÏ þol3‰9Žìèø<C3A8>m†3»</‡k ÛÌíÜÙfxoE_ÔÙÙfx4Ët¾ÑÍp<é¾ ¾ÓÍ(f=­ìF7£Ç€éÚB7 ¸W4[ßèf‡•ïlt3ì+ä TÒŽ6«Äy²¡ÍHŽòõÚÌmÈmh3 Ä[ò›·¡Í*Eô²…lV™zD§md³ÉtçF6«xÙê<>%,®-d³á«ûu•±9óu›‘çÔ<ÝÁf¥±ÂQ¢l›Á;:¬„ë6+lõW‡—m`3 Åšg~ÞÀf,PŸÎÂÝÁf…ÚŸõï`3ÁÙ5.Ó6Óå¼ng°ƒÍÈu´Ü…lÆ¢Îaù17°™®6'<27>m`3ퟭÈûF6;t³ÝIcÙl`Ǿî`3¼H1tmQŸ´ºƒÍ2Vß¾ƒÍu³ñë6ËÃÝåë6c#<23>0ܵl&=-n ‡k Ø,3šw=íd³üÈf¾ÍäÅ%Gä)ÙŒèñÈÎþZÉf\Õî½þN6KXm×K[Èf¬,Sí¤ÚF6#1'+Ýr!Šk ÚŒ5Mj²\[ÐfÉWiTÛÐf3Q~G% žÚõ½mÆ„"$¿µڌڬæômFê`óm<C3B3>mFŽ^óÞ}G±æÝ|ìÝÑfõ¢£<C2A2>ï-h³HI±qˆnh³hP­ìÚ6ï¬va_w´ÓU­Mÿº£Í"è§õ·;ÛL¢#YÂжYÀÓÏ þol3‰9Žìèø<C3A8>m†3»</‡k ÛÌíÜÙfxoE_ÔÙÙfx4Ët¾ÑÍp<é¾ ¾ÓÍ(f=­ìF7£Ç€éÚB7 ¸W4[ßèf‡•ïlt3ì+ä
:ºr¥¡á9àß[èfº<66><C2BA>“9Hlt3ì™hÚbêL8CaFå'¾ΰ~ÏV²óµÎo :ºr¥¡á9àß[èfº<66><C2BA>“9Hlt3ì™hÚbêL8CaFå'¾ΰ~ÏV²óµÎo
e§.M„3$Ø»ªlBœ¥•»"Θ8H¼i¦Úâ Mf<4D>nhº"ÎHÛ¨Ä|OghV/òµÎØ*ax…®„3Üy´ôß´…p†v¨Q³ká,©óïáöÑ+á í èÅS ጼWÜ,ÎÐÔátÐÏ&Äà *TÓÄb×ZÔ…×&Ä™¦üŒŒ e§.M„3$Ø»ªlBœ¥•»"Θ8H¼i¦Úâ Mf<4D>nhº"ÎHÛ¨Ä|OghV/òµÎØ*ax…®„3Üy´ôß´…p†v¨Q³ká,©óïáöÑ+á í èÅS ጼWÜ,ÎÐÔátÐÏ&Äà *TÓÄb×ZÔ…×&Ä™¦üŒŒ
q†Ì`÷kgœQˆ<51>I]ÚÄ8CÉîx9C3c3×K524¸<34>ù q†Ì`÷kgœQˆ<51>I]ÚÄ8CÉîx9C3c3×K524¸<34>ù
9Kšwèî ä -aò] gIYAiœû9CSe<C2B5>œ%<25> UwB\!ghr™ºß¿ r†Âï•+ gT"]k]ä MÆ/ÇL­<4C>³¤Èß¼% ä,}zÉÄáÚ9K 9Kšwèî ä -aò] gIYAiœû9CSe<C2B5>œ%<25> UwB\!ghr™ºß¿ r†Âï•+ gT"]k]ä MÆ/ÇL­<4C>³¤Èß¼% ä,}zÉÄáÚ9K
6‰ß gê÷6ÖÏ6ÈÚ0ç[g*äf«ùâ,á¡+ÿ3¬ÃÊ8SMÆí2´‰qfZvFÓ 6‰ß gê÷6ÖÏ6ÈÚ0ç[g*äf«ùâ,á¡+ÿ3¬ÃÊ8SMÆí2´‰qfZvFÓ
9Óã<EFBFBD>5³F.”3ÕŠ²Ä¾vÊ™žœ.Óº6QÎô¢È<C2A2>:|k¡œéÅ”pÇ ãB9Ó2²Œ1<C592>kåLoÐY€¶PÎ<50>0í타6aÎÐx .:Ú„9ÓdlmÂœé“ °ÙN}Áœ©ßÎs͵ s¦oÎóZ0gö±M¤ÚÔŸß9KZ|jE.+åŒ÷<çv><3E>œ!á‡6AÎ4œPWb×&È™vU9Ø"ó9³.®;¥e…œ)/ˆÂÛæÚ9£»<C2A3>˜B <0C>Ù9ÓòVm¢kÈYzlþí<7F>³¤Îà­Ïõ 9Óã<EFBFBD>5³F.”3ÕŠ²Ä¾vÊ™žœ.Óº6QÎô¢È<C2A2>:|k¡œéÅ”pÇ ãB9Ó2²Œ1<C592>kåLoÐY€¶PÎ<50>0í타6aÎÐx .:Ú„9ÓdlmÂœé“ °ÙN}Áœ©ßÎs͵ s¦oÎóZ0gö±M¤ÚÔŸß9KZ|jE.+åŒ÷<çv><3E>œ!á‡6AÎ4œPWb×&È™vU9Ø"ó9³.®;¥e…œ)/ˆÂÛæÚ9£»<C2A3>˜B <0C>Ù9ÓòVm¢kÈYzlþí<7F>³¤Îà­Ïõ
9K 9K
W/©\!gI †<qwƒœ¥Çþ×s(³ sÆ@Šoš½&+æ,)3!ÙëŠ9Cê@šKæLC+ÅúÚ1g„<16>©¶`Î=d†z˜÷ôŠ9³Ü¼#0sÅœÉsÛÊ@™-˜ÙCÞ0g¬87 ß0g<30>—¹ ÙB9#•Z†ÒîÚB9cq§´s|o¦œ…áÓ÷uçœafˆÅ©k çŒþ9T‡™m ³ÐÍ__µ W/©\!gI †<qwƒœ¥Çþ×s(³ sÆ@Šoš½&+æ,)3!ÙëŠ9Cê@šKæLC+ÅúÚ1g„<16>©¶`Î=d†z˜÷ôŠ9³Ü¼#0sÅœÉsÛÊ@™-˜ÙCÞ0g¬87 ß0g<30>—¹ ÙB9#•Z†ÒîÚB9cq§´s|o¦œ…áÓ÷uçœafˆÅ©k çŒþ9T‡™m ³ÐÍ__µ
t;<3B>k'<27>ˆOg®m¤3r„‡/õŽ:c¿­Ç8pf ê,²YœQ·¢ÎHýÍfÚuC<75>á[@7 Ú†:ó|àÌÔYÂÆÙ‡§uF>•ºˆÝQg,%[+¾¡Î¹¿Î ÜYgéô Î×<C38E>ufVUNÒÚXgl+¸çûŽ:ËðmP³£Î <>ÌÓyG<79>ñ<7í¨3¨q¡ÛtC<74>±ÒåÈ¥uv—I}`ÐfÔóÏ”Ï<E2809D>,[PgØB³eîÚŠ: ÁÀ,_wÔçje wÔÙqQ ï¤3æåNÛIg”ÿ{µ†-º¶<C2BA>΀iS[âÚJ:á1ÿ t;<3B>k'<27>ˆOg®m¤3r„‡/õŽ:c¿­Ç8pf ê,²YœQ·¢ÎHýÍfÚuC<75>á[@7 Ú†:ó|àÌÔYÂÆÙ‡§uF>•ºˆÝQg,%[+¾¡Î¹¿Î ÜYgéô Î×<C38E>ufVUNÒÚXgl+¸çûŽ:ËðmP³£Î <>ÌÓyG<79>ñ<7í¨3¨q¡ÛtC<74>±ÒåÈ¥uv—I}`ÐfÔóÏ”Ï<E2809D>,[PgØB³eîÚŠ: ÁÀ,_wÔçje wÔÙqQ ï¤3æåNÛIg”ÿ{µ†-º¶<C2BA>΀iS[âÚJ:á1ÿ
uFú¿“@VÔY“YÄ1Øië #|çBí¨3ž˜FÅ¥?ë;êŒ.Ggðm¨3"Ùn…n7Ô³ü³X—³£ÎÈ ¶•¹£ÎºòBÍl!<21>a“Ö<E2809C>깓ÎÈônÞ¬¤3v¥éå éŒ uFú¿“@VÔY“YÄ1Øië #|çBí¨3ž˜FÅ¥?ë;êŒ.Ggðm¨3"Ùn…n7Ô³ü³X—³£ÎÈ ¶•¹£ÎºòBÍl!<21>a“Ö<E2809C>깓ÎÈônÞ¬¤3v¥éå éŒ
W W
<EFBFBD>ÎÔ¯(å0¤ t¦é):Ðkáœi²QgtíÁ9³´"T—&Ιf¾Õ˜<C395>^µpÎ,ûºÛŠèÆ9# ×ã çŒP<C592>ª”gœ3LîätŽÎÊ9c c =ᜑ—)³4máœÊAÌNר8g¤ÆzQÓ <EFBFBD>ÎÔ¯(å0¤ t¦é):Ðkáœi²QgtíÁ9³´"T—&Ιf¾Õ˜<C395>^µpÎ,ûºÛŠèÆ9# ×ã çŒP<C592>ª”gœ3LîätŽÎÊ9c c =ᜑ—)³4máœÊAÌNר8g¤ÆzQÓ
t_' :#SvܺtFjy,uàÑÐY%{ÓiÔ;è hy„7Ò;ÕÁQ ;錚 t_' :#SvܺtFjy,uàÑÐY%{ÓiÔ;è hy„7Ò;ÕÁQ ;錚
Íùº“ÎÎzy£ÜHgäR<EFBFBD>©<EFBFBD>ï-¤3öT¿Ê é¬à<C2AC>sQÍWÒ™.ÇRñ=´‰tFþ3U¾6¤­¤3-1º˜+éŒýGyú¬¦n#<23><>]<5D>ž=;k!<21>ÅXã`çÚD:SÓC ¶œ!6£Î Íùº“ÎÎzy£ÜHgäR<EFBFBD>©<EFBFBD>ï-¤3öT¿Ê é¬à<C2AC>sQÍWÒ™.ÇRñ=´‰tFþ3U¾6¤­¤3-1º˜+éŒýGyú¬¦n#<23><>]<5D>ž=;k!<21>ÅXã`çÚD:SÓC ¶œ!6£Î
]ÎËêŒå.úÌNbC<62>eŠ+ë3Ô™VI ]ÎËêŒå.úÌNbC<62>eŠ+ë3Ô™VI
¶âJ:Ó²P¶#†6ÎÈb¶ä\²…tôH½ ÎlB<6C>Q¬SX5ή=PglÊ^fê¬è^ò€ ­¨3|²í‘|í¨3ÖË<C396>a[¼¡Îp´«p™»kê¬jæZóYñŠ:«êÏ×¼CZQgÌ¿ ¶âJ:Ó²P¶#†6ÎÈb¶ä\²…tôH½ ÎlB<6C>Q¬SX5ή=PglÊ^fê¬è^ò€ ­¨3|²í‘|í¨3ÖË<C396>a[¼¡Îp´«p™»kê¬jæZóYñŠ:«êÏ×¼CZQgÌ¿
™· ÎX <58>gvfÌÊ:#%¾ñúu×~Êäg§ñ½ë Ö†nÙ×Í¢ÉÖý­¬3¶ºÁq¾vÖy"ÒsXëÆ:c;hÕk쬪?ç1`<60> ì¬jfE<66>Öv†U%K­°3€;©y‡´ÀÎèœ)EZ6Áθ°‡OœVÔØ$…b Ú„:£vë$Ûä ë¬)rÖ)•+êŒ9°Œû±¡Î¨¨¤Œ¶?A<>±´ËÛyaШ3Ì4åÈþú¬¨3¦Õrô`ÜŠ:kúR$ÛKÙPg5™éWsmB<6D>Ñ)cYãMYPg<QJ؉®M¨³“\‰Ä,êXQgøk³"ãp®u¦îÀˆ<A<>_—Ùõ©®M¨3RƒHApØ‚:;5 ½øx±ÂÎX6 ¶3<C2B6>ïM°³Ss…mçm°3ÊÉe± Ä ™· ÎX <58>gvfÌÊ:#%¾ñúu×~Êäg§ñ½ë Ö†nÙ×Í¢ÉÖý­¬3¶ºÁq¾vÖy"ÒsXëÆ:c;hÕk쬪?ç1`<60> ì¬jfE<66>Öv†U%K­°3€;©y‡´ÀÎèœ)EZ6Áθ°‡OœVÔØ$…b Ú„:£vë$Ûä ë¬)rÖ)•+êŒ9°Œû±¡Î¨¨¤Œ¶?A<>±´ËÛyaШ3Ì4åÈþú¬¨3¦Õrô`ÜŠ:kúR$ÛKÙPg5™éWsmB<6D>Ñ)cYãMYPg<QJ؉®M¨³“\‰Ä,êXQgøk³"ãp®u¦îÀˆ<A<>_—Ùõ©®M¨3RƒHApØ‚:;5 ½øx±ÂÎX6 ¶3<C2B6>ïM°³Ss…mçm°3ÊÉe± Ä
;éçôêÒÄ:Ã(²Öÿ„uÆ:zg)ÖÀ…ufƒÕqœCXgJ¾<4A>ɨoa<6F>™É$„O´•uÖ5=âôÈ•uÆš†qÞÆ:Ãïß9_ëLIG÷ÓµëL—L(³sXXgT—vO²øÚXgT±ð:û<>¾°ÎXjÁ¤ÓYT ë,é ±bm®v4=?2¨»vÁÎt…Æ<\zÀΨŒK4X% ì cuÏ!píA;ce‡3óâZqgTÔ°æî K îŒUŸÀTÐoÑŒ;£x6Z*‡kÜ™âŒX´S˜hgÀŒHQg0ÓΔf$!×™Ç×´3êwè ;éçôêÒÄ:Ã(²Öÿ„uÆ:zg)ÖÀ…ufƒÕqœCXgJ¾<4A>ɨoa<6F>™É$„O´•uÖ5=âôÈ•uÆš†qÞÆ:Ãïß9_ëLIG÷ÓµëL—L(³sXXgT—vO²øÚXgT±ð:û<>¾°ÎXjÁ¤ÓYT ë,é ±bm®v4=?2¨»vÁÎt…Æ<\zÀΨŒK4X% ì cuÏ!píA;ce‡3óâZqgTÔ°æî K îŒUŸÀTÐoÑŒ;£x6Z*‡kÜ™âŒX´S˜hgÀŒHQg0ÓΔf$!×™Ç×´3êwè
¸ÐÎXcbŠU<EFBFBD> 6óΨíÁE9ÁB{ðΰ†g^-„Xxg,NAÀtâÂ;Óš Î!kïŒu+`<60>—°òέ‡öà<C3B6>%]Æbqo°Ð¼³¤ý0¿º•wöÿ3÷6»²ëÊzeÿ>Åz/‹â?`(WÙܬ:=Ã]Û<>¼­z bD%RÒYÛsÎÜY>·q÷ÎoçLfJ"ƒÁˆoÐf$óææPñ…wF»18¦êL©™wFž #®fÛµx¶+’»ß+ÌÀ3RhÙ)f¯ ðŒÎ% «»Íœ ðŒô™ÒÍ~xF·¶„=^ʱÏèxÂHÈP ðLÓrÃÙçÂ;£bï0¸¹ðÎØHP?3¤ wÔ­bĬw¦µH¡9ëzÅ<7A> WMñ»6áÎ2<C38E>tP—pgø2ð 6­¸3¼Z;—¡»6áÎ0—™~ó±,¸3CLßí8hå<68>eͱfóÁ¼ÏŠ­àb­Ú<Ãô¿jâ̵ xV´Â¥¥ð<ƒüÜ( ¸ÐÎXcbŠU<EFBFBD> 6óΨíÁE9ÁB{ðΰ†g^-„Xxg,NAÀtâÂ;Óš Î!kïŒu+`<60>—°òέ‡öà<C3B6>%]Æbqo°Ð¼³¤ý0¿º•wöÿóv?;¶I~ß÷zŠón1“I2 ,[à­ggx+yÁYùýç7"’Œ<1E>|«n ³˜îŠ®[¬:çðOfÄïØÑ8o.†ŠïŒqc8¦ÃL)ï<>±NFW×ǵžU!¹<>Ýž<xÆÚfŠÙ•À3&—¬>õÌÀ3×X)]ôÏÀ3¦µÇm<C387>µrDðŒ‰'‚„
<#Ê+´òÚ<#cmy"žávNƒ—eùWâö$nÄ3€•<E282AC>3ÜâÚD<#cçVh+ñŒŠm™®È3,Éä^µsû òŒö˜´½oAžá­™š<E284A2>C<43>g<EFBFBD> è“vúÕ<#¦iÇ^bEžñ²%u<Ù‚<kˆ%·c¸ ÏØ¼fÀR6y¦I×axAžq^H<19>Íþ+òŒ‚¯U[˜g]'çæÏÊÂ<£†CŸâÊ„<£ŒSù?*-Ä3l }z]ˆgôÎ5£¯¹vÏ¢Zóvß-,À3Ð ¤b^¿ÏHþÊCHŽk'ðŒž;0(“ÍÀ³¸ý¶äˆ%ºà™b‰(`¶üË<#g¼¹kC;<3B>gŠ%grÀÉfà™b‰Úîr+ðL±DZE×NàYTó<54>c¢^€gÊ%ÒMõîÚžišy& à™,ËÍdŸä<C5B8>ѱwÜ$ïŒ úgfÉqgMÒ*ê³w&½H¥u¹3nÐYâ·šãÎ6&éP—¾pgä2ðôD¹3²ZO^†ÓjŽ;#|œé;À<E28093>ñ1$ô]·ƒ¢w¶Éë¦9˜ <Û¥m…ðŒÐÿCάæÀ³]:\z+_À3äp£6å2žq—·3Ê;14žq'ǵåxFÚ9^ºÊÅ3â9hH\¾ˆg€•…=ÜÝjN<c%F÷­¨EñŒ[(Ëtó0gD<44>÷ªîÛ'òŒñ˜ƒ¹iý¾@ž‘-+5“CsärsÒ¦_òŒ{š~?KDòŒ? <20>¤Æ“ò¬ Ö,Ž!g<¼nÀRz,<2C><“EטÈ3ö i#г$ÏhxÑûk©ó씓s·ÏJ0Ïè…aÓg·Š#ÏhãÿGJA<#¶ÐÎAWϘ<C38F>몯YíÏV‰æ=íi!€gÐ ^À3LJ<C387>)«=à3w0(vOæÁ³uù‡.ŽèBWÏ„%¢<>Y×_xÆšq¹ë³ö€gÂ<12>ÏäÄÉ<x&,Q¯!Á3a‰äÖjµÚž­þqŸ¨x&.<TW«MðLÖ¡9Ï´YyÀ3ÆÿÈ
åžÑþ‡o µî­À3rÔãn{]€gÀ#ÀT9ižEλ6Ô•š<E280A2>gJØv7JZ<4A>gä¶á…9g!ž<><C5BE> ã·™)ÚL<ZT.Ï<>s&žE-Öݬ&ažÑm¸³D˜öB<n÷\;‰gP‰ÜÈúuž%¢jȲ¬+ð,*%fðsWàYT?‰eü<>g´­xFš=KɵxÿÂlVk'ñŒ<‘µ›õ-Ä3Z1Uä²™xµ«˜:·îÚI<ƒœ±Ÿ?Ë <#uï;%×P<>ɰ|žÑ3IatÙ <#­/ß/8©ež©ûòÜòqžáoIC€ƒààçÕÕ[Ä/¼3Vyvݰså<73>aÀÁÙ<C381>ï­¼3œ Ôѽž±F=ßmWÏÀ#`ªŒA
Ýúòuå<EFBFBD>QèHõ¢<EFBFBD> VÞYÓzÂaq¸òÎXg`Í›ÿäÊ;£}sÃF|å<>QÀ…¶ù ¯¼3ìZ¢¹÷½.¼3äLî1º4ÏrX¯À3n{ÛÂ;Sä-»ãXxg,ývâÚÄ;ƒ{@­¡Y醙w´¢¹·Œ àÙÊ~×A­¨”ÏD%EðŒµm¼03qx;ÁŠß¢¡h^<[¥©||ì0½x¶J³î¢= <cÚ°r‰Ðí ž<>Uœ]÷¬öˆg¨Dd}%𠔈®!]e<>àÙ*JÌôs#x¶JÄ߸—±?˜ÏaäIPã¶"xÆ2{SKÉjx†¡1+Íj<C38D><wÖÖÄ3F Ur™ÏV™*¦Ïí´Ú#ž!gÔçÏâÁ3îíIÉjxªáËxÆÌ$S„«d<cYü~Ť–žIúòÒ,ò1gä[2`\ÏØ¯>lD<ygÜ´ŽÏ®vFïŒön4x/zg$Zô啽3é^T˜ zg]ú gÄaôθÎ`ÍkþdôÎß\Ö#½3¸ˆÀÖ|áè<C3A1>ײjzß•¼3nW+9ðLp<4C>;ê8g\Jx è·ïLR<4C>—ÍÿKðθôëfˆÕœw†{@¯¡Féï<>5éhÞwŒ-Þ;“M<E2809C>~‡;ç<>Á<EFBFBD>Ìε+yg"1£i/ž÷ÎT&"La:i<>w&2K<>úþ Þ™ÈDuYEïLFPmÉùJÞû$LØi xgBÝ©9Á;k2ùÍúÂi¥{œ ™ˆ<E284A2>ÏÄê<xÆþÊ ¾x†|B^<5E>^£xÆX«¤$­S5{Ä3Ý|™Wû(žµõ†–®ž!­<>¢ú"ñ š¨2\¬Á¢ž<c¹Ó®<C393>ì<EFBFBD><cËf)ýXÌó䃲'GçdÍò¬IÐS“ÁÏ+g"­ŒwUÕóJ Ï'ãïn1Ü<31><k<ë«ÝÌDòLfl‰Ò°ý`ž±
3ïL5Úaî¸Q¹öºðΔLD<4C>¦_¼™wfd"Ì'íä<C3AD>)™ˆT§Ý ïLÉDû0²ZygÚê)ç×…wÆ9 ]> TíYëJæLKá¤Zí1Ϙ¿]$"eÖó Âe^Ë®dž5îÀz“ØÅ+™g<E284A2>@ Ía²Úcž5i|ðxÙcž±¹Ä8¬fïDô ú…¨fícè3½müËc
,¼3E®9 ï,iç7ù…îÒÑΈÇgÀêfàç+Ãøu!žA>Á¯ÀÖÕxF[«º$ÅA5;‰gvø2Vû•xâZz]€g<E282AC>‰"HQ» ñ 4ÑNs±ÎÈ3šaé;mfȾ Ï8²ÙB«³Äfä<19>²<EFBFBD>Š£>°f'ò,©ÑSÒÆÏ×y¦¤¹«vWäYâàD~w·á^<5E>g‰½~<7E>̬È3í±ÅJÊÌöæÇ@»ïµ^映„“ݵ“yFÿí¦)C;™g \ÆZöº0ÏXKj»øº0ÏæÃäÚÉ<KZø0ÃËNæ‡K´Ãš÷Î èYÓF]íßôèó¾´ãvM²è»R¤}YzDϳ9Ê
=ýU³Õ±­Ð3zz“|‚û±.гdÆýoÎÐ3ú})Çmæd¿@Ï8•ÂíËíÐWèYÕ6 Ú=Sï@óg~]©gš±<C5A1>¯à¼·…zF£°6î®MÔ³¦l)m}]©g,f'÷p¥žáæ/¨?Ñ+õ¬ë±+Uo®MÔ3fq{¨Ðêµ…<1B>ÐC:©gšÌ¦ ÁëJ=S@ ìSm¦ž/ª<12>/5SÏ_ä]¡¯ õLñEÁŠi_êdpZç/Ô3ZÕÐÚ|jgêçjšX6³à™zF3óF.È<êYz>æ¡Î=£Ï¹ƒb¶éc<C3A9>žqG<>«õ<C2AB>®Ð3`9ÊãrLÜ Z¯<>,"[ gÕU‚ÂÐèíÑÏÒ<C38F>ëÒ¯`<60>š¢ì„ž<E2809E>Øáȵ@´zFç´<[»sìYÖúý¡];±gàwò /;¡gYÛj@Ãï®<C3AF>гL;ªü̃ÏÐ3m·®$>Úì€žé¡ ' þgê™2{vPàÙµ“zF'6©h4«…zƉa$ÁцvRÏlTšÓ½è‡‰4l8So<53>žÁú‰n¨õº@Ïhà6?K; gœ3FšBÒ€—<E282AC>г\æ<C3A6>$ög[»CÏ`Éý´Ê =£ñ{§ý˹S3ôŒóI&»< ó ~<7E>²Ê¹53Ïò: /̳Ì$ìWòuežU ¢9ôL²5ŸùÊꙬXŒ_Á¼· ž1(,ÃÕjN=ëbKɰì•Õ3.f<>{Õ3ÒüÇ
ì)ÕêYUSGíz]©gøÄÁµ‰zƱŒVÖ ¼Y8ÑgMÓhͪ.è3+ׄÌ}Æ]•ÂniÝ ú¬ã?RJno6¡Ïº<11>EfEŸuÍÔ•Í1x ú s"ò<ÛúŒ:¹ jÈ´}V65éŽ)\Ðg´¯'çP¼.è3Y3{ËŒ>+Zc]ô­íùÛ6°h'úŒ#ز<C398>}FÛ»¬35X0½ ÏŒÄ¤o«ÓÂ>ŒD¥Bp:ØÌ>£%¾áK¼°Ï8»¥}Û7I3û ¶RÃR® ,ÚÉ>+Ŕٳ¾°Ï ¨}¢£zvʶ+]oVsêgqýPQ ê½… ƒÐ³ô¨g'šÌ"+«gnû¤æÕ3ð"P•Õ|)¯ž _dS¡WRÏ„/*ÚL{%õ Ù¦<ÑùA=cdY­5§Ö«gì«É²†{õŒaæ…µ ÍHêÙVdÌnuzÆœó Ŭ§<C2AC>€ž±GŸ«Î<C2AB> ,G<.câ<zÆ ôøx•¦wd=c«î` ¨ÌÚ<C38C>ž1=îg™ÆµÒ<C2B5>ž±‰·<13>ºM¢ìAÏ vØrí7ˆö gLN<4C>ÏV5×1°gô·ÈÚj{¿³=xÙƒžm2V
Ųpfý}3ûLÁK²7Øm&^ØgEk%G<>ÿÊ>+š Þ|¹²ÏŠõ¿6§°Ìì³µØ<C2B5>âö™“úè“\ÙgÚ~OŽÅ˜ ûŒ£â´›[ÚëÂ>å¤Ý6%-ð3Zó©¢Û,|Xàg#utÆ?£m¿òY :ÃÏŠ–Öî[À~KIvýžÄ[ág4ôS×ýÚÍð³bˆ<62>`ت~¦(%ìÿlBZàgôúSEÛýÏð3Î¥#Õ«åágp£=&™;ág¸ÐôæÐº‰}¦çÕ2K6 GVö¸ïØ¢¼ÂÏêJ[àg”ÈZiÖÈøîQÀäíöZég<C3A9>Zlkx]égíô¨x]ég„¸»mC^Wúõ<>ùx"Wú™ZãPãÖ\ègœ/È”â霕~Fß™,ŽÅ`+þŒ5¼«wžk'þ “lRsŒÙŒ?ƒÃD#],wü‡‡.ø3ü _­ö gã¨ãÏl÷à=“q냅ÏIÝè™l
sÇŸUˆà£œ];ñg¬Ë ²“`ÿ¢WÏÄì©PàÕõŒIlV¤VÕ¬zÆŽáÊGŸµG=Øhï¦{ôŒÍD6ÌÔ èÖÏj<C38F>ZWBÏàÖ<›‰¥ÝèûŒ+C!mâez¶í~$$¢gìA¶ô7z†4ÞOËn‡âÑ3¿+ã_æNyôŒýIN(úòó ?H¬2#·¼y¶Å“p0Ï6NÂöJ^Ù<;äP°§¤Ô³CBeZêÊê9BŠ8XÍ©glËHgÍäÍÊCŸuYFëÚí<C39A>è3m×™Bf¤ÏxWµRuY7Ñg'ù#û¾õÉ9úì”-¢y‰ôÙ)+uûb ^ Ï'b<>gùBŸÑB7ÞÇ1É´‡>Û 9<>) ôãëÍŠ+Ñgl²n<Cرxúl—æðu7Ö%ÐgŒ¶s“¿,“E{è3¶`÷eîqDúŒ±÷q<C3B7>9ŠÞLúL`$Núzu
œt±àÏ€_ßF¾.ø³ª‡¿TŠíÄŸi¢äÅ þ £ƒÞÆ6é þŒyÂèäãœñgÈkí¬ƒôfüYU¸=Œ¡<C592>ø³ª<EFBFBD> ö0<EFBFBD>
8×NüYÕ@”î2{ߌ?«Ö¹½YWËŠ?Ã!Av3»Oþ¬jÑ-gº¦Ìü3Ntïød»ЪVŠìu! U:SYqíiXhUiÅ%ÛÑéJ@ÃX!bfkËáB@ãü?»ý_šÓ<C5A1>üÐg! Õ¼Â¤N{a «f/Rþ­ í$ aÇÐ`®T—Nn  ØwhT Åt0oŸ1ì3—8ØgìÝ2¾mIÞ>ÃVêDÊí“E{ì³<C3AC>bÚŒô³ì³<C3AC>fYœYû>oŸ ¼4ž
ÈÝ—ýIXh85”Í\P^W­Ûj» ÿŒ&XnÃ|çŸ)÷‹ÓùàÒÄ?SRfîw^ùg<C3B9>Y¿ œìÊ?kjƒ¿9AoåŸÑ€T<E282AC>é{åŸQeÔw=Ö{]hÀŒÜ‰ìu 1Ã¥\÷©vÐt<74>U耜M´®dN·½Ð¨ªv=^¤(yàÕíu á 1mƒÕ T<02>[v 5M•bã`¿Ê @3׈2 <00>Êú­Ìêl QÚ°3iÚIË@ÃQ¢°q.´¦µ(°Ê „Î~²…œ¬SõmÐÂ?NO~ÎÂ?ƒ0£2váŸQqvq®ü3Àef“];ùg-žÓÁëÂ?kêf¦Ñ²k'ÿ¬é¢Ó`óºðÏç1ÅÂ?S¨>TךùgjS!;áZîü3l*°]s|åÂ?£CŸê\¸™Ö(<>ç)XJc aa<61>g=#úºÐHÚ¶MÙ ªž‰ƒ}¶K¯äœñ<C593>öÙ.Ë!ņ/£}¶ëük7…ÅÛgû*Íî4ÇXé¶ÏDL:çœd´Ïdüž55ƒ}ÆVq«šv%û ÊI¦'ô”ð3Fóé¢[ôö!àgl#ƒŠ<1A>ð3Æöþ@z#êñ³]Z <0B>Ó=~†¥4žúm/âg ôÓ×±Úkçñ³]‰<>¢lUÀÏ„R"þOOH?cÖŸ.ÚÓ^r<>Ÿ±/½Ò½j(ŸÇÏp£3&†Ì=ø) ½Zçì3Ù¯gÉ®·#Ñ>cˆ™ô½(GüìˆrXÀÏh×J<C397>FNøéQ`òúöŠúY§[‡®¬Ÿõ'£âÊú·¸UC®¬ŸÑÿ¸ÝŸÈ¨ŸI4=nÝjN?caœRl9'êgÌ<67><C38C>ã® `~JvžÕþ †i<´nŒ™çÏp˜¤[÷7ÄÄ©ÇðÐÀŸW ?;!Gy³Úß±±>ÞÐŤÀŸ<C380>_{Œ¼vÈæ/<2F>â³öðg M´¼˜!ø3vx}HüòÜF7;NÏŸ±!/½³éyþìÜþì<C3BE>IIŠÕþì<C3BE>Q¦Ëôû<vèäö¢S-?#!a<ÍT;
@+úCt<43>VÿrðGl Ñ~EŽ(»4ñÏ(Á•Ýn³¹eåŸQ<51>Y=ë+ÿŒ8²ÜWþÿ!5Çì-ü3:³°ìñ¯·ðÏ(ÐE 8þì<EFBFBD>¦[ötµâý3'¦wìd´C:E• »€v0™ÊW?
C;ùg$7 ¤Œà´ðÏ0mʃòs ÑY"7ˆ½€Æä"<22>}iC; h¸bÈʨ²×…€ÖµRO\; hTnT‰4=™ ­“¼—g½œ³<03>¦Ÿr<C5B8>>0g' A@;D+Þ7Ý:<3A>Á
ÃŒ¾[µßë‚@Ã0£X£¥j3­k¿¤U¾.4-ê<>©`;´<13>Ƈ“k¶Ã<15>ƇWVDË AãÃi>íΡ› h|v<l¯V +a¶z9 ûÿÛ®oÿ+ h¦;Ù¦OÐŽ-bR<62>€Fc@=K™t•мXòïû¬=q så°Ò Æ 7(ú»y<00>®<EFBFBD>ñîÛì“4öESP®  ÿ<>Çj} ‚Æ,oÃí퟉ûÅî|±óÏDÊÜNÃ<4E>£Ö9ëï““<E2809C>þY—üŽèŸ1€tܧïèŸÑetVÙÖ»2€fdIdWÐ8õí¨7©öhò|OTèD΀vŠÌiq èÐ×ãJRÔøÀKÛ•4r!ÜcPÐè^ x¾e=€Öe©”ý«xMS#ö¹P4:˜·Ò¨³ ÑÚP9iêNKÐH”ØAô8€Ö¥«lÂi€FÛ<08>þÉNvÒõ­7@Á?'[?'øgS•«Â°Á?£%â™âŒþp™Æä­V{ü³¾>§ƒ+ùg]ÒÌänÙj<C399>Öå¢Ó°¹ÖéÈx¶)9T†kyÿLb*Æ“ð±¿ý3b*ˆ]3¾2øgôR°és˜ çý³NÄø<!ÙªgÐȰ˜K WÐXdi[Ê"€¶Ëâ´{<7B> ñ_ÚVì#4ƯX#Ú¬äü3ZpÇÓn×sKôÏhÁ ,A?ëÑ?ã>‘¶=¹GÿŒÿ!+jÆìÿŒÉ,"{ì× þ
^†~:¿Pк9HnaÀÓNåü\ÉfㇽÐÙ AëÄ¥ZH7ÞwBÐWb³åy<C3A5> é¸8*°¨d<C2A8> e%xæñ ºTˬ=þ‹‡ R*8ÿŒÐ¦m*? @c²d¼Aì×'—qc¿÷Y{4R1Æ•Q²+ h§têÉðÕ<01>Î<EFBFBD>cÜiýdídñ~|ÖÏÛ9» 4ù÷i×9'söhfœU»ý®D ˜±ë ¥Ô<<3C>vʼ¤v^‰@“¦Žq*XîÚC ñÃYkÖ ÃH ñîˆv,Aã‡3|zšCç4~özÇ^E<05>,
.åHy¬4ΫÝ6öu¥ ²ª{°ÆÑ <05>…•ÛÔ6X+<05>r<EFBFBD>c_!h•ûèØ¸¬4\¢¨^tPÖAã,€ç5´_7Í,)îÑ!a <04>èl ±) ÚAûëAëÚ|Ö²>VZçlŒFŽMM8öÝŠCšZp<5A>s.ÈŒ@S.k öiM=8rüØ<05>†—ÆN°ìã}Mé[¤ÿlK½ ÐÔƒc›ã…€¦lW<6C>\5ÐÐà“÷–Æû +¼~]hXiÈsŽYMÿu! ©ÇÆ‚µrÚA@C£Vm·TÖB@ÃJƒCb7ñ\hJæ:Y<>šBq¢V Þh”‡˜?æ¯+-<03>(¥8wlA ±×ÍN>.4Z[XUý",4¼ãÍâá× n mw>(h§&H.eâi®¦g〠ÑðÁŠC=&tö h'÷¥ÒH7¿ïAÐ8®ÆIN/ÏA“ãb«@ïJ‚¶‰à¹Íß h¤lì÷GDÐØ¯¶ØØ++h;«ªµèàhRи°ò6Õ¬¨ ÑrŸÄ#vð>º\"FJÝ‹e<04>½>¯¥^Ã,m­«!a˜<19>Ø&tæ4
<EFBFBD>VÔõ &çå-´ªvôÇP½bô°†_7š2nÅ$WZÓΪfYhx°±Ü·ðë@kêÙü ¬4*­0ÐO4 Z=w! u°t«Z hZ R:ÅÜ¿®4åyê3 áL@ÃeƒsÐ0@f'-1cŠWÚ¯+ LÐ~^Ú)Ãg}Sá#"h'{c 4 á¨UC<02>&¬<> â 4ÉààeÝþ4G IǶO?6hdiTV ÷:¿ï&ÐDßbùO©<03>&Ë|8šDpð¸jr•Шᓟ½Íï»4jVlx}€F”ÆøœVs~’€& ¬:å´[@£F¯ZÕ¥¬  ¥Á&±…xMd®Ç
Lš 8«t ¾4ÚC4ó“ ´
ýÇÁF;ùgŒJöklÃ~]ùgŒJ¶°Áž+ÿL½%oà•¦<7F>Þe4¢¬ü3uÌ+e7£Ÿ•F[i¥lSÀÂ?ã¹Öï<>FÙpUóá_7þY¦Ê»§äx·…Fä¹;…½àÏ(é°¢å_7ü™vL†ž†4Ñϰ"¤ßÌàZ+ýŒC±¤ç|¿nô³ªrÁR(úYýmV~]ú™ºÍ˜¡þ<C2A1>~ÖÔuÙÁ¥ú[4_Üoô3Î"”CcP®ÆÎ2©À¯+þŒCûŽ÷<C5BD>ø3þó˜aÅŸiß [Ç]Íø3*0æIö_Wü™v+Œê¾•~FÓAãìäŸñ/õðÓ[ùgYPôm§Ú+ÿl×Cà6èT+ÿŒˆ«ÓÌõÀ?Óh;?ËÂ?£6D"Ñ|0Î&þÝTºñÏ(F:,“/ü3Rz¸éäþO†l# ¹àÏèçÐý™ýš þŒrº7 @bßwsÇ<02>ÆøXtç#hŒ¶pUµ!hdÇkÄÃçE ízp4óò<02>vHý}(<28>@cVŒÖòy hÒʸìº!´.“U]$hd°q¹ïåóкäCvû"€F§úí €¦7­´SS;‚¢€&Í ûI3÷' hây±Ô§ ¡ÐHÙ`´LÈìÐ
‹¹âÏðò“¿âáÊŠ?kgÌsãŸ)i ôâ<¼…¦¥ÍTråŸQ8”¼×î?c<><63>ÜúüYÔÊ;×z”8ømÆŸQᶃüYÔš¬ö0Ðh'ÿLËH¬•A2; hZWK¬ýÍ…€5VÚ»³(WšRŸFíŽÐâ\ wÌ„âíý“4B6ä?NíñÏ8ªñ¼ÆcØ'ûgÕx„-ºèý3ɸ³<C2B8>£&ƒÞûD‰þ™$æí{Õ ŸèŸ1VÚ°”õü3>×òÁûâŸÑ6|HøðçåŸmtyŸ­ïü3î<ë®»°‰?£¥C?/þL&&ËÙfÉégD2o¦¸VÔÏØk²Ï÷yég‡LÈ]BIúÙñ<0F>²°×5èg<36>ú/ý¬Kê²Á¥I?ãÍ.î/ýŒ½qhå
ómZøõ?þeûõŸ9ÀþEÄó¯úOû ­LÿdñÐÿü—ÿ.õoÿSœËý,»×üwùl<C3B9>iÿüó Ì<>D×<44>übUÉÜœßÉý,cøÿ<>að†ÃÿS“=*¤þñ¯¿þë¿Ã‡èßÿúo¿þñ_þå?þC¿ä>H«×´öäö<C3A4>õoùÀ¨çäìVoØþ–¤Fކ£~ÿÀþ·| udïŸ÷ü-ŸÇa¡ºíß?ð?ü-H‡Wà ñþ<C3B1>ÿçßò<C39F>¸mbuÛ>õ<><C3B5>]…zcÿåcñÜâ/l*¤E:~ÿWI8íh,ÁÖ†óv ^0vÉJq´²¼oœ:/Ú˜¿ðÃ4äHCH÷×ÓÒÿõí ð‡ÏÑ~rlÞ9Iüáó¨LTöß;çˆ?|%M¤žž ÿøw|e…쥾ßú[><3E>)ä´Ûç…íïø<Žó$N»Ï!ü-‡‰¥&nŸ·ÿŸÇÑAÕÆéÛçÅ¿ãóÈ=Bìx˜oÿÇO©°zx}û~éç³-GG¿àÈn€dûÖ„+ÛŒë<«;<3B>/O¯=7Î[vŽ<76>þz~ üO>™?c„Cißù}Æÿðifˆü™ÌMÙwåù3:0š¬“ÔOæÏdZav÷EýŒ¡ƒ¬LãìñÏø/Ç<>§ý3š,húÖ]íèŸUÙîS§Šþw\'Ã\_ü3¹Û#ÎO<C38E>%øgô†Œ;Ñí6ΜÆ4•á@/ÿŒf¤;29ùg,鑦³}ñÏødŒÇ Æ<‡<Ÿé_3ðg´C0½©,fäÏÈòÿŠÝ®Dþ¬?÷</ÿL¤<4C>rîæáÿLZoT2úg45µKüˆq®s<73>?[¥óŽE¼òÉü­ QbðçÏèð%
ùÛ?øŸ>(ØNîá Û ÃÀŸ­Ò“µZ&<26>öøgÒžÀÂÚ>%³G@“¾ZÆdõß Ú*÷Jõ42
‡ïÇ™ú@ªœñ‹¹Ï@á h¢>ÍÞÐVß
êøÅóEŽê"i='׫½h?a-ÿº<C3BF>k“q±Éד™1.ßjüë´ý8·$cÂFäÇ{¼~bÙä£H ósíÃdòÞŸâg¼¾,Ó~ÃÏfíúŸÅZÄÏ|-ëg±õ3ž=^ú™¯eý,Ö‚~KQ?󵬟ÅZÔÏb-êg®öÒÏb-èg±ù3_ËüY¬Eþ,Ö"æk™?µÈŸÅZäÏ|-ñg±ù³Xü™¯eþ,Ö"k?óµÌŸÅZäÏxÖl7æù3_ÉüY¬Eþ,Ö"æk@‹µ ÅZÐ|)´Xš¯e-Ö¢€kQ@‹µ( ¹ZÐb)
òO/ý'M&«P9v<ßú ûŸÿréÿãÿý w÷ñÈg<C388>¿Á~ù ë2Ì[@óµ, ÅZÐb-
ä'Èœ·ç¦§x6¾ùÔ·¿»)}}H=ýV²&>X>¦ù¥7 *yP…¼½vl%ÓüʆT¾>¤ þ¨êþâCš^yÃ<79>ê7†„“wT<77>1M/½aPíëƒ"û…—‰$ÔüÒÕ¿1(r<e£ˆpŒé|åçCùíËC¢Å™ŒrÌUËKoTøÆ 8k:†£ÿò†<C3B2>ì_ˆ–‹Îåüʆôõ¹»Pú‰ryé ´XZ¬EÍײ€kQ@‹µ( ùZÐb-
ƒúúì](—)ËD9½ò†!}cîÆ|"-åôʆôõ¹»nÚã6O”ËKoÔ×gïÊ9rX&Êå¥7 êë³wÕŽõy¢œ_yÃ<79>¾>wWõ]&Ê奟jÿúì]é|^¹ù•7 éëswÅ@r 4{²“ZÐb-
ä—Þ0¨¯Ïãµh%ï4?ͯ¼aH_ŸÇ«rìæùi~å 4_ËZ¬E-Ö"<22>æk™@µH ÅZ4Ð|-h]®/Z(EÍ•2€JÁ? •ÈŸ=¥—~J? •hŸ<68>ÒÞMËöY¬Eû,Ö¢~ækY?µ¨ŸÅZÔÏ|-ég±õ³ÎUz<55>2ZÔÏb-êg¾ý³X þYªÿ,Ô’¦#œš·ý³T þY¨%ÿ,ÕjÁ? µäŸQÓŽ•KA?󥄟ÅR°Ïb)Ðgì0tÕ_ôYªyü,•~æk?Kµ€ŸQÛµ¹â…Ÿ…ZÂÏR-àg©ð³Pú¥µoS8 úYªý,Ô’~jA?£VÍÌúY¨%ý,Õ‚~F<>a«yþ,”jÁ?KµàŸ±Ôi$RæÏb)èg±ð3J»1)? µˆŸ¥RÀϪ,Ç*É<>ñ³PKøYªüŒZÙÛ„Ñ~j ?Kµ€ŸQ[ Ëø™¯eü,Õ~V‰Ó3M2ãg¡ð3jiB?Kµ€Ÿ…ZÂϨ±†`µ€Ÿ¥ZÀϨÉJÇõÆÏR-àg£Vt†-Ûg¾è³X
Cúú,^›úÃ,óÓüÒõõy¼¶ªµíóü4¿ô†A}c&§<>o äæWÞ0¤oÌã<C38C>¢…u~š_zà¾1<C2BE>S<>á迼a _Ÿ½Û®†ÓD9¿òó!ůÏÝ ò¥Ã<C2A5>Ã,Ÿ…ZϪt ×©¢ù,Õ‚|F
C•5<EFBFBD>[^zà¾>{7š.—@n~å GjI>£viQ>K¥ Ÿ<>Ú"ñê×[>Kµ@ŸQ;Œ9ÍôY¨%úŒZÎ@Ÿ½jŽ>Óš¬Œ_‰>ÓR)öŠûìUsöµŠô™–,† Ñg¯š£Ï´¶i4Y¢Ï´V<C2B4>°ˆôÙ«æè3­ÍJô™ÔÆ“ R
CúúÜÝh¶[¹ù•7 éësw+ZW;O”ËKoÔ×gï¦rËD¹¼ô†A}}ön´S-<2D>Üüʆôõ¹»<C2B9>f]¹å¥7 jÌÞ©ßSá!%yæ ó{о8€J9×ÕòÏoDÿâ FŽô_Ïé<><06>¾1'C—ä§cøÆÌðàÙ >ÓšMá%úìUsô™Ö6C^#}¦µñCN«9úLk:h—ä3)±~ª¿BóòÙ«æä3­í‡ mA>ÓZ3)%ÊgZ«e<C2AB>º™“Ï´¶èŽrϤ¶÷Õ$² ŸimB7Q>ÓÚ$™£|¦µZíOä3©<33>[Ò/ð™z3H.ÀgZ3å!ÀgZY»>ƒFøLkô¸XÍÁgZ[2 ³rÃgRÞ:M4ŸiÍR>|¦µUwà“|¦5íÃIð™”V°`«9øLkö3$øLkk­Esð™ÖÆ?V­öÀgRÒã+ÃgZÛ6uð¢|¦µuµß.ÈgR+¤àI-ÈgZ;t¨/ÉgZk¬™ä3­•iŠùLj %«Ðæå3-µóœº™“Ï´V<C2B4>b%ŸQZEÁ<45>Z€Ï´¶ïöùLk<YÍÉgZ[th6ÉgR“àX«9ùLkôÎYÍÉgRg‰>ÓÚnàl¤Ï´&“°W¦Ï¤Æ<êDÌnúL+úñ‰ð™T¶Y ð™Ö61|¦µÉµGøLjí\—‰¢9øLkµÑ=“Yѻ՜{¦µÖõP|¦¥åT70ÂgRccé |¦µº«¡á3©kSIð™Ö,=ÉgR£aq³š“Ï´6ÙŸ(ŸQ«ã<C2AB>k?ÏËgZ²ý¼$ŸIM3¿¯,Ÿi­4SÊ|&5Í¡¼²|¦µ¢:I>“šX\Y>ÓZÙL­ ò™Ô4ô=ºgR˜}PÉ=ÓZmz‰‰î™ÔæÐrrÏ´¶T{÷LjÕÆQ“{&µbi*É=Ó÷þR î™Ô®šVsîµñ]ÍþÍàžiÍ27“{&5é…±šsϤvcÙ3)ív.Šê™––¾}QϤÆ9a~ŸSϤÖääzeõLj«áÉï8«9ôLjµœ†ôLj\pv«9ôLj qwVsè5R>Ö‰—9ôLj}74¢gR;zS‡1¢gRÛ-Ä.¡gZ37šgR÷Ñëü6gžIMÙ<4D>+gZ£¿ÁjÎ<“ZµK}$ϤTÊú…<“Ò²ìö"ò¬±ÜH„ÄäÐy&µ¢<>È3©<33>'urhŽ<“ñW‡ÕnòL*ãý¦÷<“ÚJ£®Õy&µº˜wÍ3©-ÝhÔhžQ£‡\¹¢y&µ.yW6ϤvHÏÊ•Í3©mòg¸²y&5¹ µšCϤ&Ÿl«9ôLjòA—Z@Ϥ&ýûVsèµCcž¯ŒžI<C5BE>†zýy=“Ú^&üÐ3©<33>
l†<3¿ôÓQ}cfTêš¶7µ,òQÍ/ýtTߘˆuTT¸Gs™£š^ú騾13*¬Z3ÍMûqç—~:ªoLÅ:*Ê¡g÷xŒjzé§£úÆl̨0e„>ªù¥ŸŽêëÁ´<C381>JiâY{«Æ¨¦—~:ª¯GÓ6*ª²sSë¬1ªé¥ŸŽê¡µŽŠ³`µA;¯àôÒG•¿7“ãÃJ!«úlTËK?Õ÷ævœÍÚ?´1ªù¥ŸŽê{s;ŽÞ8MjGàÕôÒOGõ½¹}×~oo&ðQÍ/ýtTßÛ1û/èKÈǨ¦—~:ªïÍíŠmÀ<6D>±‡ñ ./ýtTßÛae¤Z€œõcTÓK?Õ÷ævè%FO.Ç}5¿ôÓQ}on‡ü"&Ø÷xŒjzé§£úÞÜ<0E>«ïXã¶c¾š_úá¨Ê7çö¨¦×«ÔôÊOÇôÍ™<C38D>ÊüÝ<(ŽAM/ýtTßœÙ<C593>yw]ôQÍ/ýtTßœÙéxÁøz¥1ªé¥ŸŽêbbÅãíÕôÒOGõÍ™]Ĭ3Î5½òÓ1}s^W„Þ¶µXŽÕf~é§£úÞ¼Nct­Æ9÷dÊôÊOÇô½Y]½ðÒV僚_ú騾7«ã-Âƨ¦—~8ªú½Y+}7[ÔôÊOÇô½YϤ8xlcPÓK?Õ÷fuü´´5€Ǩ¦—~:ªïÍ긭 òqLÙÌ饟Žê{³ºZôáØ(ŸpŒjzé§£úÞ¬®FÀm(Û£š^ú騾7¯« ôð*òQÍ/ýtTßœ×q¿•À®@ŒóQÍ/ýtTßœÙ!_c)SlŒjzé§£úæÌ¾ ‡„1ªù¥Žª}sf§<66>¸ÕÕôÒOGõ͹]{¾L¦ã¾š_ú騾9·m¦¿ýXç—~:ªoÎíØDÜ?ë±8Ï/ýtTßÛqŸéûŽ1<C5BD>j~å§cúÞÌÞá86à]㇚_ù阾7¯ƒ­ëØáúüÊOÇô½YÛ½è$8ÓüÊOÇô½9<C2BD>RÚd†L>¤ó…ŸŽè{óyÕfÚ 6Ø>¤é•Ž©o6W#[ðq,|ó+?Ó÷æò¢öä0*ÇL0¿òÓ1}o&/xgàÆPÇ¢7¿òÓ1}oÏæ Ñ0y°1ͯütLßÅA©…»<E280A6>èü÷ŸŽç礘H掟æ8Κ^ù阾yJJ“'è<>8î¥ù•ŸŽé»yt¥«7¬ýGÂú|å§cúf<1D>ú<Æ1¦é•ŸŽé9tŒ¸÷ìsŒizågcÚ·oFäí÷Ž_]<seÓ+?ӘÿTüó·ž"óä~}Ltªòù@®Ž<çôÒOÇ¿1¦<00>®Ÿ:wÃóK?SúÎ˜Ž½æ<C2BD>v˜Þý/ æÎÆÚO|¦~ËŸW§}ù[Ú ÕŒè™Ôêii©=“ÉéDsè5y nVsè™ÔxùôXšGϤ¦±WFϤֺ¶r$ôLjÌ,µ€žI<C5BE>‡ä/èµqØf/FôLjšzqeôLjtU«9ôLj<4C>E^«9ôLjBbJ- gRÓtÑ+£gÔXknóûnôL*#ë_% gRk4•Ð3©Õ‰UEôŒÚz#J=“š†¢]=“Dsè™ÔxV­* gRïM<C3AF>Ì ì%C/ì™ÔöåÍœz&¥u×䃤žI­ð‡·šSÏšŸjNê™Ô¶Sï|“z&µu³l̨žI<C5BE>¥%=ΠžQ#ÛÙ ¯ žIm[up6©gRŸ}¯”Àž5±a<C2B1>)A=“ÒxP¨óÛœz&µu_'ˆæÐ3)-[7·- gÔºdŸXÍ¡gRâôLj\ÿ¿ gÔŽ;-5¢gRk…µõLJãŸ<¾°gÔxBÒ`dϤ6ž¡o.ͱgR#²\%°gÔÈBÑ(ÎÈžI<C5BE>ËÒöŒZÃßÔ_!°gRÛš±F<C2B1>=“Ýé³äØ3j D;Ø3©­2deöŒZ%á¸ZͱgRÏašÿÙ3©-†QDõŒ=ŸÆGõLjã,¦¹™A=£DŠlA=“Ï_Ô³ÆÍîA_¾ÔzÖ¼„œÔ3j ÅiôgTϤ6nùô¤Õ3j‡§XÍ©gRõÑj<C391>zFɰ¢+³gR«eA=£Ä×ým<C3BD>z&¥ñ™Ð˜Û¨žQãŠj¿xPϨц=¿Í¡gR"…T¿- gÔìùóÊè™Ôx'æÐ3jãÆT[»zF<7A>¸«[/sè™Ôè]*V{Ð3îÎmûfžÉÍ<04>^ú· æ™Þh,z/šÌ3jÇ6Cï£yF<79>˜¦ýy&µeÑ<£¶1Ò¬æÌ3j Ùé?éÉ3*tÌëõ5gRƒÝ˜5gžµ§<C2B5>èÊæµñòGÍ3j;|1ÏÆ÷Nz˜Á<£Æ"¾ž££y&µe= êò楣èöL"Ïš$lÅ,®@žQ£RÉ@žQzh•HžQ#ÜP/¡Ñ<£Æg¼W0Ϩnõ¥ æµ…žÓjÎ<k´‰6ž”­æÌ3j}šœ‘<£DŒ¯ž¡=yÖäe\,L8gÔ6ÝJ»²yFÍf¨®lžQ«¶yÈ3J…Ù$)ñŒQñz×ų&iÅ«á*Q<£Ö{*Žâ¥<>ŒÏf%GžQ£ÁA¯å<£Æ¢³†Rgò¬r³ÚôÏäñ¨tV äYeó¸µ`žU²÷6 èm,ã×ïVóèYÕ˜¦VFÏÈ<C38F>8Ûwôl++_Ñ3&×½i3zVÎ;¨í…ž<E280A6>#\йL=+FX- gL׌¿­þz =cÿm<C3BF>Þ[Dϰ·z+óÛzF€MÕ¥Ùz&‰gM£Ô“zF¢M™ŽZRÏ
D©Uïü~àÃï%<25>ÀZøá?.¶<>!èéÝŒø?óÃë‡û?~ôã<C3B4>‡ÙÎS>ùÑ×û½ÁDì½ý,Tþ_ýð?öÄz0Ñ »NºoýRÏh…l<EFBFBD>ˆÔ³ÂêÊ|C$õ ­ŒÏ¶Ôz†&²A<>Õ³Âs•fú½Ô36ýËi¿žWÏ(ÑYÿ=cý‰IÓuZi=£6Þ˜S<CB9C>
ÿááü¹þÓƒùcüÇóçÞ÷Oç/ºÞ?>œ?õ»z0ÑéþñáÜ{Ü?=„?v·z0Ñ×þéáü±£ýÓƒùc/û‡óW]ìΟû×?=œ?v®|0îYÿøpî[ŠÏà<>íòŸÌ_4Êz8lÿô`þØÿéÁüE[üLJóç†øOç<>­ðÌŸ›à?>œ{ûû‡‡ðçÆ÷Oæ/ZÞ?=œ?6»z0lsÿô`þ¢ÁýãÃùskû§‡óǦö<C2A6>æÏíìŸÎ%kûٴٵINÂøg§YßHÚæ>;”oæÕI󣃹f^4?;”Õ(óâœùᡬþ˜WÇÌÏæâyuÊüð`Cæg‡rñÁ¼:c~x0ÃótÄüìVãËæg‡rñ»¼:`~v0«ÑåÅùò³CY 虬[­Ó(Œè™X}¬†u«9ôŒÔvô7ˆèµ{Š=¡gÔÚBš™ÕôŒ’Ž)K) g[Hv§ÕzFm§åjh=£ÆæŒyoA=£V¸b|QÏ$±ŽÎR+9ôŒÒF#<23>|º"zFM湦lö gM.ä\ZÉ¡gd<67>“„ßfÍ¡gÔÚíGEôŒW½ƒèY“¡èS§8zF<7A>dÀ:ñ2‡žQÓÏ—Õz&
./Ž—ÊÕ×òêtùáÁ¬~W‡ËÏf5²¼8[~x(«åÕÑòù{öãWßÌæg‡r±Ë¼h~v0«OæÅ8ó³CYý1/†™ŸÊÅój”ùáÁÔÅój<C3B3>ùÙÁ¬>˜eµ¿¼b~x0Ãüò4Âüè.~—ÌÏåbsy5¾üì`VËáåg‡²úZ^Œ.?;”<E2809D>åÕàòÃYm,¯Æ–ŸÌê_y1´üðPVÛÊ«åg³Ô •®4_=£F»Ï7ôŒZ$Y«9ô,¤·GôL„Iönõ/íÑ3Jã•]¾¡gŒDÝ0ìhžQRÌAjÁ<£¶¬«­ºDóŒ½ÞbûôМyFM#Û®LžIòÍÆ=ˆÕyFMnªÕóŒÒ2î“÷/æ!¥ão||AÏ(%±šCÏHEÂ!;§læÐ³ö¬<C3B6>^Y=<6F>Ëj%‡žQDTÃz&ùtzu%ô¬yÙ9šgÈ6ìªê¹!šgÔ¸ž¬™#ÏX× žÄ˜±@žQ»ó¬y¶ÊÇl=·/ä5rìÕ äaaĽë%g$FÒÏa5GžÑ3¼w9•_™<£&)qú«òŒØç<C398>«ûdÍy†¹ÃfÌa%'ž)ÇÓ<C387>}òdN<cô†1g”Æk®“…I<ãNBÆ×W«9ñŒÕÛÃÒxF‰P}ÞŠàÁ<wÚ¡ðŒVz¯ô™*gL6°W¦§¢žÉÔ¯ÞÄÐxFD=áü‰yðLLÞñ$nvϨíäÀ3©q—£§ž‰¼*0p%ðŒÚ43®žÙkÚŽ \yðLÌaº%
~6áõFûÌo¥9?W Jsà™”4<EFBFBD>ÏJxF­šÖ¥ä½3™Ãbcßü1ï<31>‰~<îá<C3AE>6-´Ç;£Ö­éJÞ5Úñ#â¼w&ÚòxÒþ§è<C2A7>É´ûx}º>3zðLüæ<C3BC>ÏÂf¥<£ÆÒên•‡;£Â#<23>Š;-šö¦efwFm¼e<65>3wÆ:ëÉÕmsg²;þ<û[;£d3WÄΨlšÂr%ëŒÒø½¶ÓÞ^Þ:?»m2Q{%ëŒÏpÔ­3jÄ<6A>¯zw¬3±¼YìÑè`<60>Q£ÙeioëLx\]fí¶Î<14>Xl%#PgŽ³Í£®@<40> T~–Ó>ä<>:£ÆO½ku¦öy<C3B6>O<08>:“qDi£”§Î„S¿³("u& {ã%*V{¬3‰nèl(ê³9ëŒ[L]ouFmg»vÎÚc<C39A>±ÈOïÎn/<2F>·ÎD ¯<?îV{¬3Ù<1C>˜<EFBFBD>Õj<C395>uVDg °QÿÔÞ:£Æž»½æž:£4^ÝL¥@<40>ñ´SDêŒÚ.ÚÓ›:£¦lR³ÚC<C39A>Q«¤<C2AB>ÙŸÚSgT±J'£ÕêŒÔΖ¶>?ê¬H%mZóÔ5"M2Ô56`<60>>
|­<>ï¿SÚ¶mOém¥ò_έ8~λªä¿ú½ÖÅOÃyW<79>ü×3Ñó >vk®÷ ÓÂQ<ýáû䡉b·þ‰e8¾OÎYsħ» lº®[ý`/ÅÍãvļn¿2š«·í4š7yÜ~i4OÛy4ïñ¶ýÊh®^¶ÓhÞäiû¥Ñ\<lçѼÇËöK+òÅ»vÍ›<l¿4šgí<š÷x×~i4¯Úy4ïñ¬ýIì4<C3AC>æã¡Óÿ^£¹9垣y—cîWFsuÈ<75>Fó&§Ü/<2F>æâŒ;<3B>æ=¹_ÍÕwÍœq¿4šî<š÷8â~e4WÜi4orÂýÒh.ηóhÞã€û¥Ñ\oçѼÇùöK£¹8ÝΣy<C2A3>ãíWFsu¸<75>Fó&§Û¯Œæâl; Ô{4¼©ì¹#PgÔh¤µ3PgÔèÎ5j5PgÔˆé+zIÔµe<ØÛc\ ÎÀ\`ˆìV9PgÔ6[‘»uF<75>«»½<0E>:+*C­û,=Ò£Àã§ím™šÙ#<23>ih߬5/JgÔ
æ=·_ËÅÑvÌ{œm¿2š«“í4š79Ú~i4Ûy4ïq²ýÒh.εóhÞã`û¥ÄÐêX; ÷NúÒéŒí°“g¿¼tVdí0<C3AD>tF‰Ä{ÛH
æ=ε_ËÅ©vÌ{k2GóùŒÙÅ/÷Ì›|s¿2«Oî4˜7ùå~i4öÜy4“ô¡Ñ\|q§Á¼Ç÷Kc¹øá΃y<C692>/î—FsñÁ<C3B1>?Ü/¥|/þ·ÓhÞäƒû¥Ñ\|oçѼÇÿöK£¹øÝΣy<C2A3>ïíWFsõ¹<C3B5>Fó&¿Û¯Œæêo;<3B>æM>·_ÍÅ×vÍ{üm¿2š«Ÿí4š7ùÚ~i4Ûy4ïñ³ýÒh.þµóhÞãcû¥ó·oí4š7ù×~i4¿Úy4ïñ­ýÉÙä<š<>M^]sÏÁ¼É=÷+c¹¸åNcy<63>ÆruÉ=Çò&·Ü/ŒåêŽ{ŽåM.¹_ËêŠ; Ô™ì°Õ2?DÁ:+ Œå«=Ö<35>žÚc<C39A>Q÷<>sµ0`gLO<4C>¤æ±3jú.V{°3™º&0Óþd;“H—q~´õè€<C3A8>Qcý¬B{°3j¬ºú¸°³"
å-î¸_ÉÅ Ÿ3•!bgÔ`ïÍX ØÐ?NE<4E>ˆ<EFBFBD> BTz±¿´·Î(Ñ µê­“³ÎŠÀ`#q%ëŒÚøJ×eìh<C3AC>±ãÊ}ía•G:£Ò¤5sµÚ#<23>QãýܾHgEšÏig˜šÙ#<23>Qc<51>ÙÌtÆœýÎŒà2Ͳ[:£TØÕÔ¬Ö <20>±<EFBFBD>¼KHe·ÚC<C39A>Q#ùN#uµ³ÌÒ&ƒöPgÔQ9ZgD°ç <C3A7>+Ñ:+ò Id{µÚc<C39A>ñ>À¤§öXgä<17>ób³øá`<60>YQ¥=dµÚc<C39A>iÀD¹…ÑëŒoá)wyëL#žøÏÚc<C39A>±­²üúÅ:“&n5Ë5`gP]œ¸š",;+2@D¶[³Úƒ<C39A>IÕâôÆÎ¤û`¯Å°©€<C2A9>Y¡¦7¡ZíÁΨќ^íïâ±3Ò#˜R[4œ8hgE®-ÒAkµG;#µªÑq%íL­
wÊ{\q¿0« î97¹á~e,÷Ûi,ïqÁýÊX.®·ÓXÞã~û…±\Ýnϱ¼Éõö cY]nϼÅíö+gOwÛéèé=.·_ËÅÕvË{Üm¿”•^Ýlç¤ô[\m¿”y]]lçÄë[Ül¿2{í4÷¸Ø~)/³ºÖÎi™·¸×~½ÀkÞÇ~¶ôP<02>½mÛÞã‡êvØÔË >[·óÀ¤^FóÙº<C399>õ:š<>Öí<0¨—Ñ|¶nç<6E>=½Žæ£u;Ìée4Ÿ­Ûy`M¯£ùhÝÎczÍGëvkYçÑ|¼”õ¯Ñ\êvæÑ|¸<6E>l½Œæ³u;Dëu4­Ûy Y/£ùlÝÎÁzÍGëvÈÕËh>[·ó@¬^GóѺ<C391>Rõ:š<>Öí<ª×Ñ|´<6E>L½Œæ³u;w"õ2˜<32>Öí<<3C>¨×Á|´<6E>@½Œæ³u;äéu4­Ûy N¯£ùhÝÎ<C39D> æ£u;„éu0­ÛylašGóù¦¥ngÌgëvøÖË`>[·óÀµ^G3IÍR·³ æ£u;ëu0­ÛyàW¯£ùhÝηzÍgëvxÕëh>Z·óÀ©^GóѺ<C391>>õ2šÏÖí<p©—Ñ|¶nç<6E>G½Žæ£u;êe4Ÿ­ÛyàO¯£ùhÝÎwzÍGëvxÓËh>[·óÀ™^GóѺ<C391>Ç^ñy4o_ëvæÁ|¶nçN¹^ÆòѺ<C391>;ÝzËgëvîTëy,Ÿ­Û¹Ñ¬—¡|²nçN±^†òѺ<C391>;½zËgëvîÔêe,­Û¹Óª—±|´nçN©žÇòÙº<C399>+<2B>zÉ'ëvîTêåèé£u;wõ2<32>ÖíÜ)ÔkRú“u;wúôšxýdÝÎ<C39D>:½Œå£u;wÚôšùdÝÎd¸3ïcý“ÿí%±sÛ4ÙCþã¿ËPøÿ|8²£Údø²½Š%ýê{ý½I¸±Õ=2¦ÿðïø7á׿ÉäÝ÷-î¿Êïã.[æüë¯ÿúï6™àÿý¯ÿöëÿå_þã?ôÛ¿í#c£4i¹Ï©_»q%ªüÉ÷~mÙ\ɵŠ=Ëp~ïÔx„çïí¿ýß2ˆ ÷ûÎÿñ݃øš6òhû‡n€?~ä‡n€?ŽáS7Àñ§ ½ñ<06>Éæw ݆JJyí¬È§íè_°3z2xþÔÁ“ˆ<EFBFBD><EFBFBD>ÿ"!—±³EžìRßÖQaST¬öXg´‡pɰWÁ[gü¦L<C2A6>žŠëLb¾Æ'VY×h<C397>Ñ<EFBFBD>rB¬o²€<C2B2>ñ—eCüÐ7RÀΈ áDжY{°3º_Æ9<C386>ÔšÃÎx%<25>®=­WÂΈ(!)Ö"uÃÎh¶ï”z{f<>u¶°õÒÀ9o<39>ñžâ ðÔ”×`<60>ÑÛC„ÙZÞÖïSžFŒ Öù+<2B>«¬zKÁ:£—h|dÏr£e<C2A3>uF¦ ùmÚ8¬3š“ÆIfiÇ,ÝãKòIã#¢©<C2A2>Á:£ßiÜ@ç2k<32>u¶ÐmÈk®Q Á:#j<>%µuך·Îè¯bõK­¢u¶ˆ^µµrNíÁÎÙ¸›-™;#=‡ƒÃT/‡<>qâZI>Z§ö`gd¸U÷Ö#v&'CQ N«=Ø-iäÝ­Ûü¾;#ñ<>„CË
a i ÷«QAÉŸç Ø'fÖ²ªý;“Eèªùm<C3B9>u¶È2Ú¸^§ŸöXgÄC¨3Ésÿwê[,Pg\vŠF_I:ãj5>æÇTК“Îè\!"ÏY{¤3)Çg©š¤3®œºG®ßç¥3®¸gŸšÙ#<23>nB{ñ¼t¶È Ú2“çƒtF'7@ªéŒ Ïñ&Ü7Ó̼tF_縪¤3úAžØô”¤³EÞ9rÿgµG:£ÿ”49MH
ðÇ<EFBFBD>Ü“ÜsyKÿK7À÷û?ŽáO¿ýÓ ¾ûÛ'™Z(E>âC?ýŸ>ñC¿üŸ†ðµ«Ÿß²Ÿc<C5B8>õuÓÿ…(ßçÁ4¶ù? IîÒrŠ}K¿r[b«™ùç>&O Йä„nÄW«ÝÐÙ)çï­¿™³Sâ&)9匔Sú$ç{Ï!g§|<[ÕŽ`œ<>*ýìڙ쉳S¢ÚbáÂN8“Vã•ÓÒj•8ãvz<x•Ú§Svûf4=“ÆmÁµž7#ÓOÆjܘÓÍäY<C3A4>N©2³7;Y|^e:ÖJ·mF‡x£oÏඇ6£çœ…îM¯ÒN6;5´±ému€Í7_°ö£<>2#vŸ
{ÕAv9í“‚Ï¿Îß72ù ¼kFüó³Y<EFBFBD>tÙÍšýtÕŒGi®˜š—P3òÐ&ošõ]ü‹)µ8Ò¬ËÙª/†ZxÑŒa“Fª<46>žû=h&ùèlãìå<3&pXâ3>×sf<73>Ókç¶X*Î3c`©ŽD3rÍqf¤ódqXiv?r'KKˆ¾ 
Z“áÈß-¿å?Øc9VÿýÍB•X6Å-<ýfñ~ÿ}#‰¿ƒD²ÿ»]º=ü–ç­íéáÊ¥þ<T7yÔÊÃ8òÇv]wyúÿ|'ON²­9&ÉÍð/Ñ÷æÑwú½í[‹ñ¡²ôÍ[rÊï¸çªìí¥Uʲ¬OZ¯¹Ëv*ßµú[9{yÐÊ^Jªýñ}=‡.x×@™UÛK>heÛ ©šIBÓjzøz²ɲ40ƒ<hY¬¼ïÃ$M{ÜÊý}rGì;&ÝÛý}¢åœr»çIó3<C3B3>ûw(òhmy—•ëIÊò3‡šï_O4=Lýa˜ ·²|ù'M.ºüÙúø¾CãHâ®ÉÄ$<24>BÉùáëÅßtó`>i²mнà]“e<Æjyø~ Âl¢·‡qR‰-ćËN6më!n—]´Sb¬OšÜðµÈ€ïZ8@¦¿øp ¶$«ÄÃ÷+¿«ÌÒ¡><a…•,…9<ŒSž°VÎðZ•_,nO×½ýÞbÝR{ºîíw,2MåúpŸÉF_.Å]ë¿åagšø~ýwŒò.ªç´Rb‰yzÄJÕ¢´ÞºüÙRoZÝdf•˜.l÷÷‰&{<7B>Úé9=k¢ÈìÒö»&<26>Xßö%YferÉýIëœùÔþ0Ìh Éì‡÷É#&KTˆõñ}"É”¾ži—ç(?|½ø[.½Ü¥ýá;È#Ö÷Ö¦yõ<79>ä_Õ\Ó6i2Wåж‡a¦ß­´Æo}×ä “x7Äöð¾ü[¦xYp®ºhÉ|ü0NYEë&¡ööðõä ëy¹©'©Qˆ*Ì]“Õ5• ayÒdyÕ»åI«½Èä2=`²`GÕY†åÉ|ÒdÍ/Xã“&«R"ïš<`½míéOJü+sø¶µö¤ÉªWk¿Z“<5A>F6ë½”ûÛD½'ÙKÞ¿]Û”²#<23>ß}(-üÞ²Lr—=i±æ(<28>ÃýÛAîáîÓóuhûo]×åë?irkFùz<C3B9>ï+•h©>¼/J8·Ë^9<|¿(ÁP•©ez¾d5¯®•¼Ëí>ýž“Öå‡.Dg7-I0ej)ýI+{+[˜°I“ǤמÞ—áºÊÜ2]öI+ÜÖi/OZ§Ë+”‡ïW$Ê{êÓ6irí3PÊ'­oY®z}gý½Ë“^öéºK<Ù\“ RîÒéºOZkA&—i^=4 ·ºË -}Hæ?zËŒY¿F£ä1¿é¦Ì<tlAJN2c<32>ãd\o<dÆØn×)M+Ý<>™°=ãþÝ4;}ž1“_¾5 ï÷ˆ™¼¼2·(g˜qª¬¨=ç 3IË Ûh)'˜1ÎÏûþò˰ÆX$1>Åóe Lô˜²ÙÍ—!”°FÑõöÃëe¬ûã¨YÖ¿ÇËXüÞl¯çŠvÙA¬è®&×é2ÆØ:c8ë,ÝrYg?`ß´?¸eŒ]<5D>Ú½“g˘ujÜÔ÷—ZƘdV¹Í2¦}ƇMr¯H1~C†S®ÖeœHHÑõêonª©”œWvnz‡]”™ò\c« “½´2NßlC6•û<VÆ¥bã$sÌÒc•<11>½A êc}°Ê$3ºñæ9öXeXÍàñ9ͱÇ*ãÖ<C3A3>-]{™=U¶H Ø,‰TÉÉã~š¾¨2éÆ¯Ø ÕjUƽpã±LÏ“ž*ã!€fÝë TOMãuØI>Pe<^<~¾¥2Y_ØÈ‡ÊX£b1uÓsQ€Êt½ý0\08e…tzô&%8e…Äz¦GÛ¬ÝNà NO
´lÑlzÒš<f‰V†Ö)õ•É%?I²®ËÜÒ†)»U/ʽJ}“`ˆ…¡Üß& Ôì>2km£pé|¼¼KþšÄBrÇKøõ %¹è” <HÇÊÃPnŠÄ€A¶<41>ñ|¸&I~ÞTöû'í¿kp¥ŸWû<57>äÁjuëÍ<H²K9%Ÿßªc™VeŒá|®N-ÑD%<25>Ź.ÏZ”»®œÂ,U™Rõ­ìÃGÂð'­èý¸?|ôË,3ÊyûH˜ïß¼pã¾Å'Mî8 IΧjÖz_&èSªº³Lyxì®ù¨ò$ÉŸ“ë6]n %ŠjòLɽÓëùLÍš\p™Oj~ÒÈkÅ=Ä»&»+~!ÙÑ=irÝe>9ªYëòè˰Ï÷Éó.,þȼ6]ƒS˜Q樭=Hò×Z¯©Ü$‰úöM¦é‰:%ùå Íß,ù™7šÜç2“”p×ä¡ê2ßµíá}õÉv9åôø¾(“9Ÿ«S“<53>•Lxm Ç—c~<7E>®ÉDfxƬ5‰D1é®ÉÆJvq²ûÝŸ4Y㙠“æÛÔóûŦç˜eË¿ý!OšüA™QÎ+>kµ&Ùž×õÔ$ìcý¯çü%<01>V ܪé_tÊŠ„A²׬ö8eÜ×ó@_oÃìqÊŠ$øÔÍpÔà”G®µsE§ŒmRÕ^ЃSFo2]e]o×½SFœÈ’)RÞ)«:Ó§Eæ<45>2nnyÀÙìoé<6F>2i>uìøJP j㦱¬„y¨Œ”4<E2809D>#ÓŸç¡2Ztgþ• 2Úp7ž™t•ÃAeùŠÀkoX'•q‡GT郘=RYåéš{™s~Û#•%¶?ËA*ãÖ«=py<70>ÊèS­¾OÅìÊV™”¥áT^ž •‘ÒåžTFwèø°ÊVÞ²Ÿ'%•IüÕ.srV{ 2š+ñ 2²¥Ên<C38A><EFBFBD>)'ç±ê06Ì3eä+<2B>‡ä¶­“0{˜2 ÇCívNÂìaÊ6Mû_Ö6)²‡)Ûº˜í½Ý„™cÊ4]`©÷÷=L½¯w3rTʹ¯‡NŒD¥ŒE4Vm"J™ôÌ«Ï$5¯”ÑçÍÏbZœWÊÓÅI·§¢ ö¶T½Ù½R¶J7]ºS"{”2~=N»í|+e¼èô<C3A8>˜«”2ÂË&¬<10>²U
¢¥]~̼¥'­ÊµŒ4ß4ÙXUù&çƒ`3“ÒF­Å9ÎZÝ%ÌÓe?4ÙWÉ]¾þ¤1¿Éq|=ù÷ìR•§×óÙ:$ úä. ½[{Œ²UBè<C3A8>QF{+ÿx³WÕeMf—Ú
ùÜiORÌQæ”| R6n{r<>VeÙà¦Hd¥e—3kQätî'g©È ©y¢Œà¯<EFBFBD>e±]91O”q'U‰|®³öe½¯}Ÿ¬ÉóÄŒ#<23>>Y“†Ýt=O†<4F>ÎrLÍ:÷6´íµt2na‰rkV{t2³V0t©?ðd´pÁeáÀ“5Z wn fíáɈ¾¢¥ÚV®O6n-6ÙÏ4ÍùdÜYHïK™Ùí“`µ³H¤Ÿáà“ñY¤Eݤªà“RE ¦=-ŸLÚ&Ï[“ >÷ ¾¤É_Þ'#lj¹wy£O¶É‡£3ÄbµÛ'£ýñ”ô˜ùOÞ>ôqaËPJÞ'£Å…ÁÃL0ï“qÙ&Þ~¾ï¼O¶ñgÞ½ŸL.ÍÙÅÓ {|²m—<6D>ý)៌ø'B£ø¼O&ýˆ–x%ŸŒ‹,)ü:p}2z—Ç5 >9N Ãiç_ôÉ6.ãe7ÕÁ'#¬i!(ãz9N‡ÕVóP¶K†ôxÏÒå<C392>2™À
óðñÝb챸¦3Êê]“ <E2809C>jY~M<02>êšü½BâIëY¦yÎïšlªäÖ“eëüz[Ð#}4¹ìr‡<72>—|Ö$êI¥Ý%ÙSɦKB·CÛ+?iKúÔ'­Ë®¢O‰¬S“•ë¦DÄVöɿʺ(3ËùtÍš,i]–åó}r?ÚWÇÜA&év^õYËríÒJí2ct—šÌÓEÑ~WM®Æöî|¸f-žs—-¿_rIÖõ¦<Ö!UÓ²”Ÿ×<T¹‡]£Ð „óšÏZ“<5A>˜ -5G(A¶T±†súžb”ÏÜ¥žË¸&Ï<>L*gëÔ$Ü QìC ßa²£ŠM&•3EïAp­Ýqä¶ËÃÕôÊ<C3B4>ï«»²¡É´(³ÊyÉg­F§óé_Ý~Í]¶T€mOš„12«œY¬ÑÞ<C391>&?léSk“Ÿ]¯ë¾Ã¤yåÜcÏšÄS±§ãéëßKEÂÙŽk.ËC ¦Ià'{óý,Ø]´ÈU~»CË2å¹Vئ<C398>I, `%t­ËV¥<56>I¬I“ÈOî•~î÷ êCpMB8¹ë<C2B9>$lH»: ÉŽI÷¶w Ó¨<PF“àVlá=ðdd.¡ê-Û›'ã²7žÊÇÏdÆž %·Ò ¥7˜<37>'#Wé`¨Èø.Ï“Ñì÷4‰Ež ÒE¶MŸlîÀ^‰'£§ë4Íód\¥ÆU©úx2®Rüâöy<>Œ ¤•»Öó­“É…Èb
m"ér¾¯¿DjÁÒu|?Ψªkݶãû±8ÚÏY´Í½œI,ÒÂÑ% )å:ž®Y¢u¶Ÿ),Y÷dßNöSòQÔÓZ±Nq´,ÿ(ñØù>%×^C8¦Ô$…ÿšÚ µŸã¯[ »+Y¢¾tf°$B‰{t­Uy\Ï –¬[´k.<2E>Woš_>´$(×H:÷3ƒµh\Zúù>Ù9êoe?U“L3ç5ÏfW”ºD™á¼ä²yÞ²kkÚYÂʦ{S™ï[Ð~<\²_Ⱥ C³/~$°dŒý*¢i:éL`¥T«ý*ÚÜ+Oò™À}\ŠÙ5ùùOÏKÎ)Rw­Ê…Ôæí¡…b‡ã‡ÜÜáÈZÊ»¢†‘þŸ*ø)å¬ÕTZ<54>!ëQ:óWœeW%c9óWrã×mw<6D>íJ;óWô”‡èš\rràǯ"+W·¿)ÛªLÓÄyÍeóo'û*&ÍtL©iç;¹Veæ•%ã¸BràçbÿD#DuI¾ªL+Çþ(fh®´3<C2B4>•¶Öü+Hè·e&þc˜2ÃÚji±¥à|¸6«\D*äÿêyÍ%’Ú‡&Of•ãšËïZüHè'AhØ<68>c<EFBFBD>ÈiÔîZ!Æ9óWr7ä-ºÖ³ÜgþJÔîäpNÞxæ¯(ÆíÝ5‰)uišDë6ÃÑ%±™<5Çû$¶Y,ÉÆJþ¾D©çûö`ã-ó°¥#k)óY±9G4¹ƒmòš dseWw毘m-KØŸÎü•¬${LkòÊ™¿’`WvªIø4a{Œ3õ¸%×$f%Q¼Ož½î ¯¤“Ik'½<04>LŽ˜<05>Ùƒ“íÒ×:»Á#NFÿÝ!rÝj<C39D>…)œÃ^=¯“ªŽÃ'rÓj<C393>NFdŽ~Îï{t²C4éeêÎA'?õ¿º×ɸs¨Ìèæt2¹>`}åu2é•c´Cí¼ õnºNvH?À²éì]ÄÉXla ÔØ×€“I¼Pg4yµÚƒ“ñ܇[uÑ,àd4½É.€®yœŒ ¡yßu%œLV„xÕùmNF_ÛF}›È؃“‘ÄÚVºN&îf§9³×<NFûã²öÜp2ÎÌd<E280B9>6«=8-j3êŠ8Ù!#ß‹Æ,EŒs/"ûy׌F´ÆO™nÙƒ“шö¤VEœ¬Ëæb·xˆ“ÑlÁ&£×ŒÝ^íhˆ6§P>
¤ómYZÈbA÷QÀohht Wײ<æáL_u·ñ>ùdf9b."ºjŸ'+™'Ò™¾G¯lÁ5™ãR9ÓW²™¹šÜ§2µé+ù#»=DI6WÊ_9Þ·éòašüA™ZÎ˾i¹‰i¤¦c<63>GJV šòl2Vf¸ Ñói ÉºLÜt ÉŠT”ÄjMÖywzhv«=4 <ÌCªji2N…ãNd3q4Ød Ž¬¯ê¼y´ÉHÙaü[:£MÆénü#ÚÒi2YÚ¶É–=4™øM“M3M&§´q<C2B4>Y—7MÖ]Ç{jÛÎO¦ÉÈË©2&¨”£ÉŠœ·¤ëhÖnœŒZ#7ãTlÆãd‰³ê0É'ád„Û<E2809E>ÛQö»q²"<22>ZB˜p2I¾w_Uà NFmœ}ÎSo±ƒNV¤ëÐÙ„¤“I¼
Õ$þ s@ÆX£K)ñGŽüÕn¡®iµdÙ±ù+ÍnÚÇÉÖÃVÎü•ÜUY] Ðä¦Õ8èÐØ¹&Ó»Ü<C2BB>Ç&[­b¿Šì­Š|V=.úÎ<C3BA>LqMž¨HH1´œÆ»8V ÇjHuB³ñÓTe^9öÚ»üx-¸eKgk<>­ÔæZéò`äãËŽR~´,á_èü`ÇûäµÙCKæåzoÇœJ¢}¹l§úµO—ÜàÝöy¢É´ÂÒv|¹-7ËOd ÿä<C3BF>œx¥¹$W]&ãáÉ5Ú­ËÝ<C38B>Î4V`ÛbR®NÌ1§rìÚ\ RîÙ㊽ ®ÉDÕe?} …{ß¾<C39F>ì­ê.wÀq&ˆ(²kÙ+†¦Û×HG…c Ÿ§j^'£F¶6 {Ÿ¤“ C8NŒ†H<06>L"læ)édDѬÅâtNFm¼~œçÊ'édS3nRØ ú$<24>LÐ@š!µ×-èd„Ê\5 ²©“‰ ÈÀHYÛ'édÔÆ[§žºõx2Beh½¯»}Ÿãɨ<C389>;+Yñù$žL€?R æ[Ðñd*c³ÁI'Äoß¹Ï[?‰'£¶“@Wω<C38F>MžLc6fû'ñd”ÐJCºœNFéœ}Ä/<2F>Œ¬uÛö|éd2Z¿Ê肋ÑM±Ïƨ“ñ9ä jío<C3AD>Œž$¦—Z>I'ã£ÆÞ¬¹7<C2B9>'ã£ÖK?µ1?òd¤¸¬wPVôÉø8uËÀÌ>¼tV.ÇÛ'c߸ËüÕ¬=>Ùxëóf¡5Ñ'£ˆ10Ìûd|,šÒNŸä“-ÂKŽçŸŒ%Þíœ<C3AD>Ñ'[¤Én¼±÷Y{|2Ú€{e¼½Y×ɰ”Ñrêcí' e<12>²2 ™…2Zj˜l9ìÝ„2:ºÇ…{Ù¦Bæ„2Þeã>J'CPÆÂ4ï?%£PV¤£¢Í?uÊ%§—éœßç„2Îè+ëÑS!sB6l<36>è["eÒÀ~'9F¡LÀÆ“f7úË etØìäœ-o¡Œ÷γÌ…2í£a¶AE*O”KBƉa^(+2Ü-Xó' e<²ì6……²"Ïã~ÊT0/”¦¤ogÊf<C38A>P&^KÑ8Õ,”!Ò4žÿ“…2Lº¦áå…2rBXvб¬$”-ôºNð-eÌ„JÓõúÉDyãF¤ÖÉ<C396>9¢¬hÓiÿd Ê4” ©Ÿˆ²J³ p‡ÖQ¶Ê´tÕÎþD”1®Á3vù¼„2™&.rÉ}e4˼ÿ‹(ã/ĽT•G(«ìt3QßBv.{™µG(c <1F>¨/³öeUîv·Óä¹ ”¤AŽÎ¸F¡ŒîŽC.<2E>Ÿ q0š¢×f€2iÝ8¥âó ŒÑÒã\ÎÍjÿS£ì°¦“oFÙ<46>¿§iž/£Œe´¾Œ2^<5E>¾Mk,eú¦:­<16>²I*]_Œ²ñY]ô#ó6ÊÆ©÷<5§9e-µòÖeÌwë„àÛ(ÛÙ<C39B><16>²<EFBFBD>dT
2k«v¡vIžÕýLcµ»A´\£|ÂñlÉ­<C389>ü%úúd=¦T¹õ[²¡Hð·KÜ<14>gK¢»”w×d_O&<ÝEjë ;€do“ØO"†~f±6ÙŠd—Øñ…ãluk¶ d§ÈGk“¨ÕÒY¶Vš†;6B~îoš„2òW<C3B2>K¾I±MY"ŽSÖ÷ä×G¶VòûËj5ž<C5BE>9»»,-s|»@˜êÙš~f²l™FÂs@~Û#U;<3B>qݵDáÈʼnuÔ5¹MäóF"«Ê<C2AB>,¬*üɦeÏýxŸL6÷Q£®7ñxŸÜÝqh2%ʤ2æS¹R2SèW(²·²8.m÷ÕI$ eRy¬*w¢uî¢Uy eO,ÓÛ(ÛéŽÖ(¿l”Šgyƒ/£ŒÓ¢ù†/£Œµ%{…^FÍ®«æ¿Œ2KÅ“Z6Êà¢tDèm”<6D>˜@ò2ÊØ“××—QÆ^>ÞFÙ.¯•"QöìþèL·'ÊjÔG*þk$ÊöU¶¬‰2RÁõ»2PFüžÎ1¾<31>²<EFBFBD>¡
‘Ǫ]u8,E¶Vr£Ä#<23>U%˜­ûÐ"wqó©|×è¬h¸ï+™&{+yÐ%ì_<>Ùb<ÑdÙ”ye¤/å1ãîq­0…‰¬j“‡jÿmrYŽDVåp±¹$KœL+#<23>ÅÍí[@ÑäÂË<?.z5ѵNLÔŽ«.eŸâŠ„éœ1¥Ê]ÕšM<C5A1>ôÓGÃñtD{NDÓhåHeÉl^m(å÷nq‰íÐäדye|Za•\€Ò<E282AC>1ÊBUƒÞE¶V²ïé#~•Næáæ|où™<C3B9>k.a«üz®É¶ªŸ9iNGŠM+EvV²\ÈÌüMù…Jp<4A>,F9Y•DÓx[#"8òXòH$Kʼnýdºë#¨¯¤|ìqIÂ$=Úžmÿ*lHZ³‰ÑͶU<15>Ûnºˆ¼\íJíëøfIK'LâÔH/”KòZ8\e[%?]9RX²?açZ), @N@Ù.OÛúÉ@gÏÓþÅ ”q¼³<16>2ݪտIÊàHŽÿ¬N?¾€²<E282AC>`z͵~eD`èøð(Û˜‡-óû"PF[Gýî“1ÞVíH²Oö¤<½}2&ÞNÍ }ùd¶nš[™}²M$b¥è“ÁVèÌÀÛ'ãiW{Þ>Ÿ—¢1³/ŸL£Õ¢OFæœbµoŸìFYß<éò–'ÿâÉ6é|ÒÃÌ<Ù†,f¿^æÉÆ<C389>lÝîï<Ù“óôæÉØÌêêC¼x²Æiy<69>ßy2öÄ6ÍÊ~ñdMû˜­y²vàýT«EžŒ„M3Ä_<YB<7F>‡}ód<C3B3>Û»í´ZäÉèöÑ×—Nָ߫VŠ8w…»U"MÖ”³ß-Ód ²ë®ÌÛ&kìžVŠ6ë@:zòÆÉ˜X¾ëd„ÞÛåçÅ“±wègëå“ñÔ¥Ï// LyôOòÊÈ9Ñ&<26>·P¶®8,«Õ¢P¶rc±ÌZÊHô>5óú%”Ù><3E>Õ¢PVyÒ7B* e NêÒãK(#^R»#ßBYµä‹'ãyG·°Þ<™¾tßy²;æé­“UîÎï:Y• =ü¬“IGÑ-—y<E28094>ŒNn“o^:Ùøa3ø¥“<C2A5>ߤê8Ê['+(v$Y'£é­ÛÏË:<19>.å®Ež¬°îr~÷Én×ôÇeŸŒùÂe Œ{–Ö¿ etTjTÝ[([Æ)Â.MY([h<>ø”-‹™+™'£[ªYJvæÉÆ=÷ÜxñdèF(ãRK<™ÄÌz$™'+ö"[-ðdœÛ%2éd…)ÊãèV
Æ·C“Åá< :¤MWZ_:«ÓÍN(Y'#RrÑ û—N&·š:ÓùÒÉXÀ?4Jô¥“±)¾U<C2BE>?Ï:Y94¥ÿzádEæhõ}q2¹”T½ùÌ8%«¦Ü¾p2¦y…¤t2¶_<C2B6>‰š%ž¬ìäæèé9ûdeç(·i—ŸŒyêªKAÙ'cõl™äYòɘÐ"ÚÏjÁ'cô<ô£•}²BI³?tòÉ
¬‘<>ªìª™•Â9^žºîšlt[àD™>y¬z<C2AC>éz;Þ&”…0U¢¾ Oq9+¹ò¾¥Mb””Ž<™òF×$*©å™*õõUy¬$­GKBhù—ìZ Ûvö¤}2¨c³?gòɸÊZ`ÛË'#¨Ne«Ÿ¬(뢎UòÉ
íØpQ0èK«(U~Èpä°¨ ê¨ÔLO…ÄS‡”¨°rI6TiÖX>2êc*ÝÈeØ µóT擱Çí¨LCÕ5 }å÷),ùyø²kÅ\0Ç—³ÕMµJ<C2B5>¡>©¦IÜË}ïš<ßñ,Ä*$(ÒÐä²N{†&«§í,DÃÔwëãšÎúl¯Y%èÛ%ô:Î4 ¦ÅŸ¢IØUÒÂ*ý”04ùUz9rXòŠìm,òdÉN©9,ù÷d<C3B7>h^u¼Oþ¦…4ÛáÒxŸL7Ú<37>.YoþÆ\Ê}šlnͦ¶qÕ £j.uY/ ]Ê2ÑÚ¼×´ÈV~¿Á°FžæÍ<>åÈ`Iü¸ûŽ_´Îä|d° ­÷UßdÙ'­Û•<ûdÌŽ/&<dŸl|ÐXnoV >ƒEó_>Ù¸hµµ­_}2ÉÕÑ9£—Ovçc\oŸŒ`VÍ»Þ>Ùx«ì§=eŸlüã¾Y?Ð (ã¡ã¬z†ÈB 96Ûý"ÊÆ£Ë¸.ª/<2F>‰²èÕöI<C3B6>¢lœÕï«¢Œù>±<>®7Q¶*³Ú÷%¢l!¸Îž¿Qf‰YÅJ<C385>(C<>o»ýUQÆC`µ[±L”[‰2öMíL”qO³”/ DÙ2>÷uªn‰([vÖ€õn2eÜt¬Õ3elÒÈâãõ&ʺKŒIÉFwlm5Ï)e SÚû6¿/eK“¦<E2809C>bµ`”-t²¬zmËFi“˜½Œ²…åe2¥­³/£ŒÇ^ã‰2Q6>/<2F>ý «¢Œ”«¦½™/¢l) ·À»ÕQÆÆV±sg6ÊåyF™î}ž«ÞÔG£L"°$gÑjÎ(c“G³ß¤Œ2jã%ê磌ڢK>W6Ê$kÜ5è¹,eÔÆ/0‰¯`”ɬàVÏI9¢l•<6C><E280A2>ó°?g ÊHpéM#9QFi\Æu÷.eÄc<C384>§`»ÙñDN¼2QƘ"€Ài%'”­Ò,k»æQ(£´6ñE(#Sk|²ÏåP&y[µ÷oB½$²qѬæˆ2jË­€F¢Œ·ÔƸ*W<>(£FŠŽ¾S"QÆ#>9âËäË¢Œf0vz¾eÓ5N•z‰2bºÎ™[<5B>ˆ2j²¹ÿ…(# «Ï}øD”Q³½¬+eDxu¨¬ù}Ž(ÓÔâe_¦CöeìÙX?•‰²UBDÍ«ŠDÁ_Òªý…([ÿa~Ô¬9¢ŒkªÅ#^™(c¾‰—NB#QFme@ø°š#ÊXû¿NÑÅÕH”Id˜D¡_Y(#ziû:õ2'”Q+¬½O½Ì e¤‰m´>N‰ìÊÈ;i÷š™3ÊV ¥¨¶<10>2 lïÝÞ´<C39E>(£TÝúNBûÙ;#ÕœP&Í4|}!Êh2ŸÿCŸ˜#QÆ3“"ûäËžõfJD8š€ˆ2Æ:w­/D5ô½‰2É5<35>‰(£EIG ­æˆ2i_ÒÕ†+el¢q]\¿eÔhžÔkh Êd¦ÚÉ!
ISK6 ûdú…d¼<64> ´ e´åô¨ÔP&-;sÎ* e|<%¹`êeN(cYä¼¥Ò(”Q#½L_Ø(”1G Æ]sB™Î˜˜ <11>2ØÆÛ[7†“Q¶JnÏVsFÙ*Áòò¼{e£Œ0g²Lõ
MABýñ>ÎeúШëûqÕ%ªØmÚ$ζ-399¬" Ÿ‡§¢ÉÜÐÒ‘Ã"êlö 4ÙTÉj]ŽV!!¤hd?Çâãó¸ ²9i¹Ž¹´Pka“•ü|Ge¨Œ¢Øy5RÒ-ÓÈZÊ)7ûîšÜ32­Œ†”›-ÖMöSœ+ ¬,?<3F>?x¢¥œåÎ[ìLÙæ>Ñ4Q}d°däAQM¾­`×1¤H%—K‰Rœ:®¸˜×<64>•v|ªxím²Ÿjz”04ù¸ÍßÖ(h¦2h|¹L¯CwMîº ,…º­#M¶TfK‡†ƒPq-6¦å±Ã°{bR4&§:6§rñ»§xºì¨džk94ùÞ¶‰&KÀ±üÈrÃy¬+rÑì ÛÐÆÍÕ%â³³ÄñÝ6B²êZŒz&ã2ÉL-<2D>)ùœt¤¯XÃ<5,šÌÕ2¥ŒË“ÈŽX0ß©'o“•#Z)R‰E]>]“)³ù0e?UØ|»:]+ÙÿQ^ìZæ@9»V<÷èšL5lˆ&?Vß<56>ôUâpÒF¢§¼0²W²OØm&’ì'äÓÇõNüß645 <1A>2jœÀË£l•P
ÜÆõ&]¹[¨Ën*êFk|Œ m£"š+ë±ü(Ù¥f;´6´ <20>¯½Mâ=yX¶#wÛî‡ã"ɽ&3Êx®¢ü½fÁ<66>h²þŸõQF>Ûo¡Š¯”<¸c*µ|buMn)þìxeþ«Tœ|dFW\îììÉÌ.Û©B<C2A9>:ž¬ÈòcéfÑÍëãëM|ºÖ˜ÛŽÔU”e_LÕd?%_u?rW²€q‘»=¹«½qh\#:—!Œ÷É|eõ7 ×´<C397>Nªb;4ùƒI~Bÿ~òÈjÑ]«zX=RrCð³©&OWÏID×d·¢&´´ë©“?™W=õ<>&[íº¹«]æŸfì§jв&“døº2<>:_ùõýmÙ<>5¡WÚÆtÊ/4¿-<11>Ä?2ƒµ± ÔFiì€&aÌ*cÒ¤ Úõ¬æŒ2BÝ`~Ì6 FÙ*<2A>>SŒF™ö%Za2ʨÙvrÊÛvþJB žU«9¢ŒÚỂQÁ(“,ŽsÒR<C392>(£¤3€VsDón&]™(£6î5Ï©—9¢Œ—fÖrÊ¥×-û÷OFIzÚÕœO&ÛûüšÕœOF<4F>Ñ },Ž>}×ã `KmÑ'“œ;¬£ÍjÎ'ãùk«ÚCŸx2v»Æ£˜ÝDŸŒZ[7Cy£OFÜиšÛQôɨqNÑwCôÉVª«ÍŠ& ŒÚ*¨<>Ô<P&©±¬v+9 ŒZÝ7»}@‚‡ž%¥€2Õ=,U*e«„‰¶.ã<>2i~Bºü”É©ŽmÆn5”IøŸ e,@qã Ëà“QZ×6¹ºà“1²3ÞÍÞ™Á'£ÆÒ¾¤iEžleý|×<>Ф“­Ò‡'Í|WÖɨIÀØf5§“ìÆÒ††wE<77>ŒB«•NFxaŸm! '£ÆC®¦xFœleƒ9üÃj'£6î¦ÍB 6%VˆÛl•æöcÓ¼Çh“QCE¶_!ØdÔŠÄ8J­yLºPÚÛ‰&£D~ƒýv<C3BD>&£v77'šLbIœøB“Q#I÷üB“Q—h µ<>4™ì*ÜáÀ‘&£†ªñE&£$køR
+•ì—¤¹«À5 öyôYȼ䮨W÷?)û©Dfpl°e6è}hrïsúáÔSnðèšü³üÕqÕ7*{£½OB?¹ûå©ïãæ¬»kK‰3…€{<7B>.Y¡Èˆ°7êê5ò“ÝçoM´Ù+ÙMá!ãšmTFöŠV˜k~ÍíF 0™H®[™ø˜ƒÉ¨1b€šƒÉ¨´bQˆÑ%£TdtÉjÎ%[—ª{ùâQãTjÿfpɨɔñf5çI()ßÓ,s.5»·º²K¶Ò17΃fMy—ŒÒÁtía%çQÛšHÑ%£D²<44>¾Ÿ£KF­¶b V`É(ÑIlX2r: ôÒlÌÈQëtä}aÉÄœàÎQ%°d«4¤öóøÂQÛHõ*Vs,™ÔhøÂ’­O,™”ÆSO%°d«÷“K¶ªElÑÚÑ%“Ú8·kLgtÉ^5ç­Þ>N.™Ë©³äÉ%[½’]²Õ3ìÉ%“¿áiÅjÎ%“Wa™<61>¶Ñ%“ÚY †Š.™¼²:Tre—LÞ-º%qe—lÕ„Þ&0æ\2y2T½ZíqÉä==n½ŒV .564Ö9ºdÔØvÚ¦=æ\2ùä¡ÓqÉô»ê4YrÉä“n0LdÉÖg]ðÊ,™œW´èJ,™tãóôP¬äX²UŸvS"K&çÅJf¬ÔK&çÓñ­zZ‰,™œ†IèmVs,™œ½e¸2KF<4B>>HûKÆÕ™Ï/,™\€æœcbɸp<C2B8>WѲȣKF
lý"Tö;ûQƒ(ÆL½ºFs<>)®P‡¦kßÖÇû¢Þ;ª5]rŸ&Ác Õ%™MebñÇKbÊNÆÞ5j»ûÈ^]%£Ýc<C39D>§F.g¯Bc¡ìÅ5¹¹uéš\«à÷ƒì©$X<аäö“8@è°ñ»Óð3Þ¶É ðIO,Á%£tÚé;ªdrá<72>#ïI%“ vס¤q<E28099>gÕ¤M]Ì©dÔ$ßJ%“;ž[¬äL2JgÕÉŒDq{Óh6üBÉ-“¤Xí!ÉVQKªøF“LF±WºÓ¥L2¹çOSuÖœIƽ"×g×IÆí'CÉåIF<49>aºöÅ$ãvwch³ZÍ™dò><š]JÆ=¹\ó›•J&÷òÒÆ`5‡ñ@ã¡Ñi%ÓÇ
oO—h29d½U# n/Võ/O-ûn^Ûa¼Äöü™X<y%77 Fs-orËŽäUÐDîáÐ<MìßNî`yvÙüHø#ró9U-™ÉRs-ÉnLž_Ÿ„§ð×øB̳®Ån…5¸ë^Í%ö2v?ˆ&<26>¹Ü7þ3‡Ý•:²Ä&éɵ}ùWY=úH^Q=E¸àZÇ?Œä™¬”ãÐäïI¼ë3*•ܤ‰T“]•z-ŽK.³ð¶k¬&wžL+ã’'}œ²­"Æ%—e ÚÎVv1²SÛdZñ‡T½|vu-R¼3²W<C2B2>g¾Çìš|¸,О½ <EFBFBD>®Œñ¨R¸ïŸßçP2ž~¤?V<>% d«†ÞY~DÉx¢âå:gíAÉxòÚë/N*ÿ梞0£J¶J0ÒºhoPÉxþ¤ËÁ± ñL»ÝìPTÉxLfÕD??Q%“Gï>!Ǩ­ráX,b9ªdr÷ÛJ5Ž-¨d,,p"×à *ë§ÄiZíÆŠX)ò~e”Œõ”Uòã¤P²õÉõº2J&£<>²„b5§qÁÿRa‡È­ò”t#Y2V¼È6e/°da…-²d,Ú1`X`ÉXäS?[%“eÇñ†ÓëRdÉXÉ<ôö÷Ê,ë¦ão´ëËY2iQe¸Zͱd²Õ*J¶ÔK¶JLWÑñÔÈ­ÿ°ôÏÕJŽ%c<>}\¨ìÙ!²d2à}S¡%“-„àX2y¾jEÃñK&" #¢«ÕK&»8Õb%K&<4A>[¿°d,â<>g“®7Œ‰%sÒLVÉØ©0ŸU2føµ$£d ñg”lœ”ˆÝÕoË(£ó}ºcÑ$ã‰wj_Ù$’Ã`¡—IÆþòÔßI†(Ç&°ÕIFÚÒíX¢IFe[ÖY
$MR±¿)Ûª¨µÁþýäJîCcŸvì郕w×ä~“gs<]35ØÅ“ØèA‰|+»kËê)Ë@f ºBIaÉ+2§!íã/öV{É+‰x$ž¨öí$ò ZV䣔 )·mwMV™VÆíÎ,V÷ñ>Ú&ž]Ó (/ï¢Ù//”Œp¶™¿žQ²•e{ZÉ(1qó¶<£d ÒošKôBÉØ<C389>oÆÝj%kÚþg%o5†Îud÷eq>Þmá$d÷4ÝŽ$™dwcØõ6ɸ/Õd®dmì—iÎæ %C ÑÒ—I†#ŒQe5o1k_´3èe<65><02>;óŸ &zæ¶ÔI6®óÔV &Ù8{¯ûvÎZ0É}$,VjÉ$cOg1³9dD;—éœ%“ìl³ÃìE¹ÝæDmB%us9IF¤ =ËÄÅl“Fû]£ZIF
ƒ¾<EFBFBD>îÛ¦½Wö>‰ äã¶¡É6J&ºdAùH7°hÝêÚƒkÄ+v'Ñ»È)àÈ^mö4Û¡åNêêþºYÅ£É>Ü2M½bwî¾íG!ÖVY<56>4HE“¹)k€lZdïkvïøûdæ ÁPµÈZ¶ów]c3fwhÙªá\[Ð6:H¿oÃôhšÎ°2×xþŠ<>®e™óúÈ_I0m+<2B>Ôd¿zÔan1د"ûªb%œ¦qèXòÐ$ö—‰Å¯úG… lÕyðýËE*JôþÛe_ÅÙ¹ßìgÏMÕ\æ¶6­Á³‰Q´*´:XdëVM«¿õÚŒ-ÄÆ+Ù‚'š„Ãé(ÂÚ8¨ÜmÚß±÷•I»<49>+.«f0äºË³Õíi<16>úù½ªßaýÙÃnšü:Ûn+žh•L»Þ`Hú“0j”øÛRX44™sü§”‡«s†«šü}_ÏE“«^¼ ŸzFmв¯ Ç2®ÉýÐ4tG“{F¦•âï“ áˆ&hÛ¼“Œ†åq>Õ»¦HmÒX{Ö»æH2ú1é <4D>D^†Ä¦WæL2Ò;ÉÚ¬ô<C2AC>dàX$~Ós$-4•¼ºj5gmÄHÏîždÓm<C393>=d<E28098>&ã|1m±@±ëyuL&R]£ú·Œ&;:6<>q%“Œé‰<C3A9>%<25>ÝJ%ãæŠ©v=ÕF”ŒþÝ´¶šSÉ9%¯ Ìïs*›³´€<18>T²íÒyêsGTÉxP—¢Í ­ ICÓÏSs*Ù.ís!ñQ%cY<63>àÊsjfN%ÛežBVR¯¬ °ç„ÇœIƼ,¡Mú€Q2Z£5×3NDɈö¡ÕmŸò˜SÉHçê:“qe•Œ-kàú¬9•LSbw;µGŒ_uÜ—´Y²]â~×õæÌKF‰®ºS,áÍdåê=NdÉ`=
+gS®å,mþõ$êdBW-pQ41áZ årw-ziJœÏøR"u, ãï«ÕKÆó*“òJßEŒÚ"õ.²dŒ*ËâE³šcÉOt¦‰GŒ!z7õ™8²dÄBjôYs,S•º»qe•ŒÐ
M.¸¡í¿­î3û×Û-üsÍOÎ}˜Ômì6‰Fú¯os}±ùH4b¸Ö«¿<C2AB>&U¢Dq5Ø×<C397>h^×µâÁŒiò8kAë™ }¸"]œ»c1iÚ=[ Ib;gDã<Ðëò£&hco“wÈæ½IĶE cfkMÖÑßvÔ!>¥pÈ$M«=AëvÑýËIè×»ÝÒ±°ß úÚ¿œï\Ëò¿d)¬Èé´Læ1ºÖÚ& ^ôan†Äjc©D¥"T{ç5Á²hÈf<çLcn  S×¼JF³¹m~SÉ4zv¾Ç"KFü^í¾6ªdh\s.¡d`BܘéP2=—v¿Q²N£”ØÙVs(<63>[?}í<JÆ¢5'P}kF”¬K³yVs,™ŒkÓî7y1DZTl- ¢d,ƒ“|«Ë %#B<>1)]~(›º<YšþT2ö¥Î²X2VÖõfEJÁ%cY°£qM³Ì¹d¬m4B ¿¸d'§¦Ó¦ò“KÆ<4B>¥<¼T«9—ìü<ú4ËœKÆló¾kd{bÉÈów…ö ,™´Ós¯ß¬ä\2ö¬þÉé9—LvÝIžf™sÉH¾a¡]¯Ñ%;…ŒØ 4Œ.™ØÚÄp%˜ Zààªo•“±Z
q¼O¦ÙâúEçXTn#»@<40> Ë&.ÕäÆìÝ6¢åÍê}M#­qho9,LJ$žðÇ9ÊæJ—²ÍÇ©_¬$úÛü¢Ó<C2A2>·24ùêœÿûû·š}•Y^VjêýùªÚ˜šVRì~Õ ˜M¶"ÉêÀi}=Nì6<C3AC>«AûzrwS«¶»†<C2BB>”¥(¨“¯íѹHzöeY¬È΀D˜iòxÉêËÞÁ4™ åöšÜû4Bøûvªx5Í€&W^þ%Ú·“?!¿„%IöV…Þ¼Ê(Ü6-râµûz²Öš]ÃŒb³¬@ä —ÀMïÀÄBж=ÙPd“y24—ä©<C3A4>ÝÁîÕ@~³ˆVdñØ7eŽ£š@&¬ßø¤Äæ—œNF]£z9çäo“ÿŒt¤krÈ/ïSªìQuOáZo¶_3­ªu Jüí¥¶ïFšÿβ³JÞ‰¢g0EžN<C5BE>CM“᳈ª&ÏV—¨ÊgZ9ÆrI"îÂɉj€Gš¢1+çœí»EŠmÖOÊÇ`¯a#ápSn×(<ê[´¯©ÁëþˆF‡ÓVýÉŠ;1-Ù©©$•6Y{{Ü]ÊX(Œ[V¶Ô²ŠÚ¢&šü¦}<<3C>úµƒíWòF€Ì<E282AC>¿MÉhÕnhË„ìÏ•lé8 <EFBFBD>ÒM½ò0“Û„Ôi{_„ɘVÃÞi7ZöÀd•\u2<öY{`2V`I\;L€ó0cnì¦é0c„ɘg?e¹¿ï<C2BF>ÉX¹eQ¤S{`2Æãx¢Ô^€ÉàXØ<'gö¸d Î-’å¤ßæ]2«¹Soï’±<Þ,Ý®†Á%#G Z3Ì•\2†ñH8Ð ùè1ì.Í…»•¬J2ö¸ýÒéÀ1Ãwp5Ò½ªÀ<C380>8ô;>²dX«éÔKðÀøÛ]zT2­WnöY{T2æIµ¯æay• â`~E¯öA%ÓÅîÆÎ¼Õ•Læ ÇgÞ® A%«²ÍèÓ¬ö¨d,<>+Þ®9.%cœ˜ª÷U<C3B7>%c<01>œ;{â,Y•å;fšß,ÑÛ½<C39B>T2ÖÝåªo¯Um—Üz™˜Ù£UYEï-½ž•LÂØPÑ FPɾ(Ü0OyìQÉXÊÍ[tÝ2¨dURp‰õÓÃô*™$<`zPÉ4 â4l!¨dXcåze*ÛœÇ6½
®5<H-<2D>EbºÉ×o—ƒî=»¥±âìCŒÆÃ¿Y Ó  g£Ò{¸ÌÚ£Uyø OU¯9Aûy¯S{T2â؞Б¬¨’±åðäDLìŽB4{±ÚdÉØ<C389>`PS;Ÿ#KƸ§$rÜåY²*9¦ã³pãcLÆ((]"º¶a2ÉnƒCu'±3LW'>öÀd•a·^tJ:ºdì𨸻]2¦Kgìç•\2Ûén\²*÷wýX'/ö°dì<C3AC>סÏà%“¹TÖ7Û¬=,™äÿŽ[Y<>Óˆ,™DS/lðžV{X²ŠGTÆMøöfÉ$¤ã^[Ž,žÉ8FÒˆ¬ö°dlÔÜ<C394>ÚQ%#
¦¯w¢ñ<C2A2>í~ÃÊ-v]±™â,ÆÒX¢íQº\cs¾ûÜF!3SK€Jò¡r÷Z„£îPäºÙwÃï¶¶ìRò~L“dóU= a…ª<EFBFBD>öA%c–õ­ÕÔ.¯’§Á{¿k<C2BF>JFòÙ$–„T2ægA³N<C2B3>L*?+QÕT²*·ó¦>ªd²1´Í¯¨’­Òέö¨dlíš
Ë̺2CZžGê+,ŽÌþ1xR¿‰H<E280B0>ëÐhÁÝ-‡%ID+ME³ Y7Ù”ÔGytìùÈù·Umþ>ª|(ôéyZ²·5Z ýÍ’š¶M®é¶Y“eSåM¦q&ÿêømÚÈUã»Rð蚬 òñ›}=Yò·lV=U&Qm””^q­<71>)>Y3yv þ'%îÛh ö>j5w¿¨öqRÖ²½­<C2BD>¶#H4YAdBéö펧Ó4N«e°vŠì"^ϪuzT{· Â<>õÝ]Vüeß.sÞì[bÑ /5¯Á¯uöy•l•þ<ùŒZíQɘØ%®véo•ŒÍ&b³Í *Ó¼;m8FX26¢èLÐ6ÓÈ­`7îŸ5¢1°d«Èxk+†My—Œ)`¼í³\²µH~âü»x—ŒáñÁ7S&°d²·Å³ÎïzX2f‡éúÛ<C3BA>ó,™ì{6Ö7KF8úøG#ŠgÉØ㢣³x%cæxëwNkñ,ûeär«ýX2æù\²Ufýç´gtÉVi€Þ¥YèJ.ãÊãvŒ3§Ô¼K†^Óf™]É%[%¢`;žï{\²•+"#‚·=ö¸dìÏ<C3AC>\Mì<4D>ä\2ئ©Úörɘ€¦ACƒ_KÆÎ]-ó”T2f£mÂj<C382>J&zEó®¤17Mפ6ÊG•Œ
<EFBFBD>Áb}ú³‚Å%ú%W«­•5BžOyXƒ_rZõ¨XsM{Ø[±og5ƒ¶5­{mŒi2Ã×l<C397> ?òO'˜çU2¦ªÇ-i/{P²UY C½I†³3Óð®dI0zÙíé0šdì²¹£UÑ$[¹× «=&ÙJ€Èlªt•7ÉV%P«êJ&ÛÕf评aØ,z¿IÆæcÈ[ÿI<C3BF><EFBFBD>ûì]öÙ¬ö d+‰ §$EYíQÉÖ.]ÙÇVÞ*£ß…û“y• è|NÄA%c,ü°ùû+©dlhîSo<53>(™DͳM½L°ìAÉV²ƽY5èÌ£d«¸±d³ZíAÉØåI»~AÉð†X­¤y”ŒisþFMßš%“MÒu³Ú`<>Án<C381>-P2"ñ L14Æ£dᅩıÚÍ1lN¸=@—ŒZµ<5A>«Ý0™ °œ(ì
žˆXk'½$K«=¢QNÓ-<2D>E¼ïHM“ÍÝ)í~{#ícì^~…<>…LÍd<+änÛìè³hi¼‰¥d~Áå?6þH†ìº}7ÆDÞ˵ìÇi¦¶Þ¶ùÁ°B&‰jé+pÑ\£½Oóx2£húJ4žH_zDËÑ*4<>$<24>§d§»ÄþÌk¯D£Àª|+~Ír`H<Ó!ùÛ$æÓ„do«^ÃîZ#÷Ø4c´<>Qʆªøô£;èæWUž¬¦5T6L dØÇûšN}»Ì¨ŠÉ¥’Ùðý<ý¨z#f—h “Mµ½<C2B5>rrÍNaM]@?ð³‡lßngÛ?F"*ߪ˜¦MÛCb;-y˜ŽÉ/ÚÖÙÜË”Rí˱=<3D>Åv¢I̘ÜÑ<06>@ï“ „ÊtÞ'÷=÷v³”r• èd²"û®e¼oËÈ&MF©£+6½)q6CêãæQú;­tãdÔÈÄ\Œô:™ ¾<>ü¢}><3E>'£FDº%‰ŸL†âéµlk”Q;YÖï}2d·PÆà;Odó
UÑÊž`5ÄžoÁ«¢<C2AB>c<63>E#y…%’ áˆ2J˜ÁDzNnle”Hf\V=ez¤LFéyö5W×+eÔLÜÑßÀ1eEØ¥ªzÆ<15>2³g³Üå 2jìe™èØ-•É ¾L/ÙÏ{¨2Jü¯ÎãœÀÙ´Êd<ÿdHãÅ=VF­ÊŒÞy­ŒZÃëV¹dp_zaïﺵ2jÜØ]ŒçÊd¦¼ÇyeÔÆg`»A°,£Ä­<C384>$b]A,“iÿíaâœX&ìB£-Jo<YÆÔþ8ï°~¢ÿ¢3˨Ôë2=³-S®á°Æj·Z&)+Èn¶ŒZGÚ­zóãÝ2¦ýR.M]órY“°ÙñWÑO—Qkòw¼ì2 ¨ã3ql“<»ñ2jÝò^¤æø2¡#øØ*³ü2 ÐPíÓj7`F­Õ¢9ÉW̨íU.°Íj7aF­sÿQíwp†™Ú0eÂgŽ0“¸]>žRÙm˜Q³}¼é›ÝеÝ</'˜IŠA¬£Zí&Ì·'ÙC{·b& ë"¯¢ÔœbF
ƒ^rù—J;€%Ë Á¡Ói52¶Vˆ&ò˜-}…ß…7JVHXújÓ[8µlÃä&–çÎm6MðÅb«µhä}°2môÃr<C383>é —k7É3fÒñÐvZívÌ$ý`|Âv
u2}=rÏD&®uY¬)'PMKèMµUV}¹÷©<C3B7>PM>{4Ë öû~ô½n7DeK*˾¦¯6|@(µ¸³ _
Ò=š¾" <EFBFBD>)4Kì“ÅsµJ¶iÇž2£ÖtzUÿMg™ ´ÁÓýº¾13R$½HïµfƆ?CÝ,6<>™anÍ´Ë+af$* „ê4fÔÌ6i°ÞêüüxÍŒ´z¿f¶Ià<49>N{^ 3£Q€Î¾c™ßwcf $<24>èZuÀÌÈa7™6013zx<6E>yÍŒŒâØú9]²‡3£¿ 8p¾93ÞÍ™XÞ3#¿ag-m™0Ùã™IïAY#«ÝžÑhœ§ÉWÎ3£+á|°©à™Ñ•@Àb0œ÷Ì ÁÊú¼Þ3Ûdëo3;pft,¬ AÛKà93!Æ©Z0¯Ä™ÑͰÓ(¯>’çÌÅÆ}Âi·´ž3#+¢vs%ÎŒ¬ˆ…§{½_
L+¡³´Ù4@'ÕP]“ë̯dïc9å3UËЛT“É(f[€ðªèÖX­ÕÌ–Ç…s}Y³*zQ“½«p0ÇXQ<58>îØæXƒ8ÖköŠÜs<C39C>=uö.—¬¶U³W[×<>ßΜeiãÌDÖädoÃCJî<4A>ìäLE£vˆý“Å0¢_ 6¿UàªT#à É_ÈçàEã6Ù‰¼Ðä> iGרtj“e†É3ßU-³uÖÜÉúF÷mµpªèMÓ§ªùÆaŽh”ÙÊdhï“§ FO;´<>ä-?ïÃ@–¦Í? œ<19>­³ôhftèñQÒÙ£™mºlíQÉÍ ˆŒ<CB86>óÝŽÒkfdL0Bl.¦ÓÌè<C38C>8·™J43Ú#
º3)¬öÜ=NÚ—HÊRÏ2Ýÿ:”~[U7»:>ñb©v·få1<]>Vò×Ã64?bHª1áˆhÃÜû<0E>aÒ¼M<1F>Ep¢ÉÍN)URM&v²C“û°V5w⨥`2a«9N¢´jo£“šj—8hÙ´ä<C2B4>Ó‰Œ)u­b•µ“P¢6²+²I§ádäøzØy÷©i ÛÌ*8ÍŒð‰zîç:¡³3£s§”]Ÿ7f†^¶o3j7bfûâf^£eF,IÒŒ–mä¢hRW´Ìø/3øJ-;¢úç
BÍ_ѓˉ}¶¸\4*ƒªæ¯6qeíhv6‰üö®G°ªÉÂAcu-ò+mÁÞGÛ™ü Ñµ<C2B5> ˜ÿC&ýl%0`füÇé‘@«=˜Ù.÷¥Yz%ÍŒvŒ<76>õ†:k<>f¶Ëv€J]I3£U㔫ÍÒÍŒV<C592>*‰#jbyÍl—Á©ý4ê6hf»L“îa53ú8Ɖ¡ÛG+pf{ƒKú<¯Ä™íþÇmê¬=œ=G“F(©yÎŒ<1E>ñŸÝ6œ¦¿ÑdÐÎl§ï÷œË3ÛÉ3?uwàJœ]˜!³¿çÌv9È"›Ô<gFoˆ,¶Y{@3zCØ„^<5E>k{@3~<7E>¦ÙÎWÍhÑÏà•8³]2ÐWë}Œœ¿gc…NßÑ<C39F>3SI§ÍÇÈÀ™ír<C3AD>^Uï9h³³ñ`¯—Š š‘Õ¡ÛÕj7iFXÓ¤ë>µ³išI§ ËyÓŒN“eU_àJ¦Ù®-E[Ž£i¶kÿqÛõ.2˜ft¡Œ[òb7Á4㯷o÷Íu0Íøë-õ\Ñ4;xì.Ò»n¥Û4Cû¡
»Eλ(•ñù¨²nj&¢Z¥Ðºõ¡EvÆš¿¢UYæÚè!\ð,ÓØbsgÖôhŸ öÐsX0ͧ9»©DÁ4#þ£ß òÑ4#þcÕÄj<C384>iFïÊÁE¤Lì1ÍF­W}ü¸iF4ÈA7¥ý8Gš R™<52>­/ÒŒ¦f;Ž›&{H3šZÆg|±ûÏ@šñzd-“;{H3BChÜ3W=<3D>f‡$òŒÇM½¯ ¤Ù!©$zÎï{H3^«q
­Ú ¥Gvr¡³=<> ]8cå9±¼C³ê&4™båª0§n¯ìDŒã}2Qõºíö¾ý ް© ûš¨}#ÄîzæR9<1A>7 Þãï<iÆ5Î7‡‰><3E>4#Qdi3_2f4ÄÐjñ@šÑSM%½ivH$ó¾§ÕÒŒW²IÛ¢ÒPž4#ndQÅÇjiF³ '7
4i5ë®ÉgvqhtÊ´î÷~eä¹ô£ÕHÂ6+#CÃl!kújÓZºN­Ï)«¨7÷äcß8Ý&Ú·÷‘*K@tÖý½ørV<11> t<EFBFBD>¤Ý2L^h°[$Íx™Ù«¶‡ò€šñ:síµÝ¨€š²5N[z…
íÕª*% Ÿ«zà”“<E2809D>SS-xžÁ5Y¹¬ÕŸê½Ó“Ñ\jEÍ(R”¥)$?FM[úâ/Øv{èÚ‰ƒ®†HrAe"®Å% ÄiôÕwÉ]½|DBùžv*ü Ç„Mîæjœ*¼¨)<29>ÙóDf'ÿ¥U×íÖ ¨½4<Ó´»ö f‡Œ(Œ³¼.kÔŒ^š9 {%ÔLÞøªúÜP3Jvö õY9 f$•¬²i¯?Ï£fD•p}°µ²€šÑhƒâ}—Ôì`›å<&ðP3Þ@Xv P3!™êÞv{»xÔLbLý°M³ šu×}}%ÕŒ&&[ìî;¨f]ÎlœN¹ìQÍèÂáú±ÜrÙ£šñÞQ ²YíQͺD†kÿ•T32Nv„šrÙ£šq«§<C2AB>ÎA5ë´fbA<15>òª
2†à™<EFBFBD>Î錈ìb;MfcWròðâà¥~<>K…üZx…+ÅÆ¼³Ùß“'%¨»—¼ÒA‰)E"‡2uG<75>¯Å<1E>sÛ¤tžYm0 H<>5<Z܃E…W€ýÂ܃¹Èsƒ{2+¡øÕ­º9f»QEÒÈtUÇ=KÍcìÇÀœ¬¤$$YõK°RA¤Øuìû/j@Ð…˜\ª<>¹ÈVj4G*—H\~QØ”X -Ñ1&ƒ YÂ/ʨäÈm]*”T<E2809D>ªb® ZOhï¬mä$Á<>È䎪®D톓çˆ*6Ù{fßÅv<Éä§&MÕ´ <09>fÅñ÷ä"ÊŸ”§ˆª?ˆ¢Y§$ù&` íå"Sœ(w‰¬6Í%ù¥q4Ü¡~àûâñ&R·Œú/ÊCåV3„oøRÈÌÜÈQiñk‰~Dø„Ö© :„ZÝàÙƒšIXù-—=ªYË‹&h+=¨í9½ÈWBÍxSÉŠ¡¾5#þdúSWB͈?AÜ{f„Ÿô<C5B8>æ®j¥Ç4ëDK¶åÔÖÜhšÑ¸ÃN1ÍÍf4î¸{Í`šõˆêÓLZwÆéɰÄ`š!N<>«­êÑŒw뻤D3úv”ˆŠÍhÛa¨êÐ- š!QUöìð¢ïµ Ò\Y4#½a<Âi6AÍä½öü½iF$<1E>ëdËi&Iã÷ÇÀ“f¼ÙµifŒyÓŒ7[?p1ýÎf¼ÛÚºL<C2BA>ΓfBǯÒÌgµ‡4#e\[N
-ƒäU²s`$¹]<5D>jˆáå¡Ë,KœJ}(•iò.öÑÙóàlN5púÅn•ü®U³ Q§ÃÍ;­ òœTûƒ¤_´@jÿEC“¬5ÆKBɶùþ¥‡<1B>©â ¤o6¦©<C2A6>åMšñn[e)x³ÚCš<11>²3Ÿk0”'͈FéÚõ÷ɦo7NŠ&Ó씤—ñB­Zó¦Ñ(º>Þ>Ù4;%îwµäŸhšñ†FK>Ù4ã
ÝÖ1ª¥ÝÛ¶ý¿÷ÌÆä_6o{ŸFò¯*QYªL¡<4C>ôyœnãÇ M®*v94±>X2ÉrÊ!ÆvQpB#L”[Mí&3™ˆâÄs„VñW±¢Ò-Wh¼¦ôà¦|=sþh¹18|$³UWlÁ”È<E2809D>p—ž¶Mw Hfb Œw-tÖêÐ4Š A;‰´èîì>tЊvÈò”ÈVk m(üs <73>ŠÊKŽg-divÜjÜ®M<C2AE>—Ù wŒ'pµ£i&o9éêŸlšñÛplÌüò¦o¹“‡«czg<7A>ivÒGÿÂz|^¦{7‡ô«~^¦±]eNÚ$ÓŒ1ó}?5è<™ftîÈêIù¼L³CT½^Œ¤ ¦YÌÆG“iÆí4=Þç¬9ÓLòúÇbùbš<C5A1>rÈ%êó2Íh.寭Ž7Í$ÅriF‰{3²=iFé@åmö;ÒŒÀîÕôDD3JÛL\I¢µÞ™®:ê'‰fs2nH¤g.‰fs2;Èi&A'ãßÜ{aiF`
æÙ§˜¯Û1CÓÈ´Fd© G©S'›¤¥ƒÜ»¦/ošJBP ÔLô®ƒœ}}"jF6<>
ÌmzÒˆ·H¦½17aKI¨K‰6LÒb8Q>ÛýÁ•…kÃS×tL˜:£5Ýktͼ1çbݜͦ£é¶'qŽ“mæ×_bw©ª9NÔ¥$6ºµmì³|¨«Í–Œý‰¢žšÛ´¥G+@“Yº4͈©<CB86> eŸ&ç¦1žAlç¬<C3A7>-AÄ·†õÚ.%é¥fyjm¤ñŒSØ4ÿWµAMCBùÊ»ú˜˜†?6ÎGÕÒÎ’í¼My™½È<C2BD>R™ƒDÙÇû$ óDÔL¾ÔŠM¦<19>ÝÄH¯j¡ÓŒ
b£kJ\‚õÉÊMଅ·¶ßQÖ-»DgÈf)1fÇ­Éί¢í÷e=”ȨÛH²¶)ËÅ2iØÓ4ˈ£Éì@
fòL-çe­ºÖ£aûÁ+<2B>±e,äâ°‘ ´Y9ɸw×d ªÇôΜiƈÁº0ùɦKÂûŒ¯M¦MÞ×¼L3™¯<0F>[ù¼L3Þ3ú2ͺ„uœ:õœL³.“ŸãÊÖ?/Óìü‡Þºè§9šf4-sÆ-™f<Žoêöçt¦Y^zü§Mö˜f4ËŒ¥nû'f„<66>¦£Ó„Ñ4ã•Ü5åé“M3^Êñ~¦ã“M3b¹ ïŸlšá<C5A1><C3A1>ã7<C3A3> šf$ŒtÛy™f nïòžû¼L3‰<eUmû¼L³&ðÕÄ £iÆkòœT£iƺŒŽ|^¦Ù&ÑΫ9[<5B>4“æKyPú¼H3WföI"͘+©š­ö"ÍñDŠÎ¿$ÒŒ.ÎYs¤w;ã„ ‘]‰4£n1/Šfýyä}‰f'뜠:S-s¢Ù)3|UÉ€(šI/ú†#u|²h&ý&ã­ºœJ…yÑŒäŽù¨•E3þ §Àaû'fô”ŒwG¯Pͪp?»?I4cA?íŸ,š­˜Ü´]'‰fò´ÈFû¼D³&<ºÝ5'šñþ«Ý€®šmÏÛ 4ãY|ŠTÍxêÓ]ªÏK4Ût>ËÒ§vöˆfìCºoÿ"Íäîsï«Ah<41>4cÉ<63>ü.{»ÒLöY-È0‰f<E280B0>Ž]ßKžשŸ—gF'ÝÓz
—åZsbÚÆ<04>\“[¨5ˉi«Á¯Žg6EÆ"Y9ÉÛ]#ŸÄ”­šÜ÷T”E×äïÉ¢yP¶\r“”dã”§…Ô®yPf<VKv-»µžj<C5BE>  ÿÃqEb/âc ™tZÈ-ù_€fä~8iÀf…ó?$ÍÆ¥^w¿fÜ£ê¤Ù47ö«…y¿H3m½H³ñnØ ŽzfãQØ2`Þ¤;wÚxú&ÍÆ¿Ñ-54“fø>Úvÿ&ÍÆ™Š4;©½H39Á6«%ÒÌv¯o¤Ù¸wÛÍ{f4(.³I3}j¶R"ÍÛјË7iÆ»&ë¾I3ÖüÎI¡%Ҭ𴧬Ô
ÇbOOà¢ìÚiOeD¡íÀæo 0FÄ»(WŽì­k™r}<7D>ív»³ÕY£PÚ4+¶¹îº=i× hñ{Àõ§<kH@“É4 ˆÆi{§-yh˜fÛŽ{Cá7×”E“aiù>`%4ag˜]“eÕ¼”Ô„<C394>”…}ì/ôT§ §Æ\òàêRÒ4)F€¼ÎAkÖs¸¦š,Ð2ØÄw-°qÉ9Ìßø>6ûcÑ-ä5´båçHÉm TOö,'Qsb¸hÿ¦ÍåüDòÏT ±hn¾jà}!FÕœGëÜ_[J®É²S¬¢+5¦Ø|MÙuBÐÔ<C390>hš5ÇsšÖ ØO«%ÒŒÇ!Ó¯^¤™Ã¶iFÚºÎÌj:Š'Í$ØîТi&­ôz”™4¿MÕO ¼ÒlÓ`«EÒlCdX¾£fÌî.Ó-‹¦ÙÆ´B;É4×S×vÞ¦Û¬&½L³<4C>°ýõ»i6.yBô6ÍØm´´ë—i6ÞÕb«³iÆ|¢åD¾M3´M¥|fÌ"p÷2ÍH³kßQ³F?â,EÓ £Ùo—M³ÆšSùnš5ü5I>fí`„æ°R4͘Ql³I3ȼã¦É"iÆ.ö¡Áè/Ò¬Ér̤Ð"iÆUY™4ku2ÝoÓ¬3Ñg-šf¼tÝ~½lšüRõý÷2ÍÆãXÓ½ý·i¶v¹¤H-fÌízÊy™f4ˆœ}~_4Í0äËíEÓlÜGí\ÿ2Íxô0òðešqQµTî—iæh¬—iæh¬—iæh¬jVu<56>ÉjQ5wÒ“¤y¹f<V|WÍh÷ž"]Vͪ¨ßY³j«×Ö¬²`jï²ÄšÑ®¼ý—Y3~ú>é²ÈšÓ¡þAVÍ@ºiaY5/ÈRõ­ùRÍÐav};¼T3Zç7½Ê¼T3™33Y*«fìqîFeÕŒ-ÔfÿfVÍ“[…ºjFk¾Î`¼U³qõo¿nµ±Þf±É/ØÌãX6s:V†Ín+³fwóÍõfÍÊxè`ÈjŽ5ã*R{ŸßX3l,&Q¤X36Éî/Ö k9ô™Y3¦ÛªHfÍ
¨ÍsÄÅ-“"í®É. ]mF½%ÕŒÇñj7“Y5ƒ$9¦°X3æîÊn°Äš•Îæ¥ÞeÖŒ9¼]“AÈËò•5#?²löÛ%׌Ϝ ¢\_d3Æúu æ-›íœ¢õzÉfû!©eÙÌã­<65>Ö<½±}Éf¤<66>Ÿå+m¦ñ
NVM¢Ð­Ûa´ìXY­ “/´Ù¸g﫾Å^´Ù&{Xú}™6Û4ÛÁj6wÛE#wÞ´Y»GyÞ´°:÷¦ÍØGèÆ³%Û¬-ºÿÍVÒâ<C392>©žEÙŒó®'‡—lÆ^á¡gÓ—lfy<66>V²ŸÞsŸêY”ÍPÛìÆé%UqV¿Êf¬°ðûÍXVÑ'Í·lV¸tœS/²Y)»fµ(-]¶ÿ­e3RvŒÍzÉf J·R€Í¦ƒì_L®Ù<02>Qõä<C3B5>]3#Osƒ³k¶Ð…X&yX3F<33>ªNY¼X3úUvmžy±f¬2ïfFdÖŒuÓ¢;9/Ölœ×÷b¡ê™5³¶Y ¬é¦}1à*±f„øl»ý~‰5[f+úõb͘#¬º4õbÍèž^<5E>"̬Õ˲Ìï ¬Ù2NÒF»¾Y3á}„x±f+§e~_dÍxÒ‰Ä7k6nÔWÝ}±fã2vØeùÅšwØMè5£Ãp·JDÍX¹6×ñ…šßÚwÔlYûiNHDÍØ“Ý¥Ys¨™$2£¿œGÍ(1tÓ§wæP3š÷å~}jF<6A>,vYRM¨™†žuœi¶úÕÖdšÉÈYi÷¿èH3Á­dUj<55>4#äЖÌ+“fr/4c$‡ü/ãÎiFm<õ®æ<C2AE>Ól•<0E>bg¿hšQ+œ+ô× ¦±<>;<3B>æÕjÎ4ŪsÏ`5gš©bÕMó~™fÜ×I3:û'iFPIµS\&Í:Çi?-‰fãFÿ˜ jÍåØtÏå%šuV.íé/f<E280B9>”ùÊ&ÒŒ›¸^&[D³N4®µ¼H3V
$DM|¶ÍbQ´(ŒFwhœ—cÚçš•'ñ6ÅSÈ í¼ŸE3~mÂz¤D3&—õ¶Îh4Â>«ÕiÖi ±[åDšqï®ãz/Ѭ<C391>«Åt'³hÖ ÉШŗhv°,P÷¯¢ÙøtÞLiÍÈ!˜g·,š1¨´hçðK4ã¨6m#Í¢Ù!Ë<>úqÍ¢™öñéýb͘޵£—h6Îäøëa&ÑŒÑïÉâeÑlT=´Áù%š1ˆ{ÚýiÍØ×Zµ¥+´šíì«ÞÖYÍvmTø
·—Ø9WMЉÖ0Šö(Ã*ßi¼#)Éÿ÷aÊ€&KÑ]<š(r ØD,šüÁÞÔæ9bB#«\òab|V9þæëy L´ÇU4™®9‰ªÉŒ¿Ñ<C2BF>ëšü*=jR,TŒämìgé´íY“bÚäÑhÓ“bÙÃy€!Ç[VÓ…Íx¶*Z$·FO<>ã` ‡p¢ia<69>ú<Å’Ú¬ÛÍ&åéJx“UMw#a~¦9ž¨i×5…€æÈWªŽ²>Ü®Éï'³ šWuš÷“A3ngöÝ2<>f;œ£­ÿdÐŒt$}<7D><66>Ê2å¬Ðlü•¹ÒŸ—D3—ùo&ÑŒ_I̻ޢ™®ƒÞn™ÍdPs»_¢ŠÓxñf-ˆfnŒ¹Q™4ceÚ­Û—L3žwó=³iF<ȲoÓ- ¦Ù8|îýV«yÓl¼Ù¥MLJÉ4Ã.•òëmš!~Ø!fÄßïÝè«d𱿷iêõË4cgs³uËlšáÝ[*ÕË4[ÏZ'ÁšL3:7—ݤ­„š­lùÛÚ]FÍV{H¼Þ¦=ô£X-˜f+«µÆõfÓl•õG=ÅeÓlUü¤X-˜fãüv4Û´§Nç¿L³qNÑÜ®ëmš±îÚjùjš<6A> {S7f¬8šòÍêÊhqŸZ͈j«ý´$šIC<49>vé¼D³jÔ­Õh†-{šŒ•M³2s,¯·iÆê¡ 1/Óì`¾Þ¦kw&zgÓŒ'†¹ÎM3†ñ¥L³B ëQ¾¢ft~Wmhx±f,QÔc<C394>vYpͤ‰x·Ÿ—\³…üÉÚg-¸f,ë<14>0~¹fíw[ÅÊ®¾Ý8·Äš<C384>»¼.‰È×Û5[èá1O9»f W+—{¹f¤ˆlJº%×L/,ˬ× sj±;<3B>욺¿j²[v͹;4Í8¹fÄVh÷¸ÕœkFmÙ§]³ê»r“k&1ƒ2NgµÛ5#Öýd«~údÎ5£FÆ÷,9Ö¬2^Îøtµšcͨ±`øZpÍ€¹€3t…!ºf<2؞ו]3yœàÞEE§U™)e^ÓjN6£¶0W­æd3¶~hð[¦ˆæd³*“é»E…GÙŒ]NÆ\Ú¬Ê#ÄÞ—Ys´µñnhš±i3^;vf·š£Íª<£Ô ƒÛ ñâ”- ©Û¬ŠFø¹ÕœmFm¾V«9ÛLz}ZÕüdQcï´³ÍÀÏAv$<24>6£DJ²¾@A6“±
I1Žnw šG¦^æd3hh©Ñ´»(QKÝà¶ Q#&Gí¢lV¥?éÐvÃDÉLþ¼+I¶5š€×Ys¶Y•tqSÖ¬vÛfÌ<18>§õ}H™ÃͨÙ]Á•q3jãÍ®“P 7«z<C2AB>UŒ³ ¸µ•
õ~—kßh¬bßž4êÑÈrh²ë`.ìªUR0£q,ZÔæ9Y7.]—ªá~F¬Íe§}7k?ײžˆF8;9ÿ<Jª–©F†¾{Õ¨Ô(ƒïG±ÅEvÙqÀ¨j2U+Öß]kÌ3jóœ$Ö©¬£ªà}&O½š<CÂÅ/ÂÊÉÑÒ(¤ ‰’‰Óvÿ5ñ>Ã"K/:5qdµwûxŸéi•|»LÍ6wà]ã¸(hZŒãÏnÇ&q¯)î0z­¤¸ ½Õj7£V™§œ5‡IÊÛº-_l3J ‘§ÕÛLJL>u+9Û¬Š7Üt<C39C>.áfRcömÖn&µqš45,èfR;Æe\-µ ›É±ƒ"nVŸ-É+ãfòkWö•q3ùƒ<C3B9>f;–€›É‹@ûñj5‡QÛÆí¦ÍQ¿‘&=$ÝLÞ,ãÃ¥T º™t€´ºÌÒáfU¶GØ¥<C398>ZÀÍäÝfuÄÍjHÛ<48>¸™|[µR ¸™|ò„vµšÃͨ±îÓÞ¸ô•R-ÜŒÚÁNØi5‡ÉÝÄf¦K´ÍäD%˽R ¶™œàº‰´<C2A3>3Š:ÒfœkYƒÔW¤Íª ׊qp%Ú¬ÊêÐnÉ©6“KF^™6ãRb
«Fc+Žç¬k2?±Éw˯<1E>¦h$º²Z<³Øte#ÁúŒþU¦TšÁ™xÍÜ-zfO4θÙkXT ÔW¦Í4õ´sG¤Í¨<C38D>_ÎÒê#m&—Cn/'`æp3.£+÷<>óûnÆu¥Ð:³7«"ÞŸq3®öÇ&œWÆÍ¸<C38D> <EFBFBD>CÏ+äÞO¸™t䡆MÍáfÜ¡è§9ãf\ë­gç…-… Ó"n&Dæ±}ÅÍÆóÙÙÌQȸ£ ¥~Å͵,Ý~ƒÄ›-,”Z<tæÍO<&T|³… ÛfÍä±#˜)”<>3vòË>¿-g,1µaµ œñ´¾[ôzΊ:ÓÝj^8cÄo™h]ÎV/&EeáL'Rííž„3Ú)êaú\Θ[-ß5 g`9Åîâ²pÆ »ïš<>…³Š†iØHÎV|M
‡ô´á Ç5y¢äG6ËóÌ”G¶Îňû™5ñ 5ꚊÅi<lMçFÞF™´\p+$<24>HQ"ޱMbUŽÖ¶ƒ#>â¤BiÜ.<2E>¨âZaƒ¤Ïz°hÞ"®uÔEÓ~Û£ÉÔ´8ª&³<>¬P>Ìϲ $ÅhÁ§9™5š¶…âÉÔ4û éÏÀÙÊ>—¥¿€³ñ4(itRKÀãa«Á8ÜM$¯7pg³X0û 8+ŠW­€³ÆòPÎð–Ç‘ê?™€3èç^Œ}ËÀÙrw¨½€³ªRÊÀ½_Õ¨µp6n,-ûúœ<>dy€3.Ms+_ÀÙNsú¢§Ûp¶·¼| gøýêA8ã/iò/âìà„ª=v/âLfP ùÉÄO<>÷_%g¬«ïÁð"Τ#ò0‡-<67>o·Ò™8#~´é^W&ÎNyZÛ&cˆ3òјM·Z ÎØu[u±'gl7Jз•œpÆFëøøÚ<C3B8>tÎ$§hœÎ
Ž„÷™ì|Ôà™ÂH…ó6´,G$[V‰;5…$vÏjðÌ1
°Ö±Üx´™ãÔà™Nj-s<>íAϪ±5<56>¦-Ñš+áìF³öŒ]sbE—b24Å5ŽeÈÐŽó{´ð¾Ð¹<C390>Ñ„¶Â2#¯õ7—ù:FÒNmõw¦éY~…ÐüGÑõC­¢å¼Qï0¬/ºnæ³jÙª £k9èDU£²ÎŠ‘Ø+íšÃ,žœ¼UgÊò©uÒº¿åð<C3A5>¦½Ø‡”¨Qwç µLkÔ^saߨÉMvéÚomˆTwg”±üóH&á}VMުѺªÿ(òhux;<Zœ¢aÁô(¤1ÿÈÞm#Ó„&ëFÑÚÓèO³£FŽÊâa…&³sµ.ŽÊÿgS&æ”Ë©½3ÖíÖò™]ÓøGí<47>õ8L¾QÑ“M´JÚ;kSq,ÞÄÚtæR_è¢HzÌI0§rM®9'îIµJ5L ã}”ýläÇB<C387>0hxŸ©s@P­Œf=ÓèÂíjï\ɼ÷ÍáŸhxtè°Ñh Ðn4ùO±óP{gήÔ<C2AE>˦ªL½Œ,<2C>jïLŽg϶¦šFË?ÍjªI­­é®u"dm Ó—.Ëx6fÃÝàªA£7³+$~>«éâjÚègn㨡€jex©£á}¦¦Ð¼<C390>d|¹ñSKü§{\vŽšJóP&è6ß-Q¨+—9Òª3“¨¶xòtU½S³ùC y¡|R©ýÆÛ¼ÖˆAâÄb6vªÕßÇ™ ÂY“{`&ý¥„3iĘq}Q8£ÃæÎaL™´®m[ý&œIÓ²LøXÍ gMÖÔÊyŸθÛë¥Û%(
çEÞæàÔ®ÎÎtÝJA¾Ô5¹Ž<C2B9>® gÄÛ1ydæXθŽû½LÍ gMÒ©øÔH-g JŒ{ÏÉ€EálãéÓΚ™8ƒØ>{?$âŒÙfŸ¼dœ<64>±ïæ&fãl<±s;±²`œß~hçÇ 9;,.Èj9™Cg(_ÈYg~Ó'ÎŒœÑEÅð ÕrFÄ̦ˆ¿¡‰°YÉ!g²»÷c~—3Îh|o{}¢q&ÃEã„ñÍ8có±ÜO€Ñ8\ Ÿ¬O¬ÌgÖËÚ¿gw¨ç×+!gC㥳?JDÎXðZªf;&ãŒîR|û>m4gœñv#%GÏÑ8“<38>PÝC¸²q¶‰âxèK‰3´#vnÚÄÊœqÆ”ÎF„ÇaµÇ8cG™týD㌤Ôõ¯£qF@;Ìz_<18>3Ëm1'âŒ$»<>Ór±š#ÎvéW3U#
$‰#Ø"ÛW# <09> g»Äòm‡¹bA8ãl|FÖûûœpÆÚ<±æÅâŒNøc?Ì# Â)ÊÍìÊàákë<>޼‡t4%ÞŒ]êTÑoFkˆnÀI-ðfìl/z}¾²o¶K$g>`ðÍ„¡“Ø4¨àN‰Í]¬äx3ˆ<33>ñÁÜÿ ¾'%®¦gߌ?j{$¯àa%15p~ñÍØ¢Ÿ¥|ÎqfmÅ"úf<³Î¡ŸÆè1FyÀ„ë÷ߌuÝsæVFߌÍñ“í}3ª®Z_Ù7;äA;½ÕœoÆÍÊÓ×a5çq:>%­_jÁ7ã=E
E|McªM;LˇIGÓ¤[`Br ?Ñ7ë¬Þ¶²êù2úf„j¯ôýh-øf ¼Û>CòÍè¨[é˜ßç|3h?0,øf]úÎYø°šÎX5` ³ÎïsÂüØøeÍljÂ3¿šûe5'œ<>òètû»áŒH ÂJÿáŒUô“…Xý¾ œéuªµ>kN8ïbœöÍ® ™FK.
cÁÒôoj<EFBFBD>)cÓºöÕ4­D {6/›Ä Š˜Iß®~­ïCk”°2ojê5*œÞwÕšÃÙ…(G˜|n\R‡<5wæô†iÐjnäI)Tf8ÒU+ñ¤ɵĩ™žÊ4 ÂK‡
þÙ—×pÂld¬½®½X{G(-'9+4N76OÕÎÅŠ,Ž]ìNg¢—+¢Ye4¯Ü5<C39C>)yZØrqÐR£šNº”¼J4J6+R5­Ò ¬ÝjN8ãCZg\^ÎHù7ýàJ™øF'¹íÝj<C39D>p&K&Ì‹éï„3fJOk°¸pÆä
¤†MÏCµ}W5jôe«Aæ*<2A>NE³_®%l0ÔÍgïMYçѵ­7þWàȤàbã¿4Îg]×Õ(È"Éàš™sñdáß<C3A1>-lÏã}jͲL»ÝÐÐDŽšiN?(³µiŃÂaXH²•`|¦¦ÊòíȉÅÃ}®Q<>K¦S9dõ æÏ†&ÓW,êðL¯h!åÖ‡æ½?|;¦°†%Vu<56>3ήϾƒm˜¦ÁeNááRcí@4±»V¬Òª©f3»ÅÊ¢õ"«£ÞÓ´}žu] y¾¶¢„3Zˆæ4<C3A6>*gU~!VðßòÄY•¦üñ{ÌÚMœÉ
÷ ¹˜E³XœMPΟüó$ô£±FÝqzUã <EFBFBD>&5Yé!·!˜Bw#qFœ:qÆÊÛeö|<11>3Æh€[ì­<14>3V}õÔ<19>3FfYòœ<08>1C)9ã ˆæ$3Vq&†ÑÙ{_ç·=ÆC;\Ömje<6A>OX»¹i^9c ‡ìä²MíQ΄ߪ¬XKÍ+g,Nñ&¦šWÎdèäGT«ÝÊëV,§ªå¬Êª&9,³ö(gU±ŽS£Î¢rVeÏôl¶ ”3fƉs1J<(g ƒ0&IyåŒu2â·´<C2B7>=2gU îc7Ü3g,¡mf—]‰9c\‰˜j[Á ÌËk ¥é<C2A5>bdΘÑ7=õ¸k˜ñAÆ>æLåfžORÎhÕ»cmrÆ3­3³ä<C2B3>³&ËWäLJ7á:"gÜœ³¿ Ë9ÛdÔ<64>[|©äŒ4~‚žÈ"rFBëÉËpZÍ!gÄ~<7E>S½ÝˆFäŒ<C3A4>!Qïºl•³Mæ«7M¿LÌÙ.ý*dWK-0gDýÃ'â˜3rlÇŸ©•/ÌÞ£mzeŽ9ãFog~whŽ9ãfŽkË7猌sˆŠþ­ƒsF(͈Ëç ¦²<C2A6>ô·[Í9g,ÄŒss»Á2çœq…±¥gÜ<08>D6Þ«Ú}<7D> 3†b†¥õûtFö³¬ÓLÍAgx2_²ZÍAgÜÔX«Õ•¡3þ€+»„»ÕtÖ‰
( ®õ¨¤Š¤Z:¢U½˜œÔñý(1˜3ÚTFS  ZÁ)ÉZ¶ÑºŸK†ç<E280A0>v½èsÂjÅfPóXœ(H$–¬™<18>ì œ 3ž[Ù7Ò+@g²è:#tÆ~¡Í<_:£ÙEo±¥¤³SNÎÝ>+A:£fcYÅ*:£…SÔ)猰B;]É9c`®«¹fµÇ9[%<25>÷¬m~ÛÜ cëÿ<C3AB>9cñw|·Ã~œgΘ´?Qé"0gëò]ÑgžÀœ F4àV]Ï ÌkÆl`´>ks&Q<>9Œˆ-BÝ• Ì™`DrkµZíaÎV‰ü¸<4F>9<13>ˆÑ ½¿wÌ™¬Csži³ò0gŒüxjÞa`ÎX£žï¶+1g<31>àT†æle¿kaßT))Ïœ‰'±TGŠÌkÛ(a&áç lÕ¾E£Ð¼s¶J3ùøØazç ‡bãsV¬ô0g«´¤/ü+RóÎDÅI&ÛѬö8gXD_}%æ Šˆž¡­¿™³Ul˜©æFæl•`¿µöóÌs<
E[¿$¢Åˆ˜ÆùèšlnÕaEµœmhªá|&31Åÿ;½2cëÚogv¸ ¨†Ëñ™Üí¸<£t¹1ÚÕÃü>.Ï;'<27>« YãFžM&YJ,.„%pPKÀÅ¢¶ Ûõ©ÚDØÈ©ÒÉël¶,³ú0]ìtEÊ„æ¶ h$“µ?MÿÑêÈ(¼ñxÞ9\æ°×ŒeÐäj!<6A>ÈŠí¿3!~R³ó<C2B3>óqÚù­U°A±]jW jÈVdÎXfo*(YíaÎP/4\¥YíqÎXçÎÚ"úsƼ#1Ó+óÎÙ*£Ä¬ÛœV{œ3¼ŒúüY<sÆÊýɳò2ks¥ábÊ äÝaì˜gÎXÕg³Ë|ÈœIæòÒ,è12g¤Z2 `ü[`ÎØ­¯Á:%3§œqÓ:>»Ó•3R7n«ÕœrF>¡^^Y9£ÉñhUw“rƃu_f°aTθΠÌkêdTÎÚ\Ö•3Ú·¾^¦Žæ”3BZVÍì»rÆM²tn¯VrÌ™<C38C> wÀqdθ”ðÐo Ê™d/åü— œqé×­«9å í`!žMu4¯œ5ifÞw Š-^9“<1D>~G:§œ<C2A7>ŒÌ¾µ+)gâ1i/žWÎÔ#jû²NíQÎÄ#b™SßA9<13>¨Îøª¨œÉØ©­6_I9c—=ÖNA9<13>èÎÊ ÊY“ioÖN+ÝCLxD||&Qç™3öVfð•œ3¼B
<EFBFBD><½ßLÓg&)9<>$ºT©Q&‰…Ä#ÑÍQ§á€ÑÙiDFÉ­O¾ËßW9ÄUw6Õ°4ÝÌ¥MnX¬fx_§LVæ#[yYR%’Ñ]Ý®õ,t`YLÏ!“-ç¿vJr66$²ãD·Öˆ¡ì˜ ôz<18>3&Y%i<>ÙãœéÆË¼ÚGç Åx¥+1gxD+<2B>¨¾Á9 kœ¨‡ÎšLEÐAP¬ô@gl×0W¸˜ 桳&CŽãƒvNÌì<C38C>ΚÄ;5™õ¼t&¾ÊxWi³q„Î{&GŸáÛ:k<ë«ÝÌDèLÆj <09>Òˆý <20>±TíYëJÒ8KפZíι]$é ¸e^Ë®$<24>5îÀØS%Hg<48> M_²Ú#<23>5é{ðdÙ#<23>±¯Ä¬¶‰Fê ð…€fÍ3Ôc¼müKa
ŽˆLîÚ弫;30C 5Ym™`Ib¡±Í ÔYÓF]íßôÔ#¾•ýeͯÔRd|Yz¤ÎH~!bñfÐu&‰<>šÊ|eëLV,Ư`Ê[°Î˜
V€&pa“"Ú®–†ø AÑ:„U#z•™?»æ©WÞOÓVÓ<zÝU;(^ÆN&ƒ<1C>Èôû'Dä~Q´$Qjû**<2A>4R~&¥Ñ5c¶wRZm¤k+)M;tAº“Ò*þah+)<29> Áj5g<EFBFBD>u¥š†¥$댋٣FëŒ ÿqjŸèh<C3A8>¡Ê<C2A1>3ÏbïÁ`<60><>dzh—y´ÎNÓØ-F;Xg'†Ìrè6M²Î$þ¿pÛ'5o<35>AA©¬¦JyëLÐ"½u&hQÑNÚ+Ygx6å ÌÖƒÊc­é´Þ:cOMV5"Ø[gŒ0/¬i2r°Î¶"cv«¨3¦Of=}êŒ<C3AA>µ«$Rg9¢pç©3&Ÿ~ôŽ,PgìÓÌ•Y»©3†¢Çýl릧9ꌼ<>àÓmÂdu¬CA¿´‡:c^z|¶ªiŽ;Û¤¿EþÐV{°3Ð<33>í!Ëêl“y@øjµ‡:ÛC÷Ô™ Y,|NÐì¦ÎdG<64>­û½u&Rq
Ë…ÝIiÕüùT»Ò*8 ]än¤4Z(¬]êNJ«êŸ¬¨¦)M&emÆ=<3D>Ҩͮ¬œ´JÆSŸÝ;'mŒøõÀI«jn3Þ·rҨɳí'<27>|ªU5ß9iIo[9iä*-«}ç¤UÚËòîÚÊI«…4fsmå¤UÚ>²}…+'M^/vprç¤Ñ®]ÊîÚÊI£R#ægNš¬™[õq^9iÕ;µ^œ4¹úªvå¤Éóó?á¤a5l¥wNçWV=vç¤Q<C2A4>¶o͵•“æÝ8®­œ4ù7;å¸cÒN ¨;&í´€ºcÒ*MWí“vZ@Ý1i§Ô“VÕéà“†éh¯Õµ“FX¸û-xŤUŽ:K+%<25>/dûü;%MX/:»SÒèQ²àåNI«öK¨v¡¤Éþ\­ñ_´rñÜ)id£šf„î”4‰Ôïõ@I“…,Ä}h+%­P=¤ñì<C3B1>&d3s;%<25>k % Öó׬H­uzf<7A>uÆv!Í@µ¿­3áŒön¦W ÎØI\%SKI)O<>!ü¬¢u%ꌱíqÂ+h¨3vÇ-Ñiñí<C3B1>:Û¤?†•ÕjäøQ}%ê h¼Ÿý|SgŒ{W:·MòÔÛ“œPôå Òj<>emyél<20>mœ„핼²tvÈ¡9“¬³C¢eNêÊÖáAJ7XÍYgìËH_ÍDÍÊžuYFë©“À3mÖ™.fÏxWµRuY7<59>g§Ä_ì[Ÿ¨™ÏNÙ#šž<>²RÇ’ÔxF"ѸX—/à-tãMpJ{À³<C380>³¼6ÊI̓gL­7Ó'®ž±ÑºÝº<Û¥7\†o¤æÁ3FÚ¹É×Þƒž± »/s<>#gŒ»<C592>ë ‰/V{À3á<33>8éëÕ)ˆgpH´)3Á¼xÆ(ü±Ï4â ž±yËà¶=$yñ ¶±O íÏvnŠÇó®Ÿõ žíU:½,„4ŠgÂ-<2D>gƒªgâ ž1@Ï㓽[x¶ËrȸâëRIÏ ˜Ø•5{Ågû*¬a[û„ÒnñLœ$FQM÷ò♌ݳƢRbÏØ+nU#Ò®$ž8Éô„žyÆL>MtÞ>òŒ}d(Q3yƼþÁHoD=y¶KgáqÚ# ”ÆS¿-âEòŒQ~º:V{í<y¶+¬Q«
ä™JDþíoòŒ)ºhO{É=yÆÆô*ã.Åjy†Õdv·ZmgÐ8V¦]vg²a=Î’:êœÄ3æ— d×r$ÏŽè…òŒ~€mÎ&òŒÌ(y}{Eó¬Ó­³W6Ïú“Mqeó¬ÿC–ù}Î<£ûq»?‘Ñ<“4F€ºÕœyÆþÂ8¥ØrN4Ϙ:£íOÀ"zÆ5ü”À<«=èøsªÝð2<C3B0>ž¡/­Ä(ìoô ~‰S<E280B0>¡=#«@aœ7zvBzòfµ=cc]Úõæ5 g<C2A0>#¯„ž²ùÛVƒ®zÍDÏÉ=#䀌ڮé=cCžÛèfÇéÑ36äÇ¥¥L>Ï£g‡<67>öè³ö g‡L*àA«=èÙ!7¢³u;¢g„#°É¤Ý„=#a<ÍT;
s¼SÒ¨Û<C2A8>½¹¶RÒhÉý™’ÆEµ«w£¤jì®+% 8ôì<EFBFBD>[ötµâÕ3Ü&†wìdܳC£mW[ÏîÙÁ\*W\ý4÷ì£xßtë4ºg¤*Œ“GÑÈ<C391>èž±ÿ¿íúö¿{f¦SÑ-ÿàž[$¤÷ŒÆ€z2Á*ïžÁv±äß÷Y{Ü3¢:ÒÊa¥‡=#‰AoPÞì]dÛ'!°g¤4ìæŸ\™=;þ!<21>ÕúõŒXÞ†Û[=íÝùb%§ž‰<C5BE>¹<EFBFBD>F:Gõ¬sÖß'"Õ³.á÷Ô3<06>ŽûôÕ3ÚŒÎ*ÛzWfÏ Œ,|ìJìg8RUoHíaÏäùžœO}¹{vŠÇY6{ {vJÔÐbÄ<>=ÇxI]»{F$„{
˜k+%Mž47r¸SÒ¨&,Ï”4Žr¬ÔãNI“0ÿU®”4ž§êWáJI“Û(YNÿNI#;iIš;% ìÝ 4Ï·¬gϺ,•à Ïži^Ä>
€²ÎÝ)iÅ:][)iì#- p£¤É®…Þ—VJN9ÍfÕ+%<25>#:s¹¼SÒ {Fg «U/l<>=£µ<C2A3>á
¹Í–ß)i¸¨EÄo”4+"ÖéFIËUèá×<C3A1>e¥Ù·gJZ&Ôï;%-[ùƒk+%<25>¨%2î”´ì«Ùë<C399>ÙU—VHZ¦.樭<C2A8>4‰fö¦U>wH)ñ=ØÇ]!i9š·Æë†OS܆¶BÒ²NJ¦]!iò÷v«~¾CÒ²»§¾ iy‰ï;$<24>,±µFÞ!iIëØŸ!i§‡ÔF½Ê¶»´þ˜Û`«­Œ4ü˜­gìÎHKÅ2¯FZâ°êÆHÃðd{f¤Ù\Zi‰Îf9¯Œ4¶ŽÆyºÒHe[o„4\[ iiãÔ<>ÜirkøùÖ<C3B9>FÑp <0C><>4z´¬®êNI;ý¥n˜4 <EFBFBD>ìY;#\ýÍžuéEA(\ÚÞÑö² žA<41>t|ë
d[\Z9ié:ˆg+(Ív§»k+)<29>м}@ÔVPše<C5A1>õ¢Þ@iQ}Bk ( PPÏ ÉÖGÍ ê®2¥öFõ¬KžÜU³Ú£žÁ•i2ÞjµG=ƒ+›§ƒ+©gdPŒó"wËV{Ô³.<17>.l͕ԳNGƳMÔ3¡Ìh—6RË«gP±õãØßêã.n¢•A=£—MŸÃ48¯žuZ$Æç©èF`ϯ ÉV={FzÅ\½2{Æ2 KÛúPÙ³]þ§Ý DöŒÿÒdÁjŽ=cúŠ5¢ÍJN=£wiÖÊŸÔ3Z0H•ÓÏzTϸO¤-GOîQ=ãÈŠšázA=c2 LÖ~½ žÑ£KµÌÚ£ž±x¸<78>¥nSPÏHlÚ¦í“Ø3æJÈ"Z¦æØ3N.ãÆ~ï³ö¸g$bŒ+£ÐcWrÏNéÔ“Á«=î<19>ǸÓ(úÉ îÙÉâýÎDíÔÍnøLþ}ÚuΉigÕn¿+Ág¤eì:h)5Ÿ<>2/©„WϤ©cœ
;z»Óoœ4,ryä¤íøµWVLnñ-º´RÒhÕ°HóI“YÂKNî<4E>4ìãvÿ“WHÚN%Zê®-<2D>´ýÈÞ!i<1C>ÚÙÜ »öÀgüpÖš ð?üàŠhÇâé3~8ç§ésŽ>ãg<C3A3>[Ý¥ëƒP°ÏHÒàÆÐvçƒ}F†ÄµL2í¡Ïh÷àÏ¥Éò>£áƒÍ*ŠôÙÙ$…nÑ\¡HŸq\<5C>“œ^ž}&ÇÅV<C385>Þ•úl·s¿A ÏÈØØï%<25>HŸ±_mQ±W¶ÏvVUëxàÛ¬æì3.¬wTz²Ïh¹Oâ>;xÝ.># ŠîEã±}Æ^Ÿ×Ò?/úŒ9¶ÖÕh°@ŸqÌLGl“7sô…E&h?/úì”ѳ¾©ë鳓½±
æÅ5.­<>4™c³çûI£œªÚ ó“è3‰à¨UC|&¬<>âá3 ààeÝþ4ŸI<07>¢Å¾ÏÁgiôcÙÑ>så?}¤ð™p,óá8¸g¿ÁãªyUÞ=£†J~ö6¿ïvϨ!W±áõIî9ãsNTÍùIî™äo,\°êôÒn÷Œ½jU—²{FÄìg|{&×#&÷L(œUºí!çx>]¦nöÀghľï¦<C3AF>øŒ ðx8©ú/øŒÁ®ªö"øŒ¼xMxø¼à³]B<04>fJ^€ÏÉ ¿%ÀgŒ‰ÕµÜ3ie×µv{ÖeªJCC{Fü—û^>/öŒˆq¶_ ²gtZ÷Ù¾°gzÓjkqÉ=;E]9µ#(ºgÒ Â <20>þQ{&ŠK}Êz÷Œ<C3B7>
Iãd¸ØÔ}ƒ¤-{·+p…¤Æñ½Ú öAËäËö¬pÇL¶üÞ?™=#cCþãÑõŒ£Ïk<†}²zÆQ ¡¯xñê™dKàß§ˆö¨g¾5'Q¢z&ayû^ÕÑ<C395>ê<33>4 =õŒÏµ|ð¾¨g´
ÜâýõÕ<>Ô®”´  ‹¹'I=ÛèòžÁiI=ãÎ³îº Ð3Z:´iùóBÏdZ²œmœyF !ÃfJjEóŒM±&û|Ÿ—yvÈtœÅF&óì œ{¬þy™g6£!ú/ó¬KÖ²q¥É<ãÍ.î/󌽴#zÆ“e“ü€OFÏáPÐw~߃žñ?|š"z&sðµ†\yôŒŒ&ë$õ“Ñ3™V˜Ý}Ñ<cè€ðNíLjêÿå¸Mð¨žÑdÑïáèžUÙîÓ¤ŠêÙêSkz&w{ùé±õŒÞD¥[6sêãT½Ô3šØƒ¶—(¨g,馳}QÏødŒÇezÆ<‡<Ÿé_3 g´C0¹©fDÏÈñ“ ÁõóBÏúsÏóRÏÄ(çn
iÁ¥“Fq¶ÛûÞ8i”TÕ2ˆg+(<28>ðÍ<C3B0> ^PϤµù¦$£zFãP³a»„žq<C5BE>wàšlгU:ïd„ò“Ñ3Z¶úpo=£Ãwá3ª¼a@ÏVéÉá2A´G=“öÖöé—=î™ôÕ2"«ÿfpÏV¹Wª§ ”Ñ=éiöî¨{¶úV˜»gåó_ÿÝòùÏl`¸ãùWùOU#ÍùÞÿIï‡þŸ÷_Æ<5F>ú÷ÿ©0ïS%dÿó/ÿeül ´ÿöÏß<C38F>6cwã/vˆÇÍþÝx?<3F>ÿ2ƒoøŸø±G‡Ô¿üëçÿúŸIáþ_>ÿ÷ç_þ<5F>÷ÿE~É¿ôƒ¤{MzO^?ðø§üÀUöÉyZ}ýÀþOù<4F>ôÈ1pt¾àùOù<4F>ô°*øþyÿë?åç±Y(q@ïøþ)?<3F> ¯Nâûþoÿ”HÔ&·ýÔ,<UÒ‡ÿßûXü<10>pà+2òûÿ×W$iGî%x´a¿}ܼê<NVÐŽËû®s¨Ísâüa:r,CŒ¸ÿþiéÿñ ðoü('éož$þ<>ŸGg¢€óñoü<ZšXzþò ú<>ÿŒŸG[!ÏR_~¿ÿôOùy,<2C>žŒOæŸWÆÏc;oܧ½Ï¥üS~\—Ìïþ¾¤”úÏøyl28ýúyë?ãç±öx"Ïüúø‰+ׯ߯ýþlËÖцd<
´­š·àë<EFBFBD>”†I ÛÄÝHi<Vår'¥mê0޷ҶМëuå¤áSåkWNZèÌÇùhZw é+'íòëÎI VâÒI£:8Z÷ °ÙtÂ=ëë<+O|z=·Î~Ke é¿~-Û<>ÿàÿÖ*ú$÷å.?¿Ïü·~ ]Îä ¿Ï@å/\P¡ûy•I<>9ɯv¨ýFXþ¼ŽkÇÅC¾ìÌÌã²G<C2B2>u<7F>Ï#É|LáAä×Ï<ý¬û2~ü§Kþ“,&K
“&×<C397>}tmÁ¤É-F.ª¸¶`Ò™mÚo˜´`pGL~SU^Þ0iŒÄ-*®˜4šAb4ÛÆ+& Ð~?ñüèýûÿü²þ_ÿßGân<C3A2>€ñ³ž¿AMƒñ'ØØo'jy|ÎôøüWä ~ü»Ë!µ??¤³ýCœÔ;&ÿ¥¿pPÛÔκ½Ll5;&ÿ•¿pHûŸR|Ô•åG;$÷•¿pHlj<&›¨žÇä¾ôªÿùA±úE IvPþKá Îk<ûBá<¦ç+¿?¤q~ûãCbÄ™Œý>W…/ý…ƒ*?8(öšîÑÿò¤þù<C3BE>H»¨?Qú¯ü…Cúós÷NëW 'Êð¥¿pP~öÞi—ÙÉÒ}å/ÒÎÝ„O´p¢t_ù ‡ôççîc7¢ õçgïƒ}äN”áKá þüì}Èĺ?Qú¯ü…Cúós÷!Q¢áD¾ôûƒª~ö>˜|7rþ+á<7F>þüÜ}<7D>oä—þÂAýùyüØ¥“×<E2809C>ŸüWþÂ!ýùyüÄΟŸüWþÂ!ýùYüèÎOþKá þü<~ôCzÛýùÉé/ÔÎä4ò…9ÿ•¿pH?8<>Ÿ4-Äó“ÿÒ_8¨œÇiÛîÑÿòäÏÏÞ½J ‡;Qú¯üþ<C3BC>Ö??ww<55>\øÒ_8¨??{w†.Ã<>œÿÊ_8¤??ww†íÂ<C3AD>œÿÊ_8¤??w÷]újý‰2|é/ÔŸŸ½»LÈ…eøÒ_8¨??{wÆ©Â<C2A9>œÿÊ_8¤??wwTÖx#¾ôjž½Ûù^,_$ŸuÂíï@ÿÃ8hçºïjùÏá Î?<ˆ¹Fú¯Ï鯠ýàœ|Â|I~{ ?8s dð,û6îâ¶y0þK¿=ªœ…9*IM«]"‹ì¨ü—~{T?8ËQÑá¾jÊä<*÷¥ßÕÎÄQ­ÃMõ~ý—~{T?8ËQÑÖ<08>}®÷Q¹/ýö¨~p6æ¨m„vTþK¿=ª?¿™Ö£I|“ÙªyTîK¿=ª?¿›Ö£¢+{ë<12>5<EFBFBD>Ê}é·Gõƒ[k9ªE¾o3<6F>Ê}é—GµýìLN+<2B>¬–ŽUøÒo<C392>êgçvîr;*ÿ¥ßÕÏÎí$z“4)<13>ó¨Ü—~{T?;·W™÷¶a;*ÿ¥ßÕÏÎí„ýïeßÌ©yTîK¿=ªŸ<C2AA>Û…m <20>oÏŽÊé·Gõ³s;XF<03>Ù¤<C399>N<EFBFBD>Ê}é·Gõ³s;|‰ÒÉûý¾ò_úíQýìÜý2N˜<4E>ïë}TîK¿=ªŸ<C2AA>Û<EFBFBD>¸ÎJ4n¿ÏWþK¿<ªý‡çöUB¯aæA¹¯üö˜~xf§3¿jÅ}PîK¿=ªžÙ±<wK]´£ò_úíQýðÌÎÄ Á_ô+Í£r_úíQýðÌ.RÌz<C38C>ñv•ûÒo<C392>ê‡gvÓÉ8;(÷•ßÓÏë¢ç-K_÷ûjã¿ôÛ£úÙy<C399>ÁèãPçÜSÜW~{L?;«KYú}¿Êé·Gõ³³:Ù"ü€ÎÔÒ<*÷¥_Õñ³³:Q6µjŽ­”ûÊo<C38A>éggu2“Ö ²Íƒr_úíQýì¬NžÖÒxq•ûÒo<C392>êgguÒÖ<C392>ÿõ<>«™îK¿=ªŸ<C2AA>Õ%¢<>ÄÆñî£r_úíQýì¬.Aà6´mÏ£r_úíQýì¼.)Ð3«ÈŽÊé·GõÃó:é·ãÆn_¶ù$¾ôÛ£úá™ùšH L±yTîK¿=ªžÙ«
—]aÒxòn&ËWL&¹é†¶`ÒðzfJwã¤QÏb¡Ú0ǰÓû)<29>ÞB ô\[Hi¤ª£[è_Ii¸úåGPšlãåÉëã] (M柼Y<C2BC>è <EFBFBD>$$Ì£ò_úåQõžÙ#A÷Q¹/ýö¨~xn—™ïŽÉt¿¯ü—~{T?<·f¾ý¾6û/ýö¨~xn'~`%ýó¸/ÎþKÿso¯4;®¬éùºŠ¾<C5A0>Y"ˆÿ EH†LÅñreÕÜ¿«|2$r¯=«û;¥sƘÝývÕI ‘È|Ÿ:ª¿7·ã>ÓÏcÔüoþé˜þÞÌÞá86à]㇚ÿÍ?Óß×ÁÖu샮p}þ7ÿtLoVÇv/: ÎÆ4ÿ:¦¿7§SJÌ<E280BA>ɇtÿ:¢¿7ŸWm¦
”†5V´Ã¦(-d;rm¥gÛÆÝ@i<>þU·E¼ÒDI¸ƒº¶€ÒpV¤‡Ïµ”&7 jƒíCšþÍ?Sÿ{³¹ÙÂ<C382>ÿÍ?Óߛˋړè3Áüoþé˜þÞL^ðÎÀ<C38E>¡ŽEoþ7ÿtLoÏæ Ñ0y°1Íÿ柎éïÍâ ˆÔÂÝGtÿó?Ïß<'ÅD2wü4ÇqÖôoþé˜þæ))Mž âxæóOÇôwóè
UpFͺ€Ò乨6¿°WP XoXû<EFBFBD>„õýoþé˜þf<1D>ú<Æ5¦éßüÓ1ýÍ:FÜgö9Æ4ý6¦óøyûuâWï\Ùôoþé˜ÆþGÅ?ÿ©§È¼¹>&:Uùû@®®<çô¯þé˜âßS€N×€OÝ»áù_ýÓ1¥¿3¦k¯ù<C2AF>v˜[ïùo æîÆÚoüM½Ê^<5E>öÇWi+¥V½cðû…?þ, üòÖrÀ/ÿñëfÛ€žÞ͈ÿ;?¼þqÿŸ_ýó×Ëlç)ßüÓûóÞ`"öÞþY¨ü?úÇÛÿíÁünø/ç÷}ðßÌo;à¿>˜ß÷¾{8ÿ¦ëýëÃù]¿û·óo:Ý¿>œg<C593>û·‡ðÛîöoæßôµ{8¿íhÿö`~ÛËþåÁü».ö¯ç÷ýëßÎo;׿>˜ß÷¬}8Ï-ÅwðÛvùoæß4Ê{8¿mÿö`~ÛÿíÁü›¶ø¯ç÷
ª5€µÀÞØ*s¥á©·4´”&;‰êî¦áÂIoܦôÊI“€sê'NZà¼Ì§•+'-Ðõe ö' ñßÎo[á¿>˜ß7Á}8Ïö÷/á÷<C3A1>ïßÌ¿iyÿöp~ÛìþíÁü¶ÍýÛƒù7
+“jÇ 7NZ`¿µ9î‚â{Õ.¤4Ö ­Ùm{%¥pJûöHJ tCì~Û.¤4Î~%ê®,¤4ZF´àúu'¥qŠ×«yŸ^Ii4ÿV7a½Òp™³%ïJ F»äWPžt¸¶€Òø`+š¹qÒ6òëÉ~¯+' î_Îï[Û¿=œß6µ}0¿ogÿöp¶¬íwÓfKÖ$9 ãvšõ7Ò‡6„ù_|w(oæî¤ùÕÁl†™ƒæw‡²enΙ_Êê<C38A>¹;f~w0/æî”ùåÁ,†˜Cæw‡²ù`îΘ_ÌpÁ¼1¿;€ÕørsÂüîP6¿ËÝó»ƒY<C692>.7çËïe5¸Ü/¿:”Ý×rwºüò`V?ËÝáò»ƒY<C692>,7gË/eõ¯Ü-¿<˜ýØû»~õÍÜŒ4¿;”Í.s7Ðüî`VŸÌÍ8ó»CYý17ÃÌïe³ÅÜ<C385>2¿<˜ºØaî™ßÌꃹc~y(«ýånˆùåÁ óËÛó«Øü.7Ìïe³¹Ü<C2B9>/¿;˜Õßr3¼üîPV_ËÍèò»CÙì,wƒË/fµ±Ü<C2B1>-¿;˜Õ¿r3´üòPVÛÊÝÈò»ƒYê¿ðúAûÌ¿•æü^5ð^!ߥtÇ™Ò<E284A2>•ÊÿÁpÅñÓp~ªJþOR¿{]ü4œŸ*<2A>ÿóLô<ˆ¯=šës´pOù9yi¢X†óåçä¥bΗŸ“{Ö\ñíî®ëQ¿ØKñð¸<C3B0>ñC^·2šÝÛvÍyÜþÑh6OÛy4?ãmû'£Ù½l§Ñü<C391>§í<1F>fó°<C3B3>Gó3^¶´"oÞµÓh~ÈÃö<C383>F³yÖΣùïÚ?ÍæU;<3B>æg<kÿIì4<C3AC>æë¡Ó­Ñ<œrïÑü”cfwÈ<77>FóCN¹4šÍwÍÏ8äþÉhvGÜi4?äŒûG£ÙœpçÑüŒ#fwÀ<77>FóCN¸4šÍùvÍÏ8àþÑh6ÇÛy4?ã|ûG£ÙœnçÑüŒãퟌfw¸<77>FóCN·2šÍÙvÌÏ8ÜþÑX6GÛy0?ãlû'£Ù<C2A3>l§Ñü<C391>£í<1F>fs°<73>Gó3N¶4šÍ¹vÍÏ8ØþQbhu¬<75>ó3ε4Í©vÌÏ8Öþ“”Ù<šïgÌ6¿Ü{0?ä›û'cÙ}r§Áü<C381><1F>ƾðòÇ<C3B2>G3I_Íæ‹;
îÍìþÊIÛäÞ˼rÒ°¯oæÕpã¤QÙšóÕ.œ´ ægüqÿh,î<˜ŸñÅý£Ñl>¸óh~Æ÷<>ÿí4šòÁý£Ñl¾·óh~Æÿö<C3BF>F³ùÝΣùßÛ?Íîs;<3B>æ‡ünÿd4»¿í4šò¹ý£Ñl¾¶óh~ÆßöOF³ûÙN£ù!_Û?Íæc;<3B>ægülÿh4í<šŸñ±ý£ó·Í·vÍù×þÑh6¿Úy4?ã[ûOÎ&çÑ|ýhrwͽóCî¹2Í-wËϸæþÁXv—Ü{,?ä–ûcÙÝqï±ü<C2B1>KeuÅ<75>†ò#î¸2Í
û: ¯o 4\0yQíJÛì˜2»¶€ÒpÁÜÝ<C39C>ö wÊϸâþÁXvÜ{,?ä†û'cÙÜo§±üŒ es½<73>Æò3î·0Ýíö˹ÞþÁXV—Û{$?âvû'gO»ítôô3.·2ÍÕvËϸÛþQVzu³<75>“Ò?âjûG™×ÕÅvN¼þˆíŸŒes¯<73>Æò3.¶”—Y]kç´Ì<C2B4>¸×þy<C3BE>×¼<C397>ýné¡g;޳Ç/Õí¼°©—A|·nç…I½Œæ»u;/,êu4_­ÛyaP/£ùnÝÎ {zÍWëv^˜ÓËh¾[·óš^GóÕº<C395>Æô:š¯Öí¼Ö²Î£ùz)ë­Ñlu;óh¾\·óB¶^Fóݺ<C39D>¢õ:š¯Öí¼<C3AD>¬—Ñ|·nç…`½Žæ«u;/äêe4ß­Ûy!V¯£ùjÝÎ ©zÍWëv^Õëh¾Z·óB¦^Fóݺ<C39D>'zÌWëv^HÔë`¾Z·óB ^Fóݺ<C39D>òô:š¯Öí¼§×Ñ|µnçIš^óÕº<C395>Âô:˜¯Öí¼¶0Í£ù~ÓR·3æ»u;/|ëe0ß­ÛyáZ¯£™¤/<2F>f©ÛYóÕº<C395>Žõ:˜¯Öí¼ð«×Ñ|µnç…[½Œæ»u;/¼êu4_­ÛyáT¯£ùjÝÎ ŸzÍwëv^¸ÔËh¾[·ó£^GóÕº<C395>õ2šïÖí¼ð§×Ñ|µnç…;½Žæ«u;/¼ée4ß­ÛyáL¯£ùjÝÎk¯ø<š¯·Š¯u;ó`¾[·ó¤\/cùjÝΓn=<3D>å»u;Oªõ<–ïÖí<hÖËP¾Y·ó¤X/CùjÝΓ^=<3D>å»u;Ojõ2¯Öí<iÕËX¾Z·ó¤TÏcùnÝÎN§žGòͺ<C38D>'•z9zújÝΓF½Œå«u;O
J#´Ïþ0_Ai[Á_Ëfþ+(Mî_=lwm¥qÚ6j ' õš”þfÝΓ>½&^¿Y·ó¤N/cùjÝΓ6½¦e¾Y·3îÌûXÿËÿóÿ!Kbç±i²‡ü<E280A1>ÿW†ÂwþëáÈŽê<C5BD>áËö*ôW?ë¯CÂ<43>£ž1ýoÿ!càÿ-üõß2y÷óˆç_åWŠñ”-óü÷¿þïÿå<C3BF> þýëÿùë?þÏÿéÿ½úû“±Qšt†—?yÎR/»q'ª|åÏ^¶l®ä^Åže8¿Nj<ÂûuûoÿŸ2ˆ ÏûÉÿ½ âï>Ä×t<C397>G;¿ôüöO~éøí¾õüv¿{Ò>2ÙüJ!!áy7ê/"(ùúŸ|~û'Ï$Ï\>ÒÿÐð÷ûߎáw¿ýÛ þîoŸdù_úé÷¿ôËÿnöÐcõóKâ{ ²¾ú!ÊõÜ#˜Æ6ÿ'!ÉSPZN±é¯\ä8jfþyN…IÆSÃYu<59>…]Nûͤ …Æó¯óŸ72ù
Gª]8iõ#ÛºrÒ¸èÇqmá¤m²$g¨]8il<69>sñK{¥Éü)ÁÀ6´…”¶ÑÒdOå”¶%-͵”¶aC·; íJâiw¤Â Z“áÈ÷œ±\«ÿ¿þf¡J,›âÞ~³ø|ˆÿóF‰dÿ«Ýº3ü÷­<C3B7>éåÎ¥/þ<T7yÕÊË8òÇN]wyûÿ$ÿÍp[þrm•Ì1I†ÿk‰¾<0F>¾Ó¯ã<ZŒ/<2F><>¥ÞS~Å3ÇPe¿¸hÕ¨RÝd}ÓzÍ]¶Sù©Õ_ò¢ÄÈÙËVÎRRí¯Ÿë9tٌħʬÚ^òE+ÇYHÕ¼HšöPÓËåÉ$ËÒÀ ò¢eY°òy¾ “4Uìñ(ÏÏɘtÏωsÊEžž7ÍÏ@ž×PäÕ:ò)+×”åg5?/O4=Lýe˜ ·²\ü›&7]¾¶¾~®ÅÐ8xj21É«Pr~¹¼øn^Ì7M¶
Jc·Š<EFBFBD>Œ+ (MBœfÙñ'<27>U¬tÈ…“ÆAJtÌÉ•“¶1;T¿U.œ4z1ÕÞ8i¬Ñ2¥7Pžö+_0iLù˜¨«tÁ¤m8Ëù÷¾bÒ¶ÍRŽ®-˜4YGÂf…»l<¾PÒÔDmcJpm¢¤¡²©¦-˜´¨ž„ÉšWWLZÔš=‰þ»K& º|j²ŒÇB-/×— ¼É&úx' •ØB|¹ídÓŽâñrÛEK1%Æú¦É_ ø©/<2F> UáH²J¼\_ùUeõå
ͬT[0ij¾VG]0ih¹ÚÙBIS_¶2€•+%<25>“vÙŒr°RÒÔ³-Srm¢¤é =ŠwvRÒÔÎ-V±WJFeu÷¤ì…¦Vo»W^\(ih<69>nÄâÚDIS8¦•LZÔ'¾Û>úI3¸´ù½²`Òðˆkô¾=`ÒÔ?Ž”êÚ„ICã8È +&<26>òR‰Ú6Ph& +ì¨d)Ìáeœò†µt†Ѫübñx»ïí×ë‘ÚÛ}o¿bi*×—çLÞ0Òør+žZÿ%/;ÓüËõõ_1ʧ¨žÑJ‰%æé+UþÑzëòµ¥>´zÈÌ*1]8žŸMö:%µÛszÖDÙ¥<C399>OM^±~œ-¾J²ÌÊäûÖ9ó©ýe˜’Ù/Ÿ“WL¨ëëçD)?¼\ž’é”÷(¿\^ü%·^žÒþr
­pný€ICsÞד†&ÉB0i~+Ì*¹6aÒô`3F_-˜4´€ßdsm¤©—<C2A9>ŒË!V & òŠõ³µi^½$ùÇ@5×ô†MšÌU9´ãe˜éW+­ñ[?5yÃ$Þ
MþS«»`ÒÐöƒÆ²bÒÈx“¤Ý8ihêwõÀICÓ @tmâ¤E­b0ÿ• &<26>ò¥ªM<C2AA>ª-˜44Ê8-]1ij¸B6aÒÔr/Ž ±½|.ÿ’)^œ—».B2¿ŒSVÑzH¨}¼\ž¼a=/õ$5
ÔŠIC+dw‡6aÒÐêðºbÒâ¹m}]0iXõÉ Qeyj²º¦d",oš,¯ú´¼iµ™\¦Lì¨Z#Ë¢¼™oš¬Ùr<C399>5¾i²º)%ò©É ÖÛÑÞ¾Râ_™Ã<E284A2>£µ7MV½Zûó¯5 id³ÞKy~L´Ø{’½äóêÚ¡”yýžCiá×e<12>§ìM5GyžW¹‡§/Nï×¥<C397>¿t]—ËÓäÑŒry¯Ÿ+•h©¾|.J8wÊ^9¼\_”`¨ÊÔ2½_²šW×J>åqŸ~ÏIëòC¢³‡–$Š2µ”þ¦•³•#L/ؤÉkÒkO/ŸËp]en™nû¤•Cët7­ÓåÊËõ‰†ò™úôMšÜû ”òMëG»^_ÆY<59>ò¦—sºïO6×$ˆ”§tºï“ÖZ<C396>ÉešW/MÁ£ž²”7-[4Þ´&¯Y¢•á¡uJ}erÉo¬ë2·´—aÊnÕrw© ±0”çÇDc<44>šÝGf­.Ýo˜—wÉ·I,$O¼„_/RN ‹$q¬¼ å¡H ï—käçMå|þ¥óW-®ôûn_¼X­]¢™Iv)2§äûª
˜i¶`ÒÐÌÞ×µ “†¶c÷b?ËIznVÆsÁ¤¡évmwm¤¡<C2A4>)±Õ~夡i—@tmâ¤QÁAÃ~ÚIJCûÀ…+)-ªç'Ï¢k) 1iUÖÁî÷êÖMTXÜëò¬EyêÊ!ÌR•™!åðò±,P?Êù2L1|$ ÓŠ><3E>çËŸƒ~™eF¹ óýÊ ' 1žG|Ó䉓<E280B0>ä~«f­÷e¾¥ª;˔ϗ<C38F>Éî*<>*o|<7C>Ü·évK(QT“wJž<4A>^ïwjÖä†Ë|RóF^+ž!>5Ù]ñ ÉŽîM“û.óÉýRÍZ—W_†}NÞwd!<21>ðGæµéÜŠÄŒ2GíEok½¦ò<C2A6>$ê;™J¦7êä—ƒ6{]Yò3o4yÎe&)á©ÉKÕe¾kÇËç$ê“írÊéõs-Q&s¿W·&+™ðÚ®c~<7E>®ÉDfxƬ5‰D1é©ÉÆJvq²û=ß4Yã™ ÂæÛÔûúbÓsÌrä_þ‡7M¾Pf”ûŽÏZ­Iv€÷}½5 ûXÿë=IÀ£•hé”3éM«r/#MÄM6VU®ä~lsfR:¨µ¸'ÒY«§Ä€yºí—&û*Ù¡ËÂ×ß4æ7y"®Ë“Î.U pz½ß­K Ož¢<C5BE>ï<EFBFBD>ö$ÅeNÉ× eãv&×hU
-Ð×]]HiÜ<02>œ½A Rš,(¨¿<C2A8>ÒâoÄ¡M¤4ó0$2um"¥±<C2A5>'|¶¯·<C2AF>Ò<EFBFBD>$dr6ÞJJjBnk!¥¡êÍHi´…˧س¾¢ÒЊ®Ç®M¨44ÜÿÊ@žM¨´8R\Piwj¸“k'*MOˆëf'7Tš:4ª£<C2AA>k* nzh<EFBFBD>DVZv9³åEN÷~rŠ<2_×c<>Å5<C385>QŽTŸš}TóÈòsixT×äû
<EFBFBD>/ŒÚ„JC“±{¾VTýçpsì†_Qiê?F=àÀ¨M¬44<»x * ˆ7­g™ä=j²©GO­ûòŽ GúhrÛå »où¬IÔ#“J{J²§M—„n—vV~"Ó$$ô©oZ—]EŸY·&ÿ(÷'L‰,‰­ì
IFlÎÃ++ ”uQfûíš5YÒº,Ë÷çäy´KÇÜA&évßõYËrïÒJ<>2ct—šÌÓEÑ~»&/Wc{w¿\³–ïȽ˖ß/¹$ëz Së’*ÉiYÊï{ª<îQhÂ}Ïg­ÉFL;U†š#” [ªXÃ=}Ï
ÉÚA]šXiøHÒóåLº…•†V­Ûÿue¥¡Qiy†••†Fë¾ÿÐ + 1J‰wîRÏe\“÷@&•;ukî…¨aÖ¥…ß0ÙQÅ&“Ê<E2809C>Å¢÷ ¸Vî8òC;ååjzçîÏÕS ÙÐdZ”Yå¾å³V#Óývɯn¿æ)[*KÀ¶7M™Uî,ÖhïF“¶ô)uÈÏ®÷õ<aR˼rï±gMâ©ØÓõvÉýoÉ¥"ál×=—å!Ó$ð“½ùyì.Zd‡*¿Ý¥e™ò\+lÓî$° ºÖe«Òî$Ö¤Iä'ÏJ¿÷ûõ!¸&!œ<õWK6¤]ÐdǤ{Û§Ë6t¹?WŠß"µ€`麮<C2BA>3ªêZ·…íº>Gû9¶¹—;‰EZ8º$!¥¼C×Û5K´Îö;…%Kã™ìêd?%ŠzÚK+Ö)ŽåJ<vŽ`É5×®)5I@ῦvB<76>÷øëQÂéJ¨/Ý,‰Pâ]kU^×;ƒ%+ÄížËëÕ›æ—/-É&Ê5ÎýÎ`-~NvŽú[FÙOÕ$ÓÌ}ϳٕ ¥.Qf¸o¹lž<6C>ìÚšv°²éÞTæû_´_/—ì²îÂÐ쯌ñ°_E4M'Ý ¬”jµ_E{åM¾<58>K1»&@þÓûsŠÔ]«r#µy{h¡ØŸÃñCîpe-åSÑÃHÿO•ürÖj*­Æ<C2AD>õ(Ýù+NÁ-þ‰²«’‰±Üù+yðëqºÆv¥Ýù+zÊCtMn99ðëW•«Ûwʶ*Ó4qßs™àüêd_Ť™®)5<>\“kUf^Y2®;$÷ñ°k<û'!ªKr©2­\û£Dš¡¹VXÒîV:ZóK<C3B3>ÐïÈLü×0e†µÕ$ÒbK5ÀýrˆTÈÿÕûžK$uM¾Of•ëžËïZü
$ô“ 4œ×±@ä4êt­ãÜù+yò]ëY‡;% j÷aR8'¼óWãöîšÄ”º4M¢uáhˆØLÞšësÛ,dc%ß/Qêý¹3Ø8E˼léÊZÊ|VlÎMž`|‡&б$Ù\EÙÕÝù+¦e¥EËö§;%kÉÓš\B¹óWìÊŽC5 ÿ‚&l¯q¦<1E>äšÄ¬$ê¯ÏÉ»×]ÀB¢<42>tì0K Y,è>
çëàÒ„JÃ>¢k9§k* ø
­±7̳‰•††U¤¡WVVZÔÔÏûÐ&Vš"ÉŒµ°ÒИ`<60>u¹²Ò°Ðì cmb¥¡áåH­…•††¯B@´ m³õºÂÒÐ$¼)y@Ï&XÍÑÎm[`ih‹”R`i„o<E2809E>"ƒj-°4µY4´ ¦5¢q7ïÍ ,
­púicY`iQÛx÷Í<C3B7>o --j×qþy -MÃÌÒ<´ÒÒÐ0û]Z,3[ŸWZ <EFBFBD>ôêZ×<Üé+¢î6>'?’Ì,WÌEDWíïÉæJæ‰t§¯äÕ+GpMæ¸Tîô•¬ef.„&Ï©L-WúJ¾ä´—(ÉæJ"Cùës‡.¦ÉÊÔrßöCËMLÓ 5]“„¼R²j¨&ñ_˜2À]J‰/¹òW§…º¦ÕeÇvå¯4»iN^°Žrç¯ä©Êê<02>&­ÆA—ÆÎÈ5™Þå<C39E>¼Þ0ÙjûUdoUäoÕ릟È×ä<C397>Š„CËi|Šcµp­†T'4?MUQæ•k¯}Ê<>×kQ¹t'±ÎØJm®•./F¾n¹ì(åw@Ëþ…Îv}N^Q=´d^î÷qÍ©Ô!ÚÅe;Õ¯õz»äï¶Ï–¶ëâŽÜ,?%ü“/¹!<ðJsIîºL,×Ë%“k´;.Z—§;Ýi¬À¶Å¾R^®NÌ5§rìÚ\ RžÙ뎽!®ÉDÕe?}
„²BÒKS—ÓR_†…·á׆RÌ,èu…¥©¶%'</°4¤L4Ú]š`ihn÷üºÂÒ¢¯ZwJÜKSM&K¯°4mœä+ì®M´4´`õޝ .M%¾šK. …gß®NöVõ”'à:DÙµìCÓí<C393>k¤£Â5™ŠµU»P»$ïêy§±ÈˆÚÓ Z®QþÂõnÉ£<C389>ü%úúd½¦Tyô[²¡HðwJܯwK¢»”O×d—'žÍî"µõ„…<>Iì'C¿³X‡lE²KìøÂu Žz4[ÐE²Sä+<2B>uHÔji„,[+MÃ]!?÷7MBùÖë–@œC“FˆëÇ”õ=ùý­•üþ²Z<C2B2>·ä`Îî®%KË\WS]#[ÓïL-ÓHxÈo{%²j§1®»h ¼Y²8±Žº&<26>‰ü½Èªò  «Š²i9s¿>'…Í}”à¨ëM¼>'OwšL‰2©ŒùTî”Ìz EöVÇÅ¡<C385>¾:‰$á£L*#<23>UåI´Î]´*oA¸òXµË£‡¥ÈÖJ”x屪³õZä)nc>•k<E280A2>ÀŠ&1·ü‡Çõ¹"ñi²·]ÂÞqy„Èã‰&˦Ì+#})¯O<>k…)ôJdU<T“øï<C3B8>Ûr%²*‡‹Í%YâdZy,Š&7^æùqÓ«‰®ub¢vÝuÙ(ûW$ü;HçŒ)UžªÖlj¤Ÿ>²Ž·‹$Ú{"šF+W*Kfój“@)¿®tKìh‡&¿žÌ+ã¯6PÉ%y£,T5èóWdk%ûž>âWYádn.ÉuËÏ|Ýs [å×sM¶UýÎIs:RlZ)²³åBfþë;å*Á5²åJdUMãc<C3A3>ˆàÊcÉ+,W$ö“é®<C3A9> ¾ò±×U$ “ôxhhg¶ý«H²!i}Ìn$FÛVU<nl»éZ"òrI¶+Y¶¯ãÊN˜Ä©Þ(—ä?´p¸Ê¶J~ºr¥°dÂ6ε$kd½RXŒ—&‹Ã}X#€úUÙU%2+#…%s¼¼uÝ5Ùè¶À%‰2}$òZõ Óõq}L"( aªD}AÞâr½Vrç}K/šÄ()]9,y3å7Œ®ITRË2Uê1,ê«òZI0Z¯–„ÐòÙµÚµá¢`ЗVQªü<C2AA>áÊaQAÕ-P©™ž
m–æ+/M%‹^2]9(®MÀ4ÕägiCˆiªQGfs!¦¡a?^Mm"¦©FhÓ\;‰i*ÉïgÊLSib©<62>¼4Uäa²¨å¥-f¸^ši²r=ðÒT“ ÒBµ•—fïÛ²•—fcÙ­óeá¥Ùø³snV^š}mv8ªÍ¼4•²—E^xiö#oõ‰—f Õ^šjìwƒk/M5k6z]yivmN*^yiªU ‰§.)Qaål¨Ò¬±|6×äȨ¯©ô —aƒÔÎS™OÆ[¶£2
[\xivÏ&'¯¼4ÕäVLCxiúˆdwc¾ðÒôÑÂ×iwm⥩Æ\W]xiú(“ ܳ‰—¦S€l[¼·ðÒtæà&n®M¼4<C2BC>ÒeV`šÎaà¢k0M§><3E>W\ˆi6eFs…»Ólª­ÖÛr!¦ém]¯+1M§}²°ö¾…˜†&b9´˜¦K <09>Dŵ‰˜¦Ë“ò?T[ˆiº¬•â[‰iër¸ÓtßBÊ•˜††K¿m;gbš.èÔÎì®LÈ4}~ig±¿8#Ó4~(¸Õ»4!Ó4î<34>pÚ„LÓxÅ2[¯+3 U×$ô•ßo¤°ääåË®j•:C}SM“¸—çÞ5y¿ã]ˆUHP¤¡Ém/œö MVOÛYˆ†©ïÑÇ=/œõÙ^³JÐwJèu<C3A8>iM?E“°«¤+…U$ú)ahò«ôrå°äßÈNÑÆ"oì”ê•Ã_ñL‰æuQ×çä;-ä ©Ø—ÆçdºÑ†tùf}ø{s)Ïi²¹M4ÚÆ]/Œª¹Ôe½$üu)ËDkó^Ó"[ùýFy/šk4C+ƒ%ñãé;~Ñ:“ó•Á*$M-YØ$ì“éKñ9nÐ14Y õÇç8—éC£"¬Ÿ×]—¨â´}h“¸Oþ8<C3BE>æÐ$Vµ
-§‘ƒ]™ijË¥<C38B>­®MÌ4<C38C>¹ØüØW˜™i©µâ¡ÅÊLC£¦¶ íd¦©1yòæå 3 <EFBFBD>h™ÉéÊaYø<<M憮Qg³¥É¦JVërå°
<EFBFBD>21{„Vfš©ZbéÚÄLŠdÚÆPfšš¤ËÇmƒ§61Ó4Ìæp¿¹v2Ó4:×øie¦¡r² nf¦é>!%Ϻ¯Ì4¶²Ð;ý}…¦©|òb˜ 4M·:9z$½BÓtDbzüÍ š¦‡¯}œÐ,Ð4Û­U<C2AD>BWhšüIÇ0.Ð4Ý7Êêañ !u<>D#û9ŸÇM<C387>ÍIËuÌ¥…zX›ì¨äç»*CeÅΫn™FÖRÞHyØO×ä™ie,0¤Ül±n²Ÿâ\áJ`eùyüÅ-å,OþØbgÌ6÷‰¦‰ê+ƒ%ó /Šjö»Ž!E*¹\J”âÔqÇ%r—À<¸&ˆ¬´ã¨âµG¶É~ªéQÂÐäÏþ±FA3•Aãâ2½Ý5yFêy%°8ê¶Ž4ÙR™-mBŵؘÇ[BÀî‰IјœêØœÊÍïžâé²£mz®åÒäºmM€kùå†óXWä¦Ù¶¡<C2B6>‡«KÄgg‰ãÚB²êZŒz&ã_™d¦ÈÎ<14>|NºÒW¬ažMæj™RÆíIdG,˜ïT€<07><>ÉʩĢ.Ÿ®É”Ù|˜²Ÿ*l/I®ÅîN—×»9PήÏ=º&S<>¢É<C2A2>ÕÏ+}•8œ´èË)ÿbd¯dŸpÚ&L$ÙOÈ_÷;ñÿŽ¡©ià1î7éÊÓF]vSQ7Zã
MÓýf; Z¡iìaqqTÙMCÃ&ËvH+5Mmø%°0`Ŧé6œ|ÎîÚ„M[¬ý/Ø4Ò€–à6cÓ<63>°© Ø4ÍNÁyÀ¦EÍD'ß>­Ü4´zâõnZÔ:£ì¹ž•›¦,¶gŵ‰FøTvi¦ij)àÝ®ÚMS,ƒ<i~<7E>-Ø4´r`»Wlš¦Î"f˪-Ø44L®âÐ&lšvžÃãxÀ¦¡qc8¨…š÷땚fÌÐÛ5M³¢Ö@~a¦ˆ' .ÚÄLC+4µ>0ÓÈùª+†a¾hš¦˜ÁÉe×&hšf­ <0B>®MÐ4õöÙ“sa¦!5²©ƒ61ÓÈÉË 0´<EFBFBD>ŠhÌÜO¬¬Çò£d—šíÐÚоö1‰÷äe9®ÜUl§Ž‹$ÏšÌ(㽊ò}Í‚Ñdý%?료üm„*¾Rò⎩Ôò‰Õ5y¤øÚñ9ÊýW©8ùÈŒ2î¸<ÙÙ“™]¶S… u¼YåÇÒÍ¢%›×ÇåM|ºÖ˜Û®ÔU”e_LÕd?%—z^¹+YÀŠ¿É¸ŽÈÓž®ÜÕÙ8´<11>ËÆçd>ýȲú„k:ÆM'Uq\š|aŸÐ¯O^Y-ºkU«GÊR~6Õäíêù ‰èšLøVÔ„N=uòë“yÕSßh²Õ®ç•»:eþi&É~ª-k2I†¯!Ó¨ó•_ß?Æ<><C386>z¥cL§üÒAóÛÑHü#3XË@m”Æh¶È¬2&Mª°RÉ®qKú•»
¼õñ¾…™¶<EFBFBD>ñqlЕ™Fñb²Î¸4<>3³¶ï[ i,íÅ<C3AD>W¯Ð4~®î.©Wh<1A>NÙ¨ªWhÚ†ë¶ Ü“`<>> ™÷¯Üõêþ•²ŸJdÇ[f#‰Þ‡&Ï>§>L™1å<01>®Éÿo ²7Úç$ô“§_Þªñ9Îzº¶”8SxÖ芌û ®^#?Ù}þÒDû•½Ý2®ÙFed¯h…I¹¹æ÷ܤÀ&ÐoBe¿s^5X<35>bÌÔ«kä1Ïè÷<<3C>â
i<EFBFBD>¦Qj¶; uhºö}|.ê³£ZÓU ·ñ×$x,¡º$³©L,þzILÙÉØ»FmwÙ« «d´g¬óÖÈmñìUh,”½¸&·n3]“{üy<C3BC>=•W<~è~w~ÆÇYáííM&‡¬O£jÔMãŪþå©eßÍË3TO;Œ—Øžo‰Å“Wòp³`4×ò!<21>ìH^M$èÍÓÄ~uòË³ËæGÂY”Ï©hÉLškIvcòþúç$<•€/¸Æ1Ϻ»ÖTÜéã©{5—ØËØó š¼æòÜø7f#º+ud‰MÒ“k»ùGY=úH^Q=E¸àZ×?Œä™¬”ãÐäû$Þõ•JnÒDªÉ®J½Ç-—Yø85VA“'O¦•qˇ‚>NÙVM ãË2Pmg+»Ù©2­øËEª^þvu-R¼3²W<C2B2>w¾ÇìšüqY ={Hš¤bß)Ûª¨µÁ~}r'Oˈ¡±O»öôÁÊ<C381>»kò¼É»9Þ.‚™ìæIì‡MIô D®…ÃÊîš„ÆòƒzÊ2<C38A>¨®PR˜GòŠÌiHçøÆÞj¯#y%<11>ÄÕ®N"¿ eE>J¹òØv×du<64>ie<îÌbõŸ£màÙ5Ý0èçè¾mÚ{eŸ“˜@þÜ14ÙFɤão—,H2é­[]{p<>xÅž$z9Ù«Cžf[ ´Ü‰B=Ã@Ý_7«x4Ùg˜S¦i WìÉ=O¢ó*Ä:* ©h27e
á <EFBFBD>MÌ¢ãsÍžÿœÌ4ªYËN¾×56cö$‰–­Î%ym£ƒÄFù+¹¦GÓt†•¹ÆóWl±mt-Ëœ×GþJ±l[i¤&ûÕ«tsˆÁ~ÙW+á4<C3A1>‡&±¿L,~×<>8*L<>d«Îï©(Ñçï”}gçþ°ž=7EVs™üÝ:´Ï&FѪlÒêH`!¬G5­þÒ{3¶{¬d žh§«ëà ò´iÿÄÞW&í>šÁl<C381>ë)ïV··Y4êWä÷ªþ„IôgG §iòë§­x¢U2íú€!EêKL¨QâoKaÑdÐdÎñŸR^®Î®¾\hòý¾ž&w½xŒÚe_%;Že\“ç¡ièŽ&ÏŒL+Å?'VΦ\+ÊY:üò$êdBW-pS41áZ åòt-ziJœÏøR"u,
M£wßW×hÚF¶]·¶˜5 Mn¸¡<>¿¬î3ûå<C3BB>þ¹æ'ç>Lê6NÅD#ýÈ囯\_l><12>®õ꟣IÕƒ„(ÁQ\
§šÝl­´<EFBFBD>Ë—ž¡i2ó«Ì¾AÓ®Æf€}ƒ¦í,áÛ`­­Ð4úÂÃ6àg+4-¹à;4 vy2ÍëºV<˜1M^§b-#h=S"¡/W¤óô`,&M»gËa!IÌcçŒhœz]~Ômlãcò yÂü¦7‰ØŽhqaÌl­É:úÇ®Ú $Ò§™D iµ'hÝnº_œ„~½Û# û
ÃGóg¸CÓΉ;5 ª¯ýâ|7àZÿKŠœNËd£k­²àEæ!aH¬6JT*!BµÏq^,k<>&<26>lÆsÎ4æ¦ÇçdŠ-®ßtŽEå1²Ô²lâRMÌÞmƒ!Z>¬Þ×4ráÒ‡öäDâ <>£l®t);|œúmÀZ@¢¿Ão:ÝYñ(C“Kçüß?¨¸Õì«Ìò²RS?èïW¥ÐÆÜ¸Ð´âô»^xÁl²IVN“ìò8±;<®Jþ
ÏßnVŽ7j†^éšÆÃeµ7hmßÃ(ý ìòäé¦Vít
M#¯3Fy…¦ÑM•ì8ïMÛig/m<>¦í߸ñášFu2÷¸jjSfvûȰRÓ¨Î+ƒíWl°¼aÓ@1nCÚ.Ø4ºÉÝí†M£f)XEÝ )K PP'—íѹHzöeY¬È΀D˜iòzÉêËÞÁ4™ åñš<û4BøçNªx5Í€&w^þ!ÚÕÉWÈ/aAI½U¡7Ç_¯2
F¿ ³k 6-bSòxßM#~ݱi±Û1»k 6-á(º¢ÚBMƒkœx¥¦ág<C3A1>ÝêùJMK¶´T×j'²tþÙBM£ðeNŒ»PÓ°¦lƒèwá¦i¯±-^7nšñ<>“3Õ.Ü4 <09>µ"ñuǦeÊÜÃ>´›Æ@€‡¡]±iOëù¾aÓJо»¶`Ó0ìhÖŸqæ¸òÖËzæÑ=ZÚ±8JåŠMص[ ·MœxÁ.OÖÚ@Ó¡k˜Qˆœá¸é˜XÚq&ŠÌb2O†æ¼²;8]£ÈÑŠ,ça£ÌqTÈ„õ Ÿ”Øü–³ÂÉ(£kT/çœücòŸŽtMBùå}J•=ªî)\ëÍök¦UµTI¿ ½ÔvmÀ¡ùï,;«ä<C2AB>(zæ`SäíÔ8Ô4>¨jònu‰ª|v µ˜c,—$â.œœ¨Ix¤)³rÎÙ®-RDh³~R>{
ß  ‡[œr»FáQ?¢]Z¤¯[ø#NGõ7+žÄl¶d§~¥T:dííñt)c¡0YÙRË*jšhòöñ>êeÛ¯äƒÿ˜,ѪÝÐ2 Ùß+ÙÒq$\kx<6B>ZÄt#“¯W—ƒî=»¥±âìCŒÆËX Ó
›ÆCï[°i$G³žß°iœ!ƒ ¦¯w¢ñ<C3B1>þÀÊ-N]±™â,ÆÒX¢<58>Qº\cs~ú£<><19>©<EFBFBD>%@%ù£òôZ„£îPä¾Ùµáw[[v)y?¦I²ùª…ef]™!-‡EÏ#õGfÿ<©ŒßD¤Àuh´àžÃ<12>$¢•¦¢Ù„¬lJ꣼:ö~äüË*ÁÿU
tmƦU"·ê<¯ 6<>füî6­EB{ž¯Ø4ög¥†¡-Ü´V5ýÈMÿênš<@±Ug ]Ài¸M%ëg½Óì</ iA§È > úô<-ÙÇ­„þ ‰fI M[Š&÷ô8,ŠÉ²©ò&Óx“_º~‡6rEÕ¸V
f§uA§AÌÁHÞ>m!§á*Æ&¦:ÚDN##R4啜,X£M+9 ]“Dþüa—'KþíÅʲ§Ê$j¢<6A>Òëâ¯#®2Å'Ë`q&ÏÄ¿R⾃&œ`Ÿ£Vóô*a'e-ÛÇ
ï[ÐŽ9[ÈiÚ )`;D“D&”nWw½<77>¦qX-ƒuRdñzV­Ó£Ú»e°ô†¬ïéZ´â/»ºÌy³o‰E+4nXM|ôé Ï
LûÄ ®<>ä´LuÞÀƒŽ6Óè´i”mF×&rÚô‘]ÈiJÛ¢„Æ<E2809E>d 9 —è·\-¬¶VÖy?åe
CBYÿÍ»ðBNÃÔŒR^Ãò¬ä´ŒÕ>­£ä4íofÛy'§e5üös§e<C2A7>Ð%l5†ÖNãÈã½ýœÆ=%Þî£\ÀiYWÜ<57>Ú\ÁilFÈrÆ@Ài8æhÛº°ÓÈ^úqöÖNSºrŽíä4%†×&tõ²4H8÷nA§h¥åAUÐi´W•<57>}×&tZ>ë_Wtm#²À[^ãNËlOí<>®Mè4¼Îe¹Êk\Ñid]áCÐi´RRº>¨j9<>wk8Pm!§<>þ ©Ô¼•œÆI!ûÐ&rZÑ&™Ôœ¸<>ÓðiÈÉ㙜¦¥ýôtŽ·Mà4]á•ÀŒ¶Óð7³$Žk8<>™ë¤Y¯ä4 ùï<43>ÓŠy[‰ÁJN#^÷Yíu%§©[NÜ¢…r+9 ~ËiÕ£bÍ5íaoÅ®Îjmk$Z÷ÚÓd†¯Ù<+(±ÖIzIV{#E£œ¦[6yßš&›»[:ýñF:9Æ8½ü
G0üeœÍµ<EFBFBD>ÓÌ0 ¦6Þ7Óh¸;I×+9­pTª,®Mä4JÞè<1E>ƒ¸6ÓÔàÞîÆ×…œFP”0ŽÒDNÃÎ:¿];Éi´þ 9¯lA§©kè4¼zÚÇN³¶ŒbYë 8  ™&š½ÈxVÈÓvأ΢¥ñ!
þL…»ÿ& 9­j¿qqÙNÃY+•<>3]ÁitO僽¼€Ó ¥Ú —OüØø#Z²ëvmŒ‰¼—kÙ<6B>ÓL l½móƒa…LÕÒW2ࢹFûœæñdFÑô•h¼¾ôˆ£Uh I OÉNw‰ý™×^‰F=€UùVü*šåÀ<C3A5>x§Cò<43>I̧É>V½†ÝµFî±iÆ2h[P£”
ƒ©6<EFBFBD>Óˆ­Ì͵ œFýÆõ<>œ†e(Ox §âp/ÉוœVIP0`ïÉiMm᫯“+9Mý!r2Ä•œÖ<14>]l!§ÑFÍOTµ‰œ†s@W£[×&r(«­ߌ®ä4[£³O+9<>ެ3Ö¨´Ó8ÖÃ8Ó~”•œÖ”s€­&rš•«(YêuE§a|9Än¯<15>F%æF²ê<C2B2><C3AA>FÎÒå<C392><C3A5>Ö•ï妺vþÔ…‡ÁGØiôËá(lÁÃÊNÓ¶ŸØÊ;<3B>ž…<C5BE>ÔèÚO£äZ°ñ¾ ž†ooå1€´ žFÁÛ^Ó  -ð4Ln\àiä8rK+=MOIe—\!m¢§a3踴ׅžFý·Ö'øûf|&Â4&¦8i'><3E> ½k¾_[ði;Íî™UûŽO£¦ˆ‹ç<|ÚŽ<C39A>Ö~<7E>³|ýÙæœ ÆŽI&…Ýg<C39D> F¡:‚£ÜfÇl®<6C>Á³ÔØiÉN*{Žo¨Qà. oiÎÓšj˜$7…힘j»õë+ æu¨i]ü®ä-×@mWB™¬èÊIPÛù䭷݉f3A<33>jz²Áò AmÊÎ(ž*Yjl9û2ƒð• ¶«©ì›í ¨aå«a¾^‚šî"«¦ü_+@<40>Ò}æd;C_jäøë ¶+ oóÕná§iÅ?f6U-ü´]qZ¶>¦•Ÿ¶ÃWhZСÚÄO£Q€êŸàô±™Ÿ¶+¼Dî<{Ff~Ýfî˜*Íü4¬¨©Àîþi3?<3F>M°6÷ùŸœj»¢ºš™{®ü´]«}¶îKÉÂOcó|¯­ü4ußiMQmá§íÚÌCÅzvíà§ívè2þäÂOS[ìmÓLæëÂOÓýøÉ UñéG5vÐÍ謁YMk¨l˜2Èþ°<C3BE>Ï5<C38F>6»ºÌ¨ŠÉ¥’Ùðý<ý¨ú f—h “Mµ}ŒcërrÍNaM]@?ð³‡lWw²í#
^øiÚQØQ¶ÚÉOÃN[{| •oULÓ¦í!±<>ͼ
Uùi´HȤ< _øiXmGu@)®<>ü4Ûã×íä§©Á9 X{¶~ûðKÉ&ª…Ÿ¶3aå§íì<C3AD>ªÖ¨–&~y¹ªÇ[ ?<3F>v LÇäíëlîeJ©vqlÏc±‡h3&w´A <20>Æç$(¡2<C2A1>ÏÉsϳÝ,¥\eCU´²'˜F
™!«,ü4r ±ç[ðªhã˜ä`ÑH^a‰¤°Â ·\þ¡Ò`É2CpèôfÚA<C39A>Œ­¢É†<fK_áwá<77>Ò¦R–¾:ôN-Û0yˆå½3GC|±Øj-yì…L;0í°\ @ºB<C2BA>Ìa—Gî™Èĵ.ªi ]²©¶Êª/Ï>5ªÉßÍ2hE<68>=Á®ï€¾×í<C397>¨lIeÙ×ôÕ<C3B4>wcVAºGÓW¤`‡Q<E280A1>i%´b6‡è¤ªkrŸù•ìs,§üMÕ2…ôæÕd2ŠÙ ¼*º5V«D5³åqEá\_Ö즊DÔdŸ*ÌqVT£;¶ùÆÖ Žõš½"÷dO<64>ý¦ËË%«mÕìÕÑ5ä·3gYÚ8359ÙÇð<C387>ç#»Æ!9SѨbÿd1Œhä—å_ÕÈAþ¨ÀU©FÀAoȇçàEã19‰¼Ðä9 iGרtj“e†É3ßU-³uÖÜÉúF÷mµpªèMÓ§ªùÆaŽh”ÙÊdhŸ“· FO;´ƒä-?ŸÃ@–¦ÃWÑ.?
äY º3)¬öÜ=NÚ—HÊRÏ2Ýÿ:”~YU7»:>ñb©ö´få1¼]>Vòíáš1$Õ˜pD´až¿|‡Æ0iÞ¦<C39E>À"8Ñäa§”*©&;YÉ¡ÉsX«š;qÔR0™°Õ§
2¼àÓèä0kèݵ“Ÿ†#8Ö9}»Ôèò ÏÙK Am×BuþË¡<C38B>µ<>0<1A>) ¿Ý!”u<E2809D>÷Í5<18>3M­#jºcóðPÛµï26û~3C<33>™-ªcÖöäÝç××…¡FË ÞÀÝÿæÌPú/ÎÍu CmWsØŽA™k'CMmÍ£æÅÑ •t˜:. 5úXp$¬} ×N†¹¼Q<qg¨á†>Œž^†Ú®§ÜêÿèÚÉPÛµ>ËúÏ_I.ˆ†š6ÇN+C QZµ<EFBFBD>ÑIMµŽK´ZòÀé<C380>DÆ”ŠºV±Ê:I(Ñ?ÙÙ¤ÓÈðE2r\vÞ}jZ¤PóWôärbŸ-.<17>Ê ªù«ƒC\Y;š=€M"¿³ë¬j²pÐÄX]üJG°ÏÑv&?ht­à£Ânó.Je|>j…¬š‰¨V)´n}h<68>±æ¯hU¹6z×0,Ë4¶ØwžÌšMâS¡Uä¯ôÈNnt¶×²q£ g¬¼'whVÝ„&S¬ÜæÔƒâ•“ˆq|N&ª^<5E>Ó>wÞÁ6t_µ„Ø]OÀ\*Wò¡<C3B2>&­fÝ5™àÌ.<0E>N™ÖýïŒ<—þb´IØfedh˜-dM_ZK­uã9eÕõæž|ì§ÛDûö9ReɈÎú¡¿whñø1±©Ð^­ªR"ò¹ªN9Ù95Õç\“•ËZý9 >;=Í¥VÔŒ"!EYšB²ñcTÑ´¥/þ…ãÛn];ñoÐÕIn¨Lĵ¸$<24>8<EFBFBD>¾ú)Y¢«—<C2AB>H!×i§Âá˜pÈÓ\-CƒS…u#2{žÈìä¿´êºý…uƒŒ!xæ£s:#"»ØNSE¤ÙØ‚œ<üEñðR?ÉÀ¥B~A-¼Â•â`Þ9ìûäM êî%Ÿ¢tPbÊbHÇ¡LÝ䲨ãqnb”Î;«
—}N­«ya¨ißÌîF¤+B<>ÔΦ®Lŵ¡FK f)°†G{°¨ð
&4¾<34>Xj¤}lg\;j´Û`˜ÐjQÁ„DöÍg„Í8;ãhêÚ‰P´+z­µ¨Þ8­Ú×jd6*g÷¡<C3B7>µ¨ Jöºk'B<><˜+ Z Z”P<1D>»Ô`Ðj¶ùí7Ôèý±SŸäÚIP#=…<E280A6>õ¾.ê\Yj$®¨ïé]í$¨a,<2C>2-5Z 71p&¨ÑNDö©Œ·<C592>µ8ñR^€šúÑsðf¹œ… F.Lž¥ÍjÕZÔJ¶ãƧš jQÏ1Éôdך1¬+Òµ¡†Æ¦R÷E¯•¡†Födßœ‡5AÔ”Õà½Ý®54rìn»`Ô€5ØnºqÔШâ›ÓÒ&<26>ZPsünæë¯•¤†F<E280A0>`´Ú…¥¦pˆÝVט¸_ƒ¦>ÓÔÐ$n¢©!qÍäèÚ<C3A8>S šÎ+ÍmžU§y sª)‹ÂÍØ\;ˆj°(hP?¢žjh0?²Á˜¦š3,¤P5´"ÁÛ™ª†EÎëU¬š²/²—\¾V®š¬š[íùVCÃ-3š÷àVC;Á_+[ °¿0÷`.òÜ`ÇžÌJ(þêVݳ=¨"idKºªãž¥æ1öc`NVR’¬ú%X© Rì:öó/j@Ð…˜\ª<>¹ÉVj4G*·H\þ¢°)±@[¢cL²„¿(£’"<22>et©PRAªŠ¹&h=¡}
[²v<C2B2>C"#<23>'ªºµNÞ#ªØdï™}Ûñ$“Ÿš4UÓ&@šÇ÷ÉM”¯”·ˆª?ˆ¢Y§$ù#LÀÚËM¦8QžYmšKòKãhxBýÀ÷ÅãM¤nõ¿(•[Z;áK!3s#G¥Å¯%øZ§*´ WÉÎ<C389>ät5ª!†——.[°,q*õ¡T¦É§ØGdσK²9ÕÀé/v«äw­š8n>i•÷¤Ú©ó/šd­1^J¶Í÷_z(p™*®ÐM`£ZÚ}Ç?ÅïýÌÆä_o{ŸFòßU¢²T™B'é-ò8ÝÆ<C39D>šÜUìrhþb}°d>å6åQ#•CŒì¦à„F˜(<28>šÚMf2Å%‰ç­â_ÅŠJ<C5A0>\¡ñšÒƒ¿0åë™óGû>\ÐäÁàðdÌQ]±S"?Â]zÚÝ1 ™‰<E284A2>üa¼Ëh¡³V‡¦QLzØI¤Ewg÷¡ã€V´C·D¶ZGhCáÚ©¨¼äxÖBF`Ç£ÆãÚÔy™ÍÐ<C38D>_0ï>Å|ÝŽšF¦•4"KU`nÓ”F|D2í<32>¹ [JúC]J´aÃyˆòÙî/–¬,ÜŽœº¦³dÂÔ­é^£kæ<6B>9ëæl6M·=‰sœl3¿þ§KUÍq¢.%±„ЭmcŸ˜ýàC]mŽdìOõüЄء<C398>(=Z¹šÌÒ¥iFLíd`²o”}šDœ‡fÄx±<>³´HEßbÖk»•¤—šYäi¨u<C2A8>Æ3NaÓü_Õ5
gí[x­p5åiàk¨‰­†¢Çpû®††Ñ:éjHØ,éTÿZñjh<6A>Õ/€5´Î<11>ÛSÏ„5…w°»qÏø±†&7c¾VÆZÆhÚH¿ d åOõ11
<EFBFBD>´¶Ò©^+e <EFBFBD>4ª¥<EFBFBD>%Ûyš¼ò2{¥2?ˆrŽÏIÄF×6”¸ë+ÀY om¿%£¬Gv‰Î<E280B0>ÃRbÌŽ9Z;"<>_EÛïËz(dmSŠeÒ°§iG“Ù<E2809C>Ìä™ZÎËZu­G=ÂöƒWcËXÈÍ'`#h%²rqï®É.˵æÄ´Œ :¹&<26>PkÓÿQƒßÏlŠ<16>E²rwºF>‰)[5yî©(‹®É÷É¢yP¶\ò<>”dã”·…Ô®yPf<VKv-»µžj<C5BE>
ÇboOজÚiOeD¡íÀæo 0FÄ»(wŽì­k™r}<7D>íN{³ÕY£P:4+v¹žº=éÔ hñ{Àõ§<kH@“È4 ˆÆi{§-yh˜fÛŽ{Cá7×”E“ai¹0<>š°3̮ɲj^JjÂ@Ê®û =•àíÂiAô¦1—¼¸º”4MŠQ ÿžƒ×(¬çpM5Y e°ˆk-°qË9Ì?¸›ý±¿èòZ1Œòs¤ä¶*É_ö,'Qsb¸hÿ¦ÍåüDò¿©$AbÑ<|ÕÀûB"<22>ª91ŽÖy¾Ž”\“e§XEW jLqøšrê„ ©!Ñ4k,¯ç94­Pçˆ[&EÚ]“],œ¬šD¡G·ÃhÙ°²ZHˆšøl‡Å¢hQ^<18>îÐ8/Ç´Ï5+OâcЧ<C5A0>î(.±s®š­aìU†U~ÒxGR,’ÿïÔM^¢»x4Qä°‰X4ùÂÞÔæ9bB#«\òab|V9þæòÈ<&Úë*šL׌DÕdÆ?èÇuM~•5)I*Fò6ö³tZ<74>άI1íÈ¿rŒh4÷TMŠéI±ìá<À<10>ã-«éÂf<Û-[£'„ÛÎq°ŽÍC8Ñ´°N}ž<>bÉÿ:¬ÛÍ&åíJx“UMw#a~¦9ž¨i×5…€æÈWªŽ²¾Ü®Éï'³
±àÔ…‰³f<Í©%—MÚšÌC çèN K'ß,h{Ù®ç<®€³ PYNÌ|{œEƒKv<4B>&Ä™"FHäÛĹ0ÎÐ"™†Í›(ghƇUΘ3E“T I1ŽnO
¯†r`Î<>äú˜ÓkåœíW“e¡:Il<02>M©J|[öé mbį3$ò©ÉºÎÖ@ü>kòßy<79>)%è'ì,(:<3A>³jó)žighòû‡PüVŸpgh8Àɸ%íà<C3AD>AHÁD<44> õy—ë<h¬bßž4êÑÈrh²ë`.ìªUR0£q,ZÔæ9Y7.]—ªá~F¬Ím§ý4k?ײžˆF8;9ÿ{”2T-)R<> 7}÷ªQ-¨Q×ÅEvÛqÀ¨j2U+Öß]kÌ3jóœ$Ö©¬£ªà}&o½š<CÂÅ/ÂÊÉÑÒ(¤ ‰’‰ÓNÿ5ñ>Ã"Ko:5qdµO»¼Ïô´J®.S³ÍxD×8.
Ú <S²J¡œw°Ðà¶ÕÑ}Ìgâ ÖæL»y†F™HªY gÚ7'ÛVÇûNèYÒ·Û;ô þç =Ó¦:Zó\9g¤~‰ÑPkFž<46>zÌê;ÌÈ3m·s#†×yF^sj¿‰ÂŒ<ƒÛ<C692>Ìoîu!žY'^všc˜‰gdŒ­8¸v"ÏÈo-[·óJ<£G/ªÛFví$žL€€\¦k'ñ Úƒç6Ï’ƒÖ‰\ˆgIK¸%rŽƒ†vÏ’¶Ÿ‡`…B+ñŒæ¾ê»<C3AA>×…xFsŸ¡ì×\;‰g¤¡G‰óëB<ƒAðËL<ËŠ`1<>Ò×B<ËQ«2ÏDѨ‰°×…xFO ýàû€¡<E282AC>À3Z1™°Â•xFò:6s¼x]ˆ8—ƒ…xÕe ƒü5Ï%‰Ãæv#žA<C5BE>¨ä-lê^ˆgP'°÷HN gtÒ'Y÷<59>5;gYûäzjÆZ<>gY<67> ÆÆwEžeµ®ä‡(®<>Ì3Ú ·B+ÒÐNèñúIJ z­$<24>¥BVèˆ1ª‰¿k'ô,ë,¼°o…žeEG™oÔë=ƒeÁά:Ën†žÑžHrÜÜRVèY6ÎjÚ<6A>s7Cϲ"§R®7æ†ÐðaÍÎaež<65>¹P<E28093>æYVT9;éÁ5;™gYÝlÓnäÞ•y†Y4ø…ݱ™y†YôéU¶2Ï´­ˆ¬óÉfæYÆfÜÈ šãø³Ûq¤IœåkŠ;Œ^«Ú» )®Âª…ÑØŠã9ëšÌDlrmãÕ«Ó<14>DWV‡n l$XŸÑ¿Ê”J38¯™¡EÏì‰Æ7{
ªÍÌ3œ¤Y²_Ø™y†“ôðf}]˜g8IonFõº0Ïhy,Ô1˜áúÂ<+x<>oÖÆûº0Ïð™nlDm_ gEϾ´`ŵzVt.ÏÔ<C38F>Ý<>l¬B~ež) ©ª¥²k'óL³öI±<®<>Ì3<¨åêæœ½2Ïð Æl"›÷ûÂ<­”nðÉfæYÙÕáaÛ`—<>Ì3úYëo‡v2ÏHêïÔÚ J<EFBFBD>ã<EFBFBD>ÞÒ¬˜6|ô¸&o”üÈfyž™òÈÖY°q?³&¤F]S±8<C2B1>­éÜÈÇ(“–n…)JdÃ1¶I¬ÊÑÚv<C39A>bÄGœT(<28>Û%ÐU\+l<>ÔáYÍ[ĵî<C2B5>ºhÚO`b4™šƒ¶GÕd¶“ʇùY <20>¤-Øò6'³¦BÓ¶0R<™šf_Áð>“<><E2809C><sB©p>†VåhdË*q§&¢<>dÂîY
ž9¤Ö:¯6sœ<ÓIMâe.в½èY5¶ÁŠýÑ´%Zsb%Ü=ÃhÖžqjN¬èRL†¦¸Æ± šÀq^<02>Þ:÷q˵#š<>ÀVXf„àµþæ2?RÇHÚ©­þÎ4=˯šÿ(º~ÈÈ»U´\ê†õE×Í|V-[dt-<07>¨¢jTÖY"{¥Ssb˜Å““·êLY>µNZ÷·¾Ñ´û<>!êî\ .x¡i<E28093>Úk"ìà5¹Én]û¥
êîLƒ2É$¼Ïj¢É[5Z×E^­o‡WS4,¸…4æÙ»dšÐdÝ(Z[`ýivÔÈQY¼L°Ðdv®VÒÅQYãÿÙ”‰ùårjïŒu»µ|f×4þQ{g=“+*z²‰ViSR{gm*ŽÅXÎ\ê ]I<>9 æT®É=çÄ=©V©†)a|޲ŸƒüX¨æ
ï3uª•Ѭg]¸<>+™÷~8ü
<EFBFBD>6-ÚM€&ÿ)vjïÌÙ•rÙT•©—¥Qí<51>ÉñœÙÖTÓhù§YM5 £µ5ݵN„¬­túÒÅcÏÆlxZ\5hôfv…ÄÏg5]œBMýÌc5P­ /u4¼ÏÔšÏl?µÄê°Çm稩4ÏenóÝ…ºr™#­:£1‰j'oWÕ'5?Ê'•zÐ_a|Ìk<C38C>$N,fc§Zýu<C3BD>Ùp^äm.±IíêìL×­ÄäK]“ûØéÚ@8-²]Ilø(âkSÚñ`Z¾L:š&Ýk –¦ß©=J¤ŒMëÚWÓ´<12>îYÚ¼lƒ(b&}§Jtøµ~­QÂJʼ©©×¨pnx_T=k<UkZ g7 avüÍœð¹qIòÔܙӦA«¹7E¦P™áHW¬Ä“VH$×§fz*Ó4øg_\à ³‘±
ôºrôbí
 ¶œä¬Ð8Ý8<USH8+²ll‰9v±'<27>‰^îˆf•Ѽr×4J¤ämaËÅAK<41>j:éRò(Ñ(8¬HÕ´J+<2B>F6=Õö]ըї­™«@n:Í~¹°ÁP7oœ½e<>G×j´Þø¿G&ÿ¥q>ëº&¨FAI×Ìœ7 ÿnla{ŸS³leZL©^<í<>†&rÕLsúA™­M,“ÀB­Dh§<68>ã35U«#'/÷¹LD=.™N9ä<39>Õ'˜?šL_±¨Ã3½¢…”[š÷þpuLa
K¬êgœ]ž;þ:\ƒm˜¦ÁeNáåRcí@4qºV¬Òª©f3»ÅÊ¢õ"«£>Ó´}Þu]
÷ ¹™E³XœMPΟüïIèGc<47>ºãôªÆP\ëQIIµ:
tD«z39©ãú(1˜3ÚTFS  ZÁ)ÉZ¶ÑºŸK†ç<E280A0>v½è{ÂjÅfPóXœ(H$–¬™<18>ì
E[ID1<>óÑ5ÙܪÊj9ÛÐTÃùLfbŠÿOz-eÆÖµß4ÎìpP
—=cã3yÚqyFér b´»‡ù}\žON V?²Æ<C2B2><3šL²”X\K$á EmA·ûSµ‰,°S¥“×9lYfõ#,`º8銔 ÍmAÐH&k:šþO«#k DðBÄãùäp™Ã^3A“/ÔB6Õä%ÛgBü¤fç'çã´ó[«`ƒ$b»Ô®yú¼™¦ïLRr nHt©R£L ‰W¢£Nã³ÓˆŒGŸ|—®rˆ«îlªaiz˜Kš<°XÍð¹N™¬ÌG¶ò²¤J$£»ºSëYèÀ²˜žC&[Îÿ:)É9ØxXB<10>ȉÝiZ#†²c*8"2¹k—ó©îÌÀ -Ôdµe%‰…Æ67Xaš,Â…MŠh§ZâIDëZV<5A>èUfþìš§^ù\¼M[MóèõTí: ø;™ r¼"Ó¿BD^á/Š–ä… JmŠJ#<23>”ßIitÍØ<C38D>í“”VéÃâÚJJÓŽ]<5D>ž¤´Š¿FÚJJãDÃraORZ5>ÕvRZ܃”F …µK=IiUý“Õô ¥É¤¬ÍøŸR5 Ù••“VÉxê»ûä¤<C3A4>^8iUÍmÆçVN5yÖ£ýà¤Oµªæ''­Â2iãc+'<27>\¥eµŸœ´J{Y>][9iµ<69>Æl®­œ´JÛG¶KØ9iòïœ<9i´k—rº¶rÒ¨Ôˆù<CB86>“&kæQ}œ;'­z§Öç…“&wŸbSÕvNš¼¯1ÿ NVÃVðä¤q~eÕcONiçÑ\[9iÞ<69>ãÚÊI“²SŽ'&í¶€zbÒn ¨'&­ÒtÕÞ1i·Ô“v[@=1iU<69>Þ1i˜ŽöZ][1i„…§?;&­rÔY\Z)i\<5C>íóŸ”4ya½èìII£GÉ—'%­Ú/¡ÚFI“ý¹Zã^(iå:âyRÒÈF5Í=)iÞç…’& YˆçÐVJZ¡zHãÙ'%MnÈaæ$OJéâ#×J6æ2ø¤¤Q·{sm¥¤Ñ(’û;%<25>3ŠjwïAI#Õ2Ø];%
˜k+%MÞ47rxRÒ¨&,ï”4Žr¬ÔãII“0ÿUvJïSõ»°SÒä1JÓRÒÈNZæII l…sOJZ±ŽG×VJûHË<(i²k¡wÅ¥•†SN³Yu§¤qDg.—OJZ!÷¯Ùò'%
µh“øƒfEÄú =(i£
=üzRÒ²¬4çñNIËăzøõ¤¤e+pm¥¤µDÆ“}5û¼PÒ2û êÒ
IËÔÅ\µ&ÑÌÙ´Êç I#%~ûs;$-GóÖø¼@ÒðiŠÇÐVHZÖIÉ´&ßwZõó’–Ý=õóIËÇH|?!id‰­5ò IKZÇþI»=¤ž<C2A4>4êUŽÓ¥•ðÇ<[me¤áÇl=cOFZ*Ùü¼0Ò<12>„EPF†'Ç;#ÍüàÒÊHKt6Û̹3ÒØ:çi'¤‘ ʶ6?i4f%¹¶ÒÒÁ¨y ÒäÑðó­'#<23>¢á^!iôhY]Õ“vûK=0iÈ>¶¸´rÒ"%ÓuÏVPšíNO×VRy瀨­ ëM}€Ò¢ú„×Pvôö¤?8iX.äòÊI;ñk)®¬˜4Üâ[ti¥¤Ñªaæ&³„—œ<!iØÇ<C398>þ•;$í¤-u×HÚyeŸ<>4Ž@ílîIóâ—VHšL<C5A1>±Ùûý€¤QNU/m…¤q2\lê~@Ò‚–½ÛØ!i¤q|¯ö€¤·xÿ¼@Ò0Gu#µ<>´!-¸´bÒ(Îv{ß'<27>ªZñl¥¾¹±áƒ”vTóü¼<C3BC>Ò0 t¸)<29>wÓª\ž¤´CÆçVRÚšs½vN>Un±¶sÒBg>ίœ´@Óº[HkÈŸ''-XIˆK &<26>êàhÜLšÜ6öѵ“&<26>¹¨âÚI d¶-jÁY^1iøMVyùÀ¤1·¨Ø1i4ƒÄh¶<68>;&
—]ïœ|`Òxòi&Ë;&<26> “<tC[0ix=3¥{pÒ(Ég±Pm¥Ì1ìôþAJ£·=×R©êèú;)
W¿ü
J“m¼¼y}|j¥Éü“«}€Ò°ÆŠvØô¥…lgC®- ´ÀòlÛ¸(-п궈;(-H”„;¨k (
gEzø\AiòÐPgÔ¬
”&ïÅqø<71>ÝAi4¨ÖxÖPZ{c«Ì”†§V<ÒÐPšì$ª»<E280BA>Þ ¸MéÎI“€sê7NZà¼Ì§•<C2A7>èú²ûƒ“†•IµcÐ'-°ß:·<>Òè„ ø^µ<>”Æt4{lwRZ§t¯¤´@7Äé<C384>íBJãìW¡îÊBJ£eD ®?OR§x½š÷éNJ£ù·º ëNJÃeμ(-PDíï 4</è:pm¥ñ‡­hæÁI;ȯ'û½vN6Ü=šÙýÎI;äÙËÜ9iØ×7ójxpÒ(ŠlÍùj'íÀ¾ÎÂë(
L^TÛ@i‡Sf×P.˜§»Óî 4Bûì/óJ;
þZ6óï 4y~õ°Ýµ”ÆMhÇ`¨-œ4x`
¨¶qÒêG¶µsÒxèÇqmᤲ$g¨mœ46ȹø­Ý@i2J0p m!¥´4Ù[¹ƒÒޤ¥y¢¶€ÒlèN‡¡m 4,šNG*¬ 4v«øÈ¸²€Ò$ÄipÒXÅJ÷<4A>lœ4R¢cNvNÚÁìPýQÙ8iôb«'|pÒX£eJ 4<
ìWÞ0iLù˜¨«´œåüºwLÚqXÊѵ“&ëH8¬<38>`äi±ËaÉã<C389>¦&jSk%
-<2D>M5mÁ¤Eõ$LÖ¼ºbÒ¢ÖìIôß]š0ihfµ ÚISóµÚÌ8jä¡å:hg %M}ÙÊV®”4NÚid3ÊÁJIS϶DNɵ‰¦'ô(ÜÙMIS;·X=Ä^)i•ÕÓ“²%M­ÞN¯¼Ø(ih<69>nÄâÚDIS8¦•LZÔ7¾Û>zä™E\:üYY0ixÄ5zß^0iêG Jum¤¡qdÐŽ“Fy©Dí(´ “†V8·~Á¤¡¹EïgǤ¡ÉËp£Ð&L‡ß
³J®M˜4=ÇŒÑÀW &
-à7Ù\0iêe'ãrˆÕIC“ÿÔêÇ6LÚyÑXVLo´Ç '
Mý®^8ihšˆ®Mœ´¨U 濲aÒ(_ªÚô¨ÚIC£ŒÓâГ¦†+äîšk&M-÷âØ@­˜4´Bvwh&
Í¡ŸïmëgäaÕ'`r¤ÙIC3{_×&Lډ݋ý, &-jèyXφICÓíÚéÚ„ICSb«ýÊICÓ.<2E>èÚÄI£ƒ†ý4´”†$Ï<>3
WRZTÏOÞE×&RZ ¯»º6Òx9{ƒ@-¤44YP,Q¿Òâ/Ä¡M¤4ó0$2um"¥±<C2A5>'|¶Ë[HiH29o%¥E5¡·µ<C2B7>ÒÐõf/¤4ÚÂeƒSì]_QihE×c×&Tîe Ï&TZœ )6TÇÀ<C387>îäÚ<C3A4>âzØÉ͆JS‡Fu´smB¥¡áÅ<C3A1>QPih2׊J£ÿnŽ=ð+*MýǨµ‰•†F<E280A0>g7oA¥!ɈÍyxe¥!Y;¨K+
Iz¾œI·°ÒЪuûvVe™gXYih´îû½°ÒÐp¾.M¨4ì#ºsº6¡ÒÐ{ƒÁ<XihXEzee¥EMý±mb¥¡)Ì8P +
<EFBFBD> ÖX—++
Íra0Ö&VîQŽÔZXihø*ÄD`ihÙ6[Ÿ–†&áMÉz6ÁÒÐhŽvnÛKC <0C>ÚK#|ëùTk<54>¥©
(È¢¡M°4­<11>§yon°4´Âé§<C3A9>e<EFBFBD>¥Emã=¾-´´¨]Ç=øß[hifæÉ €ÙØï²ÐÒÐ`™Ùú¼ÒÒh ”ê’&Xšºœü6,´´
6XJ1³ ÏKSíHNx^`iH™h´»4ÁÒÐÜîù³ÃÒ¢¯ZwJÜKSM&K¯°4mœäN×&ZZ°zÇφKS‰ƒ¯æÒ„KC;†¥ùÊKS‰ðâ…—Æ<E28094>LWŠk0M5ùYÚÐ&bšjÔÙw.Ä44ìÇë ©MÄ4Õmšk71M%ùýLY€i*M,µ—¦Š¼Lõ¯¼´Å w㥙&+× /M5 *-T[yiö¹±-[yi6Ó:_<>?;çfå¥Ùe³ÃQm楩”½,rã¥Ù<C2A5>|Ô7^šÝ,<T[xiª±ß
®M¼4Õ¬Ùè³óÒì!:œT¼òÒT«¸6ñÒì™MN,_yiªÉ£˜†6ñÒôÉîÆ¼ñÒôÕÂ×étm⥩Æ\W]xiú*“ ܳ‰—¦S€l[¼·ðÒtæà!n®M¼4<C2BC>ÒeV`šÎaà¢k0M§><3E>W\ˆi6eFs…Ûˆi6ÕVëmÙˆi:E[WÇg'¦é´OÖ>·ÓÐD,—6Ót)¡¨¸6ÓtyRþ‡j 1M—µ2R|+1m]Wbš.£²â[H¹ÓÐpé·mçLLÓ<05>Ú™Ó• ™¦ï/í,ö<>32Mã‡[½K2Mãy<00>¡MÈ4<C388>W,³õÙ™ih9<68>ìÊLS[.mlumb¦iÌÅæÇ.af¦i¤ÖЇ+3
<EFBFBD>šÚ2´™¦ÆäÉ—7febö
­Ì4
RµÄÒµ‰™ÉtŒ¡,Ì45I—?w žÚÄLÓ0ÃýæÚÍLÓè\ã?¤•™†ÈÉ‚¸™™¦û„”<ë¾2ÓØzÈBïô÷š¦ðÉa6hšnurôHz…¦é‰ÄôøÎ 𦇝}œÐ,Ð4Û­U<C2AD>BWhš|¥chšîeõ°€x…¦é~³fß­Ð4ö°8€8ªl<C2AA>¦¡a“e;¤•š¦6üX°bÓtN>çtm¦-Öþ6<>t %¸ÍØ4$lj 6M³@p^°iQ3ÑÉ·O+7
­Þx½…µÎ({®gå¦) <0B>íYqmâ¦>•]š°išZ
x·«¶`ÓË oš?c 6
­\Øî¦©³ˆÙ²j 6
“«8´ ¦<E280BA>çð8^°ihœÃj¡¦ÅÅýz¥¦Y3ôöBMÓ¬¨5<C2A8>oÌ4ò¬ñ„ÁE˜ih…¦Öf9_uÅ0Ì×38¹ìÚMÓ¬u¡³Ãµ š¦Þ>gòa.Ì4¤F6upÑ&f9yy€<79>>>·0Ó0>Ž
Ú™i/&ëŒ{@Ó83kçõ¹šÆÒ^Üxu‡¦ñsuwIÝ¡it:e£ªîд#×ãÒM£ÔìtÂM£wßW×hÚAî¹^@µšv]·¶˜5
§šÓl­Ô´ƒÛ—Þ¡i2ó«Ì~@Ó®Æf€ý€¦<E282AC>,áÇ`­­Ð4úÂÃ1àg+4-]¹à'4
ÃGógxBÓî‰'5
ÏßnVŽj†^éšÆËeµhmßÃ(}‡¦‘ףܡitS%;Î{@ÓNÚÙËF[ i'Ç7n|¸CÓ¨NæWm£¦1ef·<66> +5<>ê¼2ØnqŦqìË6
ãq8¤mæÑMîöhl5KÁ*êØ4úeXœ][°iŠ<E280BA>ÇçlZ!ðç‰MÝŽÙ][°i GÑsÕj\äŒÀ<C592>š†ŸAv«ç<C2AB>šli©®-Ô4N
ü³…šFáË<11>·QÓ°¦lƒè·qӴר¯7MøÀÉ™j7MB`­Hü<±i™2÷pmÁ¦1àah;6-ãéo=ßlZ zÓO×lÍú3Ø´WÞzYØ4ºCC[°iT G©ìØ4€]§Õð=°i,€1¤ñ¹Fr4[áù›Æ2¨@×flZ%r«ÎóÚ°i”X4ãw?°i-²Øû¼cÓØŸ•†¶pÓZÕ\ô+7
LÕQüÒ7nš¼@±Ug mà4ܦõ³îä4;Ï CZÐi$²Ùimè4ˆ9ÉÛ_[Èi¸Š±‰©ƒŽ6ÓHƈÍFy%§ ÖhSÄJNÃû4ršvÓ>1ˆk79-S݇7ð £Mä4:meѵ‰œÆ<C593>†6}d×&ršÒ¶(¡1$ÙBNÃ<4E>ó.ÜÈi˜šQÊkXž•œ±Ú§uô…œ¦ýÍl;Ÿä´¬†ßþc®à´¬º„­ÆÐZÀiyb¼w¾€Óx¦dÂ;}” 8-ëŠ;P+8<>ÍYÎ8h8
Ç|m[VpÙk@?ÎÞZÀiJW õBN£ø£·ó…œÆâ¢Ä°âÚ„N£^ çÞ-è42­´<¨j:<3A>öªrP°ïÚ„NËwÝágG§Ñ6" ¼å56tZf{šhotmB§áu.ËU6XãŠN#ûè
Ú„N£•ÒõAUÈit¸<>j 9
ôæ­ä4Nâ89‡6ÓŠ6ɤæ4À…œ†OCNϬà4-í§§s|l§é
¯f´œ†¿™%q\ÀiÌ\7Íz%§q`È窅œVÌØJ VrñºÏjŸ<6A>œ¦n9ñˆÊ­ä4Áð—q6×BN3ÀšÚøÜDN£áî&]¯ä´ÂQ©Z²¸6Ó(y£{<âÚDNSƒ{{?9<> (a9¤‰œ†'œu~»v“Óhý#@r^ÙNS×< >^Ðixõ´œfmŲÖ8
þL…§ÿ& 9­j¿qqÙNÃY+•<>3]ÁitOå½¼€Ó ¥Ú
ƒ©6<EFBFBD>Óˆ­Ì͵ œFýÆõ…œ†e(Ox!§âp/ÉÏNN«¤ (°ÏÍä´¦¶ðÕ×É•œ¦þ9™MâJNkŠ@Jƒ.¶<>Óh
£æ'ªÚDNÃ9 «Ñ­k9
”ÕQoFWrš­ÑÙ'€•œFkTZÉiëaœi?ÊJNkJˆ¹ÀV9ÍÊU”,õÙÑiŸA±ÇkE§Q‰y<E280B0>¬za§Ñ¢ƒ³tya§uå{¹©îÆNߺPð0øh;<3B>~9…-xXÙiÚö[yc§Ñ³pp€]ài”\ë6>7ÁÓðí­¼Æ<03>6ÁÓ(x;k´ž†ibÓmk<<3C>Gni¥§é)©ì’ë ¤Mô4l—öÙèiÔk}nƧa"LcbŠvãÓØÁлæûµŸvÒìžYµŸø4jÊ<6A>¸xÎcÁ§<C381>h<>9{Á§¡Ñ¯mÎY˜dR8}ÖYjª!8Êm¨avÌæÚ< @<40><>줲çøî²ð–æ<­ †Ir£QØž‰ vZ¿¾`>@MëâO%o¹6BÈdEWnÚÉ_>z;<3B>h6Ô¨¦';,?±ÔΠìŒâ© Æv<C386>³/3_ j§ú<C2A7>ʾùÒ.Vαæë³ÔtY5åÿYj”î3'Ûú
š~ Ç_/µS}‡¯v ?M+þ1;°©já§<C3A1>êˆÓ²õ1­ü´¾BÓÕ&~<1A>Tÿ§<>Íü´Sá%òäÙ;2óÓØè6sÇTiæ§aEMv÷¿6óÓØksŸå P;ÕÕÌÜså§<C3A5>Zíst_J~çÛxmå§©øIkŠj ?íÔf*Ö³k´C—ñ• ?Mm±<6D>C3™Ÿ<E284A2>Ÿ¦ûñ¼ðÓ´ ¢°£Ÿ†<C5B8>¶¼öøª6óÓh<68>I1x@¿ðÓ°ÚŽê€R\»ùi¶Ç¯%\ÚÍOSƒs°ön-ü4öÿà—MT ?í4¬L1fÂÊO;Ù;U-¬Q-Mü4òò T<>·~í2CV?8XøiäȳdxÁ§ÑÉaÖЧk7?
Gp¬súñ$¨ÑåAŸ³#—Ú©…êü—C» j'a4S~/5ºC(럛j$1gš61.5ZGÔtÇæá¡vjß#elv}3C<33>™-ªcÖöäÝç×ÏÆP£åoàîß93Ô°.Çó°DÝÂP;Õ¶cPæÚÍPS[ó¨yq´…¡FB%]¦Ž C<>> k赡F®%O<j¸¡£§ÏÆP;õ”[ýj§ÖgYÿùgc¨¤á†xka¨isÌeà´2ÔpÙç¤Ñºš†šöÍœnDº"ÔHíêÊT\»j´Ô`BãÛˆ¡FÚÇvÖÁµ¡F»
† ý¡|AHdW>#ÔhÆØGS×n„Z¤<5A>4XyÐgE¨Eõ>ÀiÕ.oF¨I:¨œ=‡v#Ô¢‚(Ùë®Ý5òL`®,l\j1hQBu@îBPƒ=@«Ùá<C399>ßLP£÷ÇN}k7A<37>ôFvÖûº Ôè ªWre!¨¸¢¾§_tµ †±<†„~È´ÔHj<48>ÜÄÀ™ F;Ù§2>vÔâÄKùl5õ£çàÍr9 A<>\˜¼K‡Õª-µ¨•<6C>O5Ô¢žcéÉ®]5c.XW¤kB
<EFBFBD>M¥î>+C
<EFBFBD>ìÉy8k¨)«Á{»]»(jhäØÝ$wÁ¨k°#ÜôਡQŧ¥M µ æøÝÌ×?+I
<EFBFBD>Áh%µ KMá§­<®]05p¿M}¦©¡.HÜDSCâ,›Éѵ §4<>WšÛ"/<54ªNóæTS±¹vÕ`QР~D=#ÕÐ`~dƒ1-L5gX„I» jhE·ÓY3U
Šœ×«.X5e_d/¹ü¬\54Y5<59>Ú󬆆[f4ïÁ­†vÎÚ·ðYájÊÓÀ%×P[
E<EFBFBD>áÎ'\
¢uÓÕ<C393>°YÒ©þ³âÕÐ /« ^kh<6B>#:·§ž k
ï`wãžñ3b
M$+Æü¬Œ5´ŒÑ´~Èim¥S}VÊ.bÁ© gÍx šSK.5š´5™‡@ÏÑ<C38F>n¾YÐö²SÏy\»gA3 ²œ˜ùö 8 Š(—ìMˆ3EŒ<45>È·‰saœ¡E2
š7QÎÐ2Œ«<04>1gŠ&©^
åœ!Éý1§ÏÊ9 Ú¯&ËBuØ: šR•ø¶œÒÚÄÒ˜QgHäS“u<E2809C>/¬3€&ø}Öä¿ó;SJ¸ ÐoØYPtgÕæS<ÓÎÐä÷¡ø£>áÎÐp€“q
JÚÅ;ƒ<>‰,´x¦d•B9ï`¡]À3$l«£û˜ÏÄ34¬Í™v3ò <0C>2T
0²@Ï´oN¶%­ŽÏÝг¤!n·Oèü~º1Îz¦Mu´æ¹r#ÏHý£
 ÖŒ<ÍÐ!ô˜Õw˜gÚnçF Ÿ
yF^sjˆÂŒ<ƒÛ<C692>Ìoî³Ϭ/;Í1ÌÄ32ÆVgdŒ<64>­Ûy%žÑ£Õm#»vÏH&K@@.Óµxí<01><>Ás‰gI<67>Aë€D.ij¤%Ü9ÇAC»‰gIÛÏC°B¡•xFs_õ]Èg#žÑÜ'A(û5×ièQâüÙˆgP"¨c™‰gY,æQúYˆg™ ÊâaUfâ™h 5öÙˆÒ~Ú
<£%“ +lY‰g$¯c3ÇÏF<S´Ä½,ij¬^,G䯙x¦(I6<>ñ êD%oaS÷B<ƒ:<3A>½GrbØŒ<£“<C2A3>>Éz¬Ù<C2AC><ËÚ'×S3Ђ<Ëê\06¾+ò,«u%?DqífžÑfxZ†vCÏȈ'Ð'þ“MÐ3h$é,²BÏè@ŒQMü]»¡gYg±à…}+ô,+:Ê|£>ô ;³ê,»zF{"ÉqsKY¡gÙ8«étÎÝ =ËŠœJ¹>˜gBÇ5;‡•yæBY&^Z˜gYQåì¤×ìfžeu³M§{WæfÑàNÿÅfæfÑ·WÙÊ<Ó¶F ²Î'™gq#7¨63ÏpfEÈ~cgæNÒÃõ³1Ïp>ÜŒê³1Ïhy,Ô1˜áúÂ<+x<>ÖÆûÙ˜gøL76¢6ƒ/г¢g_Z°âÚ
=+º —wjH7óŒnH¶ V!¿2Ï”…TÕRÙµy¦Yû¤X×ÔòusÎ^™gxPc6Íû}až<61>ÖJ7ød3ó¬œêðpÄc°ËnæIý¬õ·C»™g$õOjí*íFžGôè ØzV´¯£%'ä-Ð3š(åƒÍÚµWèM”²<E2809D>\¡g4QbÖ/7CÏŠr4SÅ…zFŸŠÞÓIw3õ çj¨改RÏp®å>X
e¥žá\-ë %RªÍÔ³¢œŠÞÌÔ}¥žU/ülÔ3Ž <>
êÇœ?ùP&è§I7KÅ¥zÆi€(ƒ0CÏÔÓš#8[èžÖ¤F­™t…žáiM ¥Ã4è´Y´´÷B » óŒæKJç­aaž-é§•ã¯Ì3š/ñøwHÅÌ<«G‰ìW^˜gzP û}<7D><>æ¡js¬k7óŒƒ3š=ÏgcžqP ·<eu¥‰y†ÝuÄÓý<´yV•y¦{u—næn×òD<C3B2>§ßƒ‰y¦<18>”+7òŒÆÌÑúÙ<C3BA>g4fÊRO<07>j3ò ¯ëpÙ:­È³ªãÚÍ<SR¹l&sð²yFg&˜;'‡.Ì3:3Ûåó°0Ï xøë©ÒÌ<£33ʆÓ7î óŒÎÌŒ•‚#éfæ<19>¸uG¿­3ó¬êº¬Ub®ÝÌ3:3éÁ²JΕyFgæ(ýlÌ3:3»\¬Ç+óŒ÷.à¥Ó\˜g¤`äÅí×lbž1SÀ{p&ØÂ<ëË8Wæ$<24>]½2Ï:†g©tÃñ-Ì3Ü®³gp?óLÝ®ÛèÙ[™gœÜÖ½+ó¬é¹õ°]™gœàwîi„…yÆ)ÁÄÁ[˜D<»œÔ5CÏ8% û$ؤ³@Ïè¾ÄøÃáÏ ô¬ñáAž‡vCÏè¾dnñå~Áž5MµÄ± \°gÍܯswÛÌ=kZd­í®ÝÜ3,­+QäñàžqãÈóC+÷Œ˜+´8´{F•=kž­Ì+÷L—ÔîM÷Œ*à6º06î/>0
ûÊ{F•¢L—¥
mâžápXúú³qÏØÓ<>æÐ¦…{<>FÍ•{Æ«@ëÂ¥MÜ3=.<06>Z gÚåeUŸ
zÖÕA
vYv톞iBbü€—ÝÌ38§ö”…yFŸ¤ÜÞ`å çé€]X´áOÌ3é¾´¹t3Ïpžî!F³A_™g¤ì%XÏØ^˜g4CZ‡GpífžÑ IAxî/Ì35s`ß¹0Ï´YBnmyažÁ?ˆîK°"ϲ’F2jEžQ2({Íê|²…yF]“D‡ÁYv óŒÂPù纮Ì3jnOM»61Ï´2<C2B4>
æ™Ö.Éïàœ»…yÖÔ³<>N—[˜gœÿj„ŠkóŒ<C3B3>
—61ψôÜý³3Ï´‹½ÔÐ.æ¼°À¾>ÙK>3ÏÐ
ÉTŸ¢g晲İ"±*Õ…y†&wÖJ,>+ó Mv¥êJ¤ÚÄ<ƒÆ¡:Ýyež<65>ìúñ?+®MÌ3¶=½ äãÊ<ÓVÝœš“³æ™6íÍ<>õŒvN$ —MÔ3ÊÅqNlƒˆ6QÏÈhUtm¢žQ=n†Œª-Ü3­]8ˆÖ\¸g<¬ššážYùOïþ{.Ü3<U'â`¢MÜ3 ¢<>ës7÷¬Q‰T«ÙlÜ3NI{p×<C397>{FbPK^mŸ1c3-9ÖmŸ)‰L;I^ÁgA`e­t¤Ø > AýêO|.à3ü<33>©U¿¤{ÆQƒz¼pÏNÍÛ†àW·€Ïâ|P¹<50>Ï¢ú£÷ë[Àg<d2ï6I¬à3-1Ò.×¹,µ¬Ú>#_EõªMX
>ÃÈG¾Ø‹ÿøŒ=Ô_V§(ÿ_€ö§è3Ìõ_°Ï`ØXáÉ>˰ ºkûŒöÃ=Ùg9a#âÚÆ>ó°êóÆ>#knx•'û,Y"èóÂ>Ê-Ž<>mì3¼èãàmì3b.mcŸ%ËD¿°ÏÝ<>×òdŸE5{vmcŸÉÑÿû,U€³•}&QÛiŸ'ûŒÿg”'ûì=g/ì3¸ }pÑ6öÍÁÿ}4³ªÚ<>µÑµ
}!ŸÉ4“<34>†ô$ŸÉläOÊ“|v¤.*ÚF>“IÆÎŽžä3¾±ÿ òõ=þ£ìà³Q÷yŸ±¤ÁD[¹glõÍÉóÉ=co/€Ù
>+4Û>+U;)][ÁgXŒÿŸÊªK+÷¬\¨Þ'÷¬P<C2AC>è(¼<>{VðMïܳ¢<C2B3>ÂéÚÊ=cÞ7aŸQÖ`
ŠOðYqO®Ï øŒFIsçyÏðl¶Ê§ø¬°µ?þølBY=ÀgÊê>PVðÙIJz€Ï£†=Àg7Ìê >;°ïÌ®-à3Jls³|Fs<46>½%î(‡~&ÚÊ=Ë„9ç;÷,W
ßÛlåžá¤d•ŠOLÀlåž<C3A5>Q±îŠ÷ JåûžÜ3™˜<±ðäžeæ¦4˜h+÷l4~^¸g™¢¢`CÙ¹g´ó™[Æ“{Æ><¢òÁ=cý³¢÷Œ£LK|?¹gù:]ypϲD†)=jçžÉ¤ß5¶cϨÄÈÇ;öì>Ü{bÏ­o} ÍVìYRCâàÚŠ=㎘{Ê{FRwtÛŽ=ãi8mòx`Ϩ;Ïwì™l¹<6C>Ó)W;÷Œ¾œ2Ðf+ö ?0Ç%=°géÐÆxÕvì%úæëýÄžEE?/سèVÉŸì<19>Îþš<°gÑ쮭سH)Eø²{&Kj2þÏ{F%¼h<±g”]´s°ÍVìÉöAÂÛ¹gâú‰¶rÏh½ñ<C2BD>íØ³»ÝwêÄñÓG²SÏN÷rý<©g¬&ÙoúN=¨U;ṏh(ì>°gò´{F·˜y<CB9C>?±gÁ
ß>/Ô36œ!¿RÏ$†ªVJõ¤ž±-}h õŒSÅR,m¥žÑ†hNàOêYЧ;¸¶RϬb¡»¶bÏ<02>¸uÌVì™1Nƒk öŒb<62>{Û¹g7üâÁ=“i+Õ2¤|6ʹ?/ä3Ž×³ƒÛvôé–Ø^Ñg8ä>‰íè³BÇê­wôY a«8MmCŸ¯è3jPÎ#<23><>-è3°T%ù<>²¡ÏÕ|
¼Ù‚>ƒ€Gk ú,x¦jú,xcëçI>ã1šQâƒ|FpßÉg™ÄÓBªùŒC¿Ë ¢-ä3öÁœä3ŽƒƒûNîä3ú6ªífä3*<2A>­ôòY Ø$Ô¡-ä³@Ìæ–ä;ù,°ÓHæ-¹³Ï‚[å¹¶²ÏFróóÂ>羟ö™ÌÃ{²Ïè<C38F>v7öü,ÇäÙOøáJzgŸa&™«K+úL"ìऀú,ñÇúÀ¢­è3
dÌSýA>FqšËïN>M
P\ZÉg¸O¸Uôƒ|y̱ ò™l¿9h?Àg˜÷ŸÒGgÌí೓,¹9ø=Àg2kÖ0mŸQw[
µsÏ@ùíÙÁga¤õŸÜ³ ð¢ñ<C2A2>+÷ìÀøÂÞ‘÷ q'·=¸gç†uh ÷Œuj÷Œõ&رރ{†cUsŸØ<C5B8>{†;<3B>·3=¸g²0i!ƒk ÷L¯ÍÝ§ÃÆ=ÃYƒ@ÕÒÊ=«u$ÿ97î­ç!ú%lೃÔ{yïà³Cžôju;ø ¤fí—ðÕ08«¶<C2AB>ÏœgO{Œvð¬´<C2AC>\[Àg”ÓG‡níà³Û•íÁ=;¨q®ç`¢-Ü3‰ihŸ·+_¸g3ëiçžô¤cÐÒîùáîïÈÎ=3~Äç =; 6”K[¨gÇye
Ô³ƒÆ<C692>r¡ÍVêY - "ÚŠ=£†Âñrì•`ÍX;öL<C3B6>%Û;ö <ÌéoÁžq&O}Jh³ {¦^<5E>øf×&왲™R(ŽD[°gÊf*§Eö -b?;´ {u"ÁÁÔµ {†Vü æ™â—ØqW×}²-Ú.zcž!Ñrç¿åÂ<SÄRbŽsmbž©MgrFýÆ<S»£äYª<59>¥HtçÚÄ<SÃP‰cÛ¶0ÏШ”;ØlžaBê
z¦¨$™zËøÜ=w*ü³BφÄ:|º2AÏ(Ž¢ˆË•…z†&ctgô•z¦®­l<C2AD>ªkõLÝ^{w—ö•z¦P#^=V-Ô3²YW£ñF=C£ôD´;åLÇz—ÿ³`kåž)œ¨ºwöŠ=S{\cU|vì™Úê²ÏQi£žñ i­Üç‰=kfÈüŠ=#¯›<رgÌäV¸°SÏh0¬N„Ý©g,¸ë݃zFýw¶J°õLÒ2±cÏG^Nݱg8[;ah§ž58ÓÝ©glе]îÔ3J|»U‰=¨gôù$SîÔ3”AäÜ©g¸Ú
àíN=kT»¤üJ=#ö¥ñÒµ…zVmB°±lÔ3õ‰÷g§ž¥q´õƒz&{»ö<C2BB>zVÕù
=Ef»<>¶@ϘBª•> ü=£D»˜zÆStšÛÈz¦‡î!°Ù [—ÏzVÉóŸÜzÅÁnÐŽ<“Ý"%²‡¶ Ï(æ"_¥Ú†<#¸ïÁa[òŒ³g¶ã®-Ì3ú²ƒ4væQK<Â+óŒÓ‡Ã}©wæ™ì£u¯ÚÆ<»v Ÿ'ó ?§bg†æ5ÅA˜ó¬€Zôåigž«\[˜gÔxâë§ÚÆ<£s׿Eÿ¹æÁJ[˜gØÓ•䀲<E282AC>yFm!Q‰k ól2Ü™gm)<57>y¦†óŽqÙ™g{ks­k ó 7Ôà«ÂÎ<£¨¦;/rgžÑöÖàº3Ï ­R3éÚÂ<ãÄí4<>yVpøµ“™óLž>C[˜g˜À¤v¾2Ï
–•ç;óŒ£,«vâY±ÞPbñŒÍñ¸k ñÌ ´ƒ”6Ïô‰e<E280B0>ËâY¡ƒÚV…xV¼€ÖµxFÒ=ZÇìxFÿo¶æÊðŒ^ÿàå<ãüøðežeg7º6Ï2>NÞÜ<C39E>­b¿Àe ð,»q£k ð,S![¢¶Ï(tÄBEµ
x½Þµ…x<78>)ãÚB<ËDàNîijL‡¦Õ§?ˆgøq_OæF<“õ–´Û —-Ä3=úó»°Ï0.­Vùó žq¢5'?ˆg¬]ÕNÕÄ3ìår¾hh ñ û«à ª
x&ñFâɵxqëþç6àY6saÓ6àýKÅ……v†Õ9Yz×Ú™üWÚr§<72>Éï#«šmowÚ~kÅZ¨´³œ,7àÚB;ƒ†ºÓÎ2<C38E>“§lwÚY&nw˜ÉŽ;Ãg•"TÕ6ÜYNz8rº6óÎ2í•CXhg Xigœ2Fë5{ÐÎD+Á*ï´3Ž’Ç¨;팎Üje$Úþ{Ù×Ð<C397>v†&<26>Š<EFBFBD><65>!
âN;ãÏ
4èF;c”ÍZÕ´3®®0ÖF;“ì ϵ…v†9ûØþí´3ÑztÌñN;#s<1B><>¾ÑÎØóBrWiÃ<69>‰F_wmæ<6D>a¤CÇ¥…wF·Z7Ÿ³ZÃÐÞ=Æ¥]ÚÂ;ÞÕ6ÞY¦”Öóµ+ïŒ×<75><C3A7>ˆŽ¶ÙxglzܲæÁ;ËÀÌmã<6D>áb<11>¾óÎ(:¤‰Õµ…wÆl=OµóÎ2”U<E2809D>OwÞÕœô¼3+¼Xh ï cl§][xg²ðí°ÿ<yg¬û”<C3BB>º¶ðÎ2nÕÑ<>w¹ÏGï¼3¼<33>å—ÚÂ;Ë0!L´óÎ2Šâ¨<>w@-úëµóÎ2û3_IvÞG6Ñž;ï,“Ñ8ѵñÎäöYJøóä<C3B3>+²·±l¼³<C2B3> 9?xgòãavØ\[xgEí7ì6ÜY!Æ2/˜î BqâüŽ;+fº`ŸÛpg”Ž™µÎF;#·ÑŠ<C391><71>rmÙ²Ò΀ØaùçÒB;+̨ù‚¤-´3ˆçaoìN;#ÌœïA;+ÌFŇ²ÑÎ(!†ƒ£ÚJ;+œFÊF;+´Wù„ºÑÎ
<EFBFBD>Q4í°³ÝÞræÖÙ1l:ž¨3Œ!“…úÔ™ü­£ûwÔÙ´“ÞPgÕLíŒ5µ¡Î8Ì-ϯ¨³™$º£ÎÌoÚ‰Xê  µ¡Îda*´uFÊV´k êŒ#Ly 굢ΘZôn|ž¨³J/sïãc êŒF¨n“þuF÷IŽƒ¶¢Î8[õç<>:Ø'êŒ(ÆA<C386>ÔÕyÇù/PgU+bT{ Î ÄXZyG<79>±ãèNVÛQg¸Sç:pf+êÌ6²ÑµuÖÇüy¢Î¨Ì±j¢é ;¸dáÁ:ãȧ<C388>OÛHg<48>Sfû[;猗À,(Ÿœ³ª¥Yݵ•sñȪcžœ³ÅÒ^Ö•s¦çCVœüÙ9gœGñÚ¥iáœé¹Xoo˜3íº±7uƒœ-'…æŒürg&×&Ì™®²Çˆ®M˜3=>¯¿·`Î8s.ZŒåÚ„9³³öæ¼—sƱ¿ü<C2BF>n>q+çŒDÝ¡[(×&Ιֈ ߦç,Ð œ^1g”£œî‡¶cÎN<C38E>
) mÁœÉëÒK½>·`ÎNƒ¸ÙßÛ0g´¸¹õF9;Éèfô¾SÎ(|¨¹
rOÝë&×ÈY¤òâ|‡œá$å ½䌊ÀI¶AÎ(¶¨ãS ã,Ñ1d&;㌸×*<2A>ˆ3êGSôçrCœ±6áƒp)?8ËÐÂFµ%öA?[B ¯„3¼ãCMvÂY†fÑíÂ7Ä™ÌâÔÙî°œþqVhk­
qæ¬÷<EFBFBD>*[g3<67>iGœaù"3íéÚR?OÄK£vmFœÑqÜæ3lˆ³†¢•> Ùâöy"Î8×>lˆ3öÝzÂüy"Î(!³àÚ8£Gûð‡lEœÉ—°I*fŸ¾"Î(.”˳fÒ
qÆfN^^wƒ\g˜kÞVÍ+ã,/ܾ•qF{ÛT¯Œ3\Ñ)m<>ƒG61ÎHzòëú#±0ÎàèD{Ä?;ã Ï2^ìMYgLMа²‰q†Ç-Ö—f±»BÎØÉRˆd“ô
9ŽÀÃkÉ 9ŽÀÃkÉ
9ãä#b¢ú9}DñÀ9àhäŒRœÅ€¶@ΰÚ·÷pl<70>3*b‹Â 9ãä#b¢ú9}DñÀ9àhäŒRœÅ€¶@ΰÚ·÷pl<70>3*b‹Â
9ËÔ‡“³ ³ rFã>µ·Î´Z g<X2äR†6AΨ‰ÓšiûÎr « 3] g”û=Wuiœeœ“b6Ç  9ËÔ‡“³ ³ rFã>µ·Î´Z g<X2äR†6AΨ‰ÓšiûÎr « 3] g”û=Wuiœeœ“b6Ç 
öhö<¯ 󌃹ä);¨+MÌ3ì®#žîûà¡̳ªÌ3Ý«»t2Ïp»;jßýLÌ3Åx4, \9g4fŽ.Ð×yFc¦,õt©6#Ï𺇭ӊ<«êp¦<30>Ì3%•Ëf2§/;˜gtf¹srèÂ<£3³> ó Š‡?ž*ÍÌ3:3£l8}ã¾0ÏèÌÌX)8nfžÑ™‰[wôË:3Ϫ®ËZ%æÚÉ<£3“,«ä\™gtfŽrÐ×…yFgf—/ë1ÂÊ<ã¹ xé4×)ypûÁ5˜ðœ ¶0Ïú2ΕyÉãdW¯Ì³ŽáY*Ýp| ó ·ëìÜ×…y¦n×môì­Ì3N NëÞ•yÖôÜzØ<7A>®Ì3N ð;÷4ÂÂ<ã”`âà-Ì3N "ž]Nêš¡gœÐ}lÒY gt_büáðçzÖxŠð ÏC;¡gt_2·ør¿`Ïš¦ZâØ.سfî×¹;€mæž5-²Öö rF1ÃÉ™Ssmœá^( ®M<C2AE>3jå½wbÀ
9£—ã¯<´ rV´UB¶9€6AΰßçÚ<><C39A>gJÜk>ð+ã ó;N£Ìv~eœ•…صBΊ¾Q9øÕ-<2D>3z·ä?5¢ 9£—ã¯<´ rV´UB¶9€6AΰßçÚ<><C39A>gJÜk>ð+ã ó;N£Ìv~eœ•…صBΊ¾Q9øÕ-<2D>3z·ä?5¢
r¦æ`¸g r¦æ`¸g
9£xÊêÛ\ gå—z œ}ÐnÈéKnmNZ!g8Œç|vÈ™B=$€6AÎtk ´èrV9w…œa¶N†6AÎ 9£xÊêÛ\ gå—z œ}ÐnÈéKnmNZ!g8Œç|vÈ™B=$€6AÎtk ´èrV9w…œa¶N†6AÎ
@@ -3894,46 +4007,46 @@ xref
/GS128 129 0 R /GS128 129 0 R
/GS129 130 0 R /GS129 130 0 R
/GS130 131 0 R /GS130 131 0 R
/GS274 275 0 R /GS131 132 0 R
/GS275 276 0 R /GS132 133 0 R
/GS276 277 0 R /GS133 134 0 R
/GS277 278 0 R /GS134 135 0 R
/GS278 279 0 R /GS135 136 0 R
/GS279 280 0 R /GS136 137 0 R
/GS280 281 0 R /GS137 138 0 R
/GS281 282 0 R /GS138 139 0 R
/GS282 283 0 R /GS139 140 0 R
/GS283 284 0 R /GS140 141 0 R
/GS284 285 0 R /GS141 142 0 R
/GS285 286 0 R /GS142 143 0 R
/GS286 287 0 R /GS143 144 0 R
/GS287 288 0 R /GS144 145 0 R
/GS288 289 0 R /GS145 146 0 R
/GS289 290 0 R /GS146 147 0 R
/GS290 291 0 R /GS147 148 0 R
/GS291 292 0 R /GS148 149 0 R
/GS292 293 0 R /GS149 150 0 R
/GS293 294 0 R /GS150 151 0 R
/GS294 295 0 R /GS151 152 0 R
/GS295 296 0 R /GS152 153 0 R
/GS296 297 0 R /GS153 154 0 R
/GS297 298 0 R /GS154 155 0 R
/GS298 299 0 R /GS155 156 0 R
/GS299 300 0 R /GS156 157 0 R
/GS300 301 0 R /GS157 158 0 R
/GS301 302 0 R /GS158 159 0 R
/GS302 303 0 R /GS159 160 0 R
/GS303 304 0 R /GS160 161 0 R
/GS304 305 0 R /GS161 162 0 R
/GS305 306 0 R /GS162 163 0 R
/GS306 307 0 R /GS163 164 0 R
/GS164 165 0 R /GS164 165 0 R
/GS165 166 0 R /GS165 166 0 R
/GS166 167 0 R /GS166 167 0 R
/GS167 168 0 R /GS167 168 0 R
/GS311 312 0 R /GS168 169 0 R
/GS169 170 0 R /GS169 170 0 R
/GS170 171 0 R /GS170 171 0 R
/GS171 172 0 R /GS171 172 0 R
/GS315 316 0 R /GS172 173 0 R
/GS173 174 0 R /GS173 174 0 R

Binary file not shown.

Before

Width:  |  Height:  |  Size: 244 KiB

After

Width:  |  Height:  |  Size: 243 KiB

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 124 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 149 KiB

View File

@@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head> <head>
<!-- 2020-11-06 ven. 15:06 --> <!-- 2020-11-06 ven. 16:58 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>SVD Control</title> <title>SVD Control</title>
<meta name="generator" content="Org mode" /> <meta name="generator" content="Org mode" />
@@ -35,56 +35,57 @@
<h2>Table of Contents</h2> <h2>Table of Contents</h2>
<div id="text-table-of-contents"> <div id="text-table-of-contents">
<ul> <ul>
<li><a href="#org588d944">1. Gravimeter - Simscape Model</a> <li><a href="#org35a46c7">1. Gravimeter - Simscape Model</a>
<ul> <ul>
<li><a href="#org91ed3f1">1.1. Introduction</a></li> <li><a href="#org0fae6d2">1.1. Introduction</a></li>
<li><a href="#org2a3289b">1.2. Simscape Model - Parameters</a></li> <li><a href="#org135842b">1.2. Simscape Model - Parameters</a></li>
<li><a href="#orge1533ee">1.3. System Identification - Without Gravity</a></li> <li><a href="#org7170b34">1.3. System Identification - Without Gravity</a></li>
<li><a href="#orgbcef719">1.4. System Identification - With Gravity</a></li> <li><a href="#orgedddbaf">1.4. System Identification - With Gravity</a></li>
<li><a href="#org24c3a91">1.5. Analytical Model</a> <li><a href="#org1df2360">1.5. Analytical Model</a>
<ul> <ul>
<li><a href="#orgfdc2987">1.5.1. Parameters</a></li> <li><a href="#org33301c4">1.5.1. Parameters</a></li>
<li><a href="#org620e32a">1.5.2. Generation of the State Space Model</a></li> <li><a href="#orga4d2293">1.5.2. Generation of the State Space Model</a></li>
<li><a href="#orgfe0c577">1.5.3. Comparison with the Simscape Model</a></li> <li><a href="#org6769845">1.5.3. Comparison with the Simscape Model</a></li>
<li><a href="#orga854866">1.5.4. Analysis</a></li> <li><a href="#org643ea44">1.5.4. Analysis</a></li>
<li><a href="#org95a6eba">1.5.5. Control Section</a></li> <li><a href="#orgcccb3fe">1.5.5. Control Section</a></li>
<li><a href="#org9b1baf2">1.5.6. Greshgorin radius</a></li> <li><a href="#orgf251330">1.5.6. Greshgorin radius</a></li>
<li><a href="#org80e1355">1.5.7. Injecting ground motion in the system to have the output</a></li> <li><a href="#orgcc8b8c9">1.5.7. Injecting ground motion in the system to have the output</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org4c3e754">2. Gravimeter - Functions</a> <li><a href="#org3a10e2f">2. Gravimeter - Functions</a>
<ul> <ul>
<li><a href="#org790312c">2.1. <code>align</code></a></li> <li><a href="#org40d4ae0">2.1. <code>align</code></a></li>
<li><a href="#orge6969fe">2.2. <code>pzmap_testCL</code></a></li> <li><a href="#orgb65d1a4">2.2. <code>pzmap_testCL</code></a></li>
</ul> </ul>
</li> </li>
<li><a href="#org9d512a7">3. Stewart Platform - Simscape Model</a> <li><a href="#org7761bbf">3. Stewart Platform - Simscape Model</a>
<ul> <ul>
<li><a href="#org1235f4d">3.1. Simscape Model - Parameters</a></li> <li><a href="#org7ecae48">3.1. Simscape Model - Parameters</a></li>
<li><a href="#org8c80aff">3.2. Identification of the plant</a></li> <li><a href="#orge09a2ff">3.2. Identification of the plant</a></li>
<li><a href="#orgffd8770">3.3. Obtained Dynamics</a></li> <li><a href="#org94abd99">3.3. Physical Decoupling using the Jacobian</a></li>
<li><a href="#org639dffa">3.4. Real Approximation of \(G\) at the decoupling frequency</a></li> <li><a href="#orge18ab64">3.4. Real Approximation of \(G\) at the decoupling frequency</a></li>
<li><a href="#org0cb963a">3.5. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li> <li><a href="#org83f6d87">3.5. SVD Decoupling</a></li>
<li><a href="#org1e039d4">3.6. Decoupled Plant</a></li> <li><a href="#org6de1985">3.6. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li>
<li><a href="#orga66d3f9">3.7. Diagonal Controller</a></li> <li><a href="#org3f44896">3.7. Obtained Decoupled Plants</a></li>
<li><a href="#orgdeb9b20">3.8. Closed-Loop system Performances</a></li> <li><a href="#org32f4718">3.8. Diagonal Controller</a></li>
<li><a href="#orgc4a81f5">3.9. Closed-Loop system Performances</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</div> </div>
</div> </div>
<div id="outline-container-org588d944" class="outline-2"> <div id="outline-container-org35a46c7" class="outline-2">
<h2 id="org588d944"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2> <h2 id="org35a46c7"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2>
<div class="outline-text-2" id="text-1"> <div class="outline-text-2" id="text-1">
</div> </div>
<div id="outline-container-org91ed3f1" class="outline-3"> <div id="outline-container-org0fae6d2" class="outline-3">
<h3 id="org91ed3f1"><span class="section-number-3">1.1</span> Introduction</h3> <h3 id="org0fae6d2"><span class="section-number-3">1.1</span> Introduction</h3>
<div class="outline-text-3" id="text-1-1"> <div class="outline-text-3" id="text-1-1">
<div id="orgb33269b" class="figure"> <div id="orgbed6454" class="figure">
<p><img src="figs/gravimeter_model.png" alt="gravimeter_model.png" /> <p><img src="figs/gravimeter_model.png" alt="gravimeter_model.png" />
</p> </p>
<p><span class="figure-number">Figure 1: </span>Model of the gravimeter</p> <p><span class="figure-number">Figure 1: </span>Model of the gravimeter</p>
@@ -92,8 +93,8 @@
</div> </div>
</div> </div>
<div id="outline-container-org2a3289b" class="outline-3"> <div id="outline-container-org135842b" class="outline-3">
<h3 id="org2a3289b"><span class="section-number-3">1.2</span> Simscape Model - Parameters</h3> <h3 id="org135842b"><span class="section-number-3">1.2</span> Simscape Model - Parameters</h3>
<div class="outline-text-3" id="text-1-2"> <div class="outline-text-3" id="text-1-2">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'gravimeter.slx'</span>) <pre class="src src-matlab">open(<span class="org-string">'gravimeter.slx'</span>)
@@ -124,8 +125,8 @@ g = 0; <span class="org-comment">% Gravity [m/s2]</span>
</div> </div>
</div> </div>
<div id="outline-container-orge1533ee" class="outline-3"> <div id="outline-container-org7170b34" class="outline-3">
<h3 id="orge1533ee"><span class="section-number-3">1.3</span> System Identification - Without Gravity</h3> <h3 id="org7170b34"><span class="section-number-3">1.3</span> System Identification - Without Gravity</h3>
<div class="outline-text-3" id="text-1-3"> <div class="outline-text-3" id="text-1-3">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
@@ -147,7 +148,7 @@ G.OutputName = {<span class="org-string">'Ax1'</span>, <span class="org-string">
</pre> </pre>
</div> </div>
<pre class="example" id="org554e6db"> <pre class="example" id="org9123e1b">
pole(G) pole(G)
ans = ans =
-0.000473481142385795 + 21.7596190728632i -0.000473481142385795 + 21.7596190728632i
@@ -172,7 +173,7 @@ State-space model with 4 outputs, 3 inputs, and 6 states.
<div id="org238cc1e" class="figure"> <div id="org891f1ff" class="figure">
<p><img src="figs/open_loop_tf.png" alt="open_loop_tf.png" /> <p><img src="figs/open_loop_tf.png" alt="open_loop_tf.png" />
</p> </p>
<p><span class="figure-number">Figure 2: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers</p> <p><span class="figure-number">Figure 2: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers</p>
@@ -180,8 +181,8 @@ State-space model with 4 outputs, 3 inputs, and 6 states.
</div> </div>
</div> </div>
<div id="outline-container-orgbcef719" class="outline-3"> <div id="outline-container-orgedddbaf" class="outline-3">
<h3 id="orgbcef719"><span class="section-number-3">1.4</span> System Identification - With Gravity</h3> <h3 id="orgedddbaf"><span class="section-number-3">1.4</span> System Identification - With Gravity</h3>
<div class="outline-text-3" id="text-1-4"> <div class="outline-text-3" id="text-1-4">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">g = 9.80665; <span class="org-comment">% Gravity [m/s2]</span> <pre class="src src-matlab">g = 9.80665; <span class="org-comment">% Gravity [m/s2]</span>
@@ -198,7 +199,7 @@ Gg.OutputName = {<span class="org-string">'Ax1'</span>, <span class="org-string"
<p> <p>
We can now see that the system is unstable due to gravity. We can now see that the system is unstable due to gravity.
</p> </p>
<pre class="example" id="orgc834be0"> <pre class="example" id="org07f9663">
pole(Gg) pole(Gg)
ans = ans =
-10.9848275341252 + 0i -10.9848275341252 + 0i
@@ -210,7 +211,7 @@ ans =
</pre> </pre>
<div id="orge2ad788" class="figure"> <div id="orgc42d08d" class="figure">
<p><img src="figs/open_loop_tf_g.png" alt="open_loop_tf_g.png" /> <p><img src="figs/open_loop_tf_g.png" alt="open_loop_tf_g.png" />
</p> </p>
<p><span class="figure-number">Figure 3: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity</p> <p><span class="figure-number">Figure 3: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity</p>
@@ -218,12 +219,12 @@ ans =
</div> </div>
</div> </div>
<div id="outline-container-org24c3a91" class="outline-3"> <div id="outline-container-org1df2360" class="outline-3">
<h3 id="org24c3a91"><span class="section-number-3">1.5</span> Analytical Model</h3> <h3 id="org1df2360"><span class="section-number-3">1.5</span> Analytical Model</h3>
<div class="outline-text-3" id="text-1-5"> <div class="outline-text-3" id="text-1-5">
</div> </div>
<div id="outline-container-orgfdc2987" class="outline-4"> <div id="outline-container-org33301c4" class="outline-4">
<h4 id="orgfdc2987"><span class="section-number-4">1.5.1</span> Parameters</h4> <h4 id="org33301c4"><span class="section-number-4">1.5.1</span> Parameters</h4>
<div class="outline-text-4" id="text-1-5-1"> <div class="outline-text-4" id="text-1-5-1">
<p> <p>
Bode options. Bode options.
@@ -255,8 +256,8 @@ Frequency vector.
</div> </div>
</div> </div>
<div id="outline-container-org620e32a" class="outline-4"> <div id="outline-container-orga4d2293" class="outline-4">
<h4 id="org620e32a"><span class="section-number-4">1.5.2</span> Generation of the State Space Model</h4> <h4 id="orga4d2293"><span class="section-number-4">1.5.2</span> Generation of the State Space Model</h4>
<div class="outline-text-4" id="text-1-5-2"> <div class="outline-text-4" id="text-1-5-2">
<p> <p>
Mass matrix Mass matrix
@@ -357,11 +358,11 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div> </div>
</div> </div>
<div id="outline-container-orgfe0c577" class="outline-4"> <div id="outline-container-org6769845" class="outline-4">
<h4 id="orgfe0c577"><span class="section-number-4">1.5.3</span> Comparison with the Simscape Model</h4> <h4 id="org6769845"><span class="section-number-4">1.5.3</span> Comparison with the Simscape Model</h4>
<div class="outline-text-4" id="text-1-5-3"> <div class="outline-text-4" id="text-1-5-3">
<div id="orgc91e57a" class="figure"> <div id="orgc235221" class="figure">
<p><img src="figs/gravimeter_analytical_system_open_loop_models.png" alt="gravimeter_analytical_system_open_loop_models.png" /> <p><img src="figs/gravimeter_analytical_system_open_loop_models.png" alt="gravimeter_analytical_system_open_loop_models.png" />
</p> </p>
<p><span class="figure-number">Figure 4: </span>Comparison of the analytical and the Simscape models</p> <p><span class="figure-number">Figure 4: </span>Comparison of the analytical and the Simscape models</p>
@@ -369,8 +370,8 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div> </div>
</div> </div>
<div id="outline-container-orga854866" class="outline-4"> <div id="outline-container-org643ea44" class="outline-4">
<h4 id="orga854866"><span class="section-number-4">1.5.4</span> Analysis</h4> <h4 id="org643ea44"><span class="section-number-4">1.5.4</span> Analysis</h4>
<div class="outline-text-4" id="text-1-5-4"> <div class="outline-text-4" id="text-1-5-4">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab"><span class="org-comment">% figure</span> <pre class="src src-matlab"><span class="org-comment">% figure</span>
@@ -438,8 +439,8 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div> </div>
</div> </div>
<div id="outline-container-org95a6eba" class="outline-4"> <div id="outline-container-orgcccb3fe" class="outline-4">
<h4 id="org95a6eba"><span class="section-number-4">1.5.5</span> Control Section</h4> <h4 id="orgcccb3fe"><span class="section-number-4">1.5.5</span> Control Section</h4>
<div class="outline-text-4" id="text-1-5-5"> <div class="outline-text-4" id="text-1-5-5">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">system_dec_10Hz = freqresp(system_dec,2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10); <pre class="src src-matlab">system_dec_10Hz = freqresp(system_dec,2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10);
@@ -579,8 +580,8 @@ legend(<span class="org-string">'Control OFF'</span>,<span class="org-string">'D
</div> </div>
</div> </div>
<div id="outline-container-org9b1baf2" class="outline-4"> <div id="outline-container-orgf251330" class="outline-4">
<h4 id="org9b1baf2"><span class="section-number-4">1.5.6</span> Greshgorin radius</h4> <h4 id="orgf251330"><span class="section-number-4">1.5.6</span> Greshgorin radius</h4>
<div class="outline-text-4" id="text-1-5-6"> <div class="outline-text-4" id="text-1-5-6">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">system_dec_freq = freqresp(system_dec,w); <pre class="src src-matlab">system_dec_freq = freqresp(system_dec,w);
@@ -626,8 +627,8 @@ ylabel(<span class="org-string">'Greshgorin radius [-]'</span>);
</div> </div>
</div> </div>
<div id="outline-container-org80e1355" class="outline-4"> <div id="outline-container-orgcc8b8c9" class="outline-4">
<h4 id="org80e1355"><span class="section-number-4">1.5.7</span> Injecting ground motion in the system to have the output</h4> <h4 id="orgcc8b8c9"><span class="section-number-4">1.5.7</span> Injecting ground motion in the system to have the output</h4>
<div class="outline-text-4" id="text-1-5-7"> <div class="outline-text-4" id="text-1-5-7">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">Fr = logspace(<span class="org-type">-</span>2,3,1e3); <pre class="src src-matlab">Fr = logspace(<span class="org-type">-</span>2,3,1e3);
@@ -683,15 +684,15 @@ rot = PHI(<span class="org-type">:</span>,11,11);
</div> </div>
</div> </div>
<div id="outline-container-org4c3e754" class="outline-2"> <div id="outline-container-org3a10e2f" class="outline-2">
<h2 id="org4c3e754"><span class="section-number-2">2</span> Gravimeter - Functions</h2> <h2 id="org3a10e2f"><span class="section-number-2">2</span> Gravimeter - Functions</h2>
<div class="outline-text-2" id="text-2"> <div class="outline-text-2" id="text-2">
</div> </div>
<div id="outline-container-org790312c" class="outline-3"> <div id="outline-container-org40d4ae0" class="outline-3">
<h3 id="org790312c"><span class="section-number-3">2.1</span> <code>align</code></h3> <h3 id="org40d4ae0"><span class="section-number-3">2.1</span> <code>align</code></h3>
<div class="outline-text-3" id="text-2-1"> <div class="outline-text-3" id="text-2-1">
<p> <p>
<a id="org0505783"></a> <a id="orgfb353de"></a>
</p> </p>
<p> <p>
@@ -720,11 +721,11 @@ This Matlab function is accessible <a href="gravimeter/align.m">here</a>.
</div> </div>
<div id="outline-container-orge6969fe" class="outline-3"> <div id="outline-container-orgb65d1a4" class="outline-3">
<h3 id="orge6969fe"><span class="section-number-3">2.2</span> <code>pzmap_testCL</code></h3> <h3 id="orgb65d1a4"><span class="section-number-3">2.2</span> <code>pzmap_testCL</code></h3>
<div class="outline-text-3" id="text-2-2"> <div class="outline-text-3" id="text-2-2">
<p> <p>
<a id="orga422981"></a> <a id="org5036f27"></a>
</p> </p>
<p> <p>
@@ -773,15 +774,24 @@ This Matlab function is accessible <a href="gravimeter/pzmap_testCL.m">here</a>.
</div> </div>
</div> </div>
<div id="outline-container-org9d512a7" class="outline-2"> <div id="outline-container-org7761bbf" class="outline-2">
<h2 id="org9d512a7"><span class="section-number-2">3</span> Stewart Platform - Simscape Model</h2> <h2 id="org7761bbf"><span class="section-number-2">3</span> Stewart Platform - Simscape Model</h2>
<div class="outline-text-2" id="text-3"> <div class="outline-text-2" id="text-3">
<p> <p>
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure <a href="#orge1e9c00">5</a>. In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure <a href="#org599d22c">5</a>.
</p> </p>
<p>
Some notes about the system:
</p>
<ul class="org-ul">
<li>6 voice coils actuators are used to control the motion of the top platform.</li>
<li>the motion of the top platform is measured with a 6-axis inertial unit (3 acceleration + 3 angular accelerations)</li>
<li>the control objective is to isolate the top platform from vibrations coming from the bottom platform</li>
</ul>
<div id="orge1e9c00" class="figure">
<div id="org599d22c" class="figure">
<p><img src="figs/SP_assembly.png" alt="SP_assembly.png" /> <p><img src="figs/SP_assembly.png" alt="SP_assembly.png" />
</p> </p>
<p><span class="figure-number">Figure 5: </span>Stewart Platform CAD View</p> <p><span class="figure-number">Figure 5: </span>Stewart Platform CAD View</p>
@@ -791,21 +801,22 @@ In this analysis, we wish to applied SVD control to the Stewart Platform shown i
The analysis of the SVD control applied to the Stewart platform is performed in the following sections: The analysis of the SVD control applied to the Stewart platform is performed in the following sections:
</p> </p>
<ul class="org-ul"> <ul class="org-ul">
<li>Section <a href="#org1f1154c">3.1</a>: The parameters of the Simscape model of the Stewart platform are defined</li> <li>Section <a href="#orgfcb588b">3.1</a>: The parameters of the Simscape model of the Stewart platform are defined</li>
<li>Section <a href="#org76fc591">3.2</a>: The plant is identified from the Simscape model and the centralized plant is computed thanks to the Jacobian</li> <li>Section <a href="#org7e17fba">3.2</a>: The plant is identified from the Simscape model and the system coupling is shown</li>
<li>Section <a href="#org4d48d60">3.3</a>: The identified Dynamics is shown</li> <li>Section <a href="#org6c132b8">3.3</a>: The plant is first decoupled using the Jacobian</li>
<li>Section <a href="#orgf063500">3.4</a>: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)</li> <li>Section <a href="#orga31d045">3.4</a>: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)</li>
<li>Section <a href="#org6d984d9">3.5</a>: The decoupling is performed thanks to the SVD. The effectiveness of the decoupling is verified using the Gershorin Radii</li> <li>Section <a href="#org4dc6a4f">3.5</a>: The decoupling is performed thanks to the SVD</li>
<li>Section <a href="#org083c541">3.6</a>: The dynamics of the decoupled plant is shown</li> <li>Section <a href="#org3f0c4bc">3.6</a>: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii</li>
<li>Section <a href="#org7fb568e">3.7</a>: A diagonal controller is defined to control the decoupled plant</li> <li>Section <a href="#orgaedd69e">3.7</a>: The dynamics of the decoupled plants are shown</li>
<li>Section <a href="#org3072cea">3.8</a>: Finally, the closed loop system properties are studied</li> <li>Section <a href="#org594262e">3.8</a>: A diagonal controller is defined to control the decoupled plant</li>
<li>Section <a href="#orga712b26">3.9</a>: Finally, the closed loop system properties are studied</li>
</ul> </ul>
</div> </div>
<div id="outline-container-org1235f4d" class="outline-3"> <div id="outline-container-org7ecae48" class="outline-3">
<h3 id="org1235f4d"><span class="section-number-3">3.1</span> Simscape Model - Parameters</h3> <h3 id="org7ecae48"><span class="section-number-3">3.1</span> Simscape Model - Parameters</h3>
<div class="outline-text-3" id="text-3-1"> <div class="outline-text-3" id="text-3-1">
<p> <p>
<a id="org1f1154c"></a> <a id="orgfcb588b"></a>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'drone_platform.slx'</span>); <pre class="src src-matlab">open(<span class="org-string">'drone_platform.slx'</span>);
@@ -813,7 +824,7 @@ The analysis of the SVD control applied to the Stewart platform is performed in
</div> </div>
<p> <p>
Definition of spring parameters Definition of spring parameters:
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">kx = 0.5<span class="org-type">*</span>1e3<span class="org-type">/</span>3; <span class="org-comment">% [N/m]</span> <pre class="src src-matlab">kx = 0.5<span class="org-type">*</span>1e3<span class="org-type">/</span>3; <span class="org-comment">% [N/m]</span>
@@ -835,7 +846,7 @@ Gravity:
</div> </div>
<p> <p>
We load the Jacobian (previously computed from the geometry). We load the Jacobian (previously computed from the geometry):
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./jacobian.mat'</span>, <span class="org-string">'Aa'</span>, <span class="org-string">'Ab'</span>, <span class="org-string">'As'</span>, <span class="org-string">'l'</span>, <span class="org-string">'J'</span>); <pre class="src src-matlab">load(<span class="org-string">'./jacobian.mat'</span>, <span class="org-string">'Aa'</span>, <span class="org-string">'Ab'</span>, <span class="org-string">'As'</span>, <span class="org-string">'l'</span>, <span class="org-string">'J'</span>);
@@ -854,25 +865,45 @@ Kc = tf(zeros(6));
</div> </div>
</div> </div>
<div id="outline-container-org8c80aff" class="outline-3"> <div id="outline-container-orge09a2ff" class="outline-3">
<h3 id="org8c80aff"><span class="section-number-3">3.2</span> Identification of the plant</h3> <h3 id="orge09a2ff"><span class="section-number-3">3.2</span> Identification of the plant</h3>
<div class="outline-text-3" id="text-3-2"> <div class="outline-text-3" id="text-3-2">
<p> <p>
<a id="org76fc591"></a> <a id="org7e17fba"></a>
</p> </p>
<p> <p>
The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform. The plant shown in Figure <a href="#org8c9425f">6</a> is identified from the Simscape model.
</p> </p>
<p>
The inputs are:
</p>
<ul class="org-ul">
<li>\(D_w\) translation and rotation of the bottom platform (with respect to the center of mass of the top platform)</li>
<li>\(\tau\) the 6 forces applied by the voice coils</li>
</ul>
<p>
The outputs are the 6 accelerations measured by the inertial unit.
</p>
<div id="org8c9425f" class="figure">
<p><img src="figs/stewart_platform_plant.png" alt="stewart_platform_plant.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Considered plant \(\bm{G} = \begin{bmatrix}G_d\\G\end{bmatrix}\). \(D_w\) is the translation/rotation of the support, \(\tau\) the actuator forces, \(a\) the acceleration/angular acceleration of the top platform</p>
</div>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'drone_platform'</span>; mdl = <span class="org-string">'drone_platform'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1; clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Dw'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Ground Motion</span>
io(io_i) = linio([mdl, <span class="org-string">'/V-T'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/V-T'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Forces</span>
io(io_i) = linio([mdl, <span class="org-string">'/Inertial Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Inertial Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Top platform acceleration</span>
G = linearize(mdl, io); G = linearize(mdl, io);
G.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ... G.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ...
@@ -895,19 +926,47 @@ State-space model with 6 outputs, 12 inputs, and 24 states.
<p> <p>
The &ldquo;centralized&rdquo; plant \(\bm{G}_x\) is now computed (Figure <a href="#org5fb072e">6</a>). The elements of the transfer matrix \(\bm{G}\) corresponding to the transfer function from actuator forces \(\tau\) to the measured acceleration \(a\) are shown in Figure <a href="#org45fc08a">7</a>.
</p>
<p>
One can easily see that the system is strongly coupled.
</p> </p>
<div id="org5fb072e" class="figure"> <div id="org45fc08a" class="figure">
<p><img src="figs/centralized_control.png" alt="centralized_control.png" /> <p><img src="figs/stewart_platform_coupled_plant.png" alt="stewart_platform_coupled_plant.png" />
</p> </p>
<p><span class="figure-number">Figure 6: </span>Centralized control architecture</p> <p><span class="figure-number">Figure 7: </span>Magnitude of all 36 elements of the transfer function matrix \(\bm{G}\)</p>
</div>
</div>
</div>
<div id="outline-container-org94abd99" class="outline-3">
<h3 id="org94abd99"><span class="section-number-3">3.3</span> Physical Decoupling using the Jacobian</h3>
<div class="outline-text-3" id="text-3-3">
<p>
<a id="org6c132b8"></a>
Consider the control architecture shown in Figure <a href="#orge05441f">8</a>.
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
</p>
<div id="orge05441f" class="figure">
<p><img src="figs/plant_decouple_jacobian.png" alt="plant_decouple_jacobian.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Decoupled plant \(\bm{G}_x\) using the Jacobian matrix \(J\)</p>
</div> </div>
<p> <p>
Thanks to the Jacobian, we compute the transfer functions in the inertial frame (transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform). We define a new plant:
\[ G_x(s) = G(s) J^{-T} \]
</p> </p>
<p>
\(G_x(s)\) correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
</p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">Gx = G<span class="org-type">*</span>blkdiag(eye(6), inv(J<span class="org-type">'</span>)); <pre class="src src-matlab">Gx = G<span class="org-type">*</span>blkdiag(eye(6), inv(J<span class="org-type">'</span>));
Gx.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ... Gx.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ...
@@ -917,38 +976,15 @@ Gx.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string"
</div> </div>
</div> </div>
<div id="outline-container-orgffd8770" class="outline-3"> <div id="outline-container-orge18ab64" class="outline-3">
<h3 id="orgffd8770"><span class="section-number-3">3.3</span> Obtained Dynamics</h3> <h3 id="orge18ab64"><span class="section-number-3">3.4</span> Real Approximation of \(G\) at the decoupling frequency</h3>
<div class="outline-text-3" id="text-3-3">
<p>
<a id="org4d48d60"></a>
</p>
<div id="orgdb3fa27" class="figure">
<p><img src="figs/stewart_platform_translations.png" alt="stewart_platform_translations.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Stewart Platform Plant from forces applied by the legs to the acceleration of the platform</p>
</div>
<div id="org1b6e945" class="figure">
<p><img src="figs/stewart_platform_rotations.png" alt="stewart_platform_rotations.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform</p>
</div>
</div>
</div>
<div id="outline-container-org639dffa" class="outline-3">
<h3 id="org639dffa"><span class="section-number-3">3.4</span> Real Approximation of \(G\) at the decoupling frequency</h3>
<div class="outline-text-3" id="text-3-4"> <div class="outline-text-3" id="text-3-4">
<p> <p>
<a id="orgf063500"></a> <a id="orga31d045"></a>
</p> </p>
<p> <p>
Let&rsquo;s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G_c(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\). Let&rsquo;s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\).
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>30; <span class="org-comment">% Decoupling frequency [rad/s]</span> <pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>30; <span class="org-comment">% Decoupling frequency [rad/s]</span>
@@ -1124,11 +1160,11 @@ This can be verified below where only the real value of \(G(\omega_c)\) is shown
</div> </div>
</div> </div>
<div id="outline-container-org0cb963a" class="outline-3"> <div id="outline-container-org83f6d87" class="outline-3">
<h3 id="org0cb963a"><span class="section-number-3">3.5</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3> <h3 id="org83f6d87"><span class="section-number-3">3.5</span> SVD Decoupling</h3>
<div class="outline-text-3" id="text-3-5"> <div class="outline-text-3" id="text-3-5">
<p> <p>
<a id="org6d984d9"></a> <a id="org4dc6a4f"></a>
</p> </p>
<p> <p>
@@ -1142,8 +1178,32 @@ First, the Singular Value Decomposition of \(H_1\) is performed:
</div> </div>
<p> <p>
Then, the &ldquo;Gershgorin Radii&rdquo; is computed for the plant \(G_c(s)\) and the &ldquo;SVD Decoupled Plant&rdquo; \(G_d(s)\): The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#org29682d3">9</a>.
\[ G_d(s) = U^T G_c(s) V \] </p>
<div id="org29682d3" class="figure">
<p><img src="figs/plant_decouple_svd.png" alt="plant_decouple_svd.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Decoupled plant \(\bm{G}_{SVD}\) using the Singular Value Decomposition</p>
</div>
<p>
The decoupled plant is then:
\[ G_{SVD}(s) = U^T G(s) V \]
</p>
</div>
</div>
<div id="outline-container-org6de1985" class="outline-3">
<h3 id="org6de1985"><span class="section-number-3">3.6</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3>
<div class="outline-text-3" id="text-3-6">
<p>
<a id="org3f0c4bc"></a>
</p>
<p>
The &ldquo;Gershgorin Radii&rdquo; is computed for the coupled plant \(G(s)\), for the &ldquo;Jacobian plant&rdquo; \(G_x(s)\) and the &ldquo;SVD Decoupled Plant&rdquo; \(G_{SVD}(s)\):
</p> </p>
<p> <p>
@@ -1154,94 +1214,55 @@ This is computed over the following frequencies.
</pre> </pre>
</div> </div>
<p>
Gershgorin Radii for the coupled plant:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gr_coupled = zeros(length(freqs), size(Gc,2));
H = abs(squeeze(freqresp(Gc, freqs, <span class="org-string">'Hz'</span>))); <div id="orgb5da81f" class="figure">
<span class="org-keyword">for</span> <span class="org-variable-name">out_i</span> = <span class="org-constant">1:size(Gc,2)</span>
Gr_coupled(<span class="org-type">:</span>, out_i) = squeeze((sum(H(out_i,<span class="org-type">:</span>,<span class="org-type">:</span>)) <span class="org-type">-</span> H(out_i,out_i,<span class="org-type">:</span>))<span class="org-type">./</span>H(out_i, out_i, <span class="org-type">:</span>));
<span class="org-keyword">end</span>
</pre>
</div>
<p>
Gershgorin Radii for the decoupled plant using SVD:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gd = U<span class="org-type">'*</span>Gc<span class="org-type">*</span>V;
Gr_decoupled = zeros(length(freqs), size(Gd,2));
H = abs(squeeze(freqresp(Gd, freqs, <span class="org-string">'Hz'</span>)));
<span class="org-keyword">for</span> <span class="org-variable-name">out_i</span> = <span class="org-constant">1:size(Gd,2)</span>
Gr_decoupled(<span class="org-type">:</span>, out_i) = squeeze((sum(H(out_i,<span class="org-type">:</span>,<span class="org-type">:</span>)) <span class="org-type">-</span> H(out_i,out_i,<span class="org-type">:</span>))<span class="org-type">./</span>H(out_i, out_i, <span class="org-type">:</span>));
<span class="org-keyword">end</span>
</pre>
</div>
<p>
Gershgorin Radii for the decoupled plant using the Jacobian:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gj = Gc<span class="org-type">*</span>inv(J<span class="org-type">'</span>);
Gr_jacobian = zeros(length(freqs), size(Gj,2));
H = abs(squeeze(freqresp(Gj, freqs, <span class="org-string">'Hz'</span>)));
<span class="org-keyword">for</span> <span class="org-variable-name">out_i</span> = <span class="org-constant">1:size(Gj,2)</span>
Gr_jacobian(<span class="org-type">:</span>, out_i) = squeeze((sum(H(out_i,<span class="org-type">:</span>,<span class="org-type">:</span>)) <span class="org-type">-</span> H(out_i,out_i,<span class="org-type">:</span>))<span class="org-type">./</span>H(out_i, out_i, <span class="org-type">:</span>));
<span class="org-keyword">end</span>
</pre>
</div>
<div id="org3cf0ede" class="figure">
<p><img src="figs/simscape_model_gershgorin_radii.png" alt="simscape_model_gershgorin_radii.png" /> <p><img src="figs/simscape_model_gershgorin_radii.png" alt="simscape_model_gershgorin_radii.png" />
</p> </p>
<p><span class="figure-number">Figure 9: </span>Gershgorin Radii of the Coupled and Decoupled plants</p> <p><span class="figure-number">Figure 10: </span>Gershgorin Radii of the Coupled and Decoupled plants</p>
</div> </div>
</div> </div>
</div> </div>
<div id="outline-container-org1e039d4" class="outline-3"> <div id="outline-container-org3f44896" class="outline-3">
<h3 id="org1e039d4"><span class="section-number-3">3.6</span> Decoupled Plant</h3> <h3 id="org3f44896"><span class="section-number-3">3.7</span> Obtained Decoupled Plants</h3>
<div class="outline-text-3" id="text-3-6">
<p>
<a id="org083c541"></a>
</p>
<p>
Let&rsquo;s see the bode plot of the decoupled plant \(G_d(s)\).
\[ G_d(s) = U^T G_c(s) V \]
</p>
<div id="orgcc74e6b" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_svd.png" alt="simscape_model_decoupled_plant_svd.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Decoupled Plant using SVD</p>
</div>
<div id="orgaf3df78" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_jacobian.png" alt="simscape_model_decoupled_plant_jacobian.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Decoupled Plant using the Jacobian</p>
</div>
</div>
</div>
<div id="outline-container-orga66d3f9" class="outline-3">
<h3 id="orga66d3f9"><span class="section-number-3">3.7</span> Diagonal Controller</h3>
<div class="outline-text-3" id="text-3-7"> <div class="outline-text-3" id="text-3-7">
<p> <p>
<a id="org7fb568e"></a> <a id="orgaedd69e"></a>
</p> </p>
<p> <p>
The controller \(K\) is a diagonal controller consisting a low pass filters with a crossover frequency \(\omega_c\) and a DC gain \(C_g\). The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org966fd33">11</a>.
</p>
<div id="org966fd33" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_svd.png" alt="simscape_model_decoupled_plant_svd.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Decoupled Plant using SVD</p>
</div>
<p>
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#org5c065e5">12</a>.
</p>
<div id="org5c065e5" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_jacobian.png" alt="simscape_model_decoupled_plant_jacobian.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)</p>
</div>
</div>
</div>
<div id="outline-container-org32f4718" class="outline-3">
<h3 id="org32f4718"><span class="section-number-3">3.8</span> Diagonal Controller</h3>
<div class="outline-text-3" id="text-3-8">
<p>
<a id="org594262e"></a>
</p>
<p>
The controller \(K_c\) is a diagonal controller consisting a low pass filters with a crossover frequency \(\omega_c\) and a DC gain \(C_g\).
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
@@ -1253,7 +1274,7 @@ Kc = eye(6)<span class="org-type">*</span>C_g<span class="org-type">/</span>(s<s
</div> </div>
<p> <p>
The control diagram for the centralized control is shown in Figure <a href="#org5fb072e">6</a>. The control diagram for the centralized control is shown in Figure <a href="#orga82736e">13</a>.
</p> </p>
<p> <p>
@@ -1262,10 +1283,10 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
</p> </p>
<div id="orge11b6b2" class="figure"> <div id="orga82736e" class="figure">
<p><img src="figs/centralized_control.png" alt="centralized_control.png" /> <p><img src="figs/centralized_control.png" alt="centralized_control.png" />
</p> </p>
<p><span class="figure-number">Figure 12: </span>Control Diagram for the Centralized control</p> <p><span class="figure-number">Figure 13: </span>Control Diagram for the Centralized control</p>
</div> </div>
<p> <p>
@@ -1277,14 +1298,14 @@ The feedback system is computed as shown below.
</div> </div>
<p> <p>
The SVD control architecture is shown in Figure <a href="#orgef128af">13</a>. The SVD control architecture is shown in Figure <a href="#org8b3df12">14</a>.
The matrices \(U\) and \(V\) are used to decoupled the plant \(G\). The matrices \(U\) and \(V\) are used to decoupled the plant \(G\).
</p> </p>
<div id="orgef128af" class="figure"> <div id="org8b3df12" class="figure">
<p><img src="figs/svd_control.png" alt="svd_control.png" /> <p><img src="figs/svd_control.png" alt="svd_control.png" />
</p> </p>
<p><span class="figure-number">Figure 13: </span>Control Diagram for the SVD control</p> <p><span class="figure-number">Figure 14: </span>Control Diagram for the SVD control</p>
</div> </div>
<p> <p>
@@ -1297,11 +1318,11 @@ The feedback system is computed as shown below.
</div> </div>
</div> </div>
<div id="outline-container-orgdeb9b20" class="outline-3"> <div id="outline-container-orgc4a81f5" class="outline-3">
<h3 id="orgdeb9b20"><span class="section-number-3">3.8</span> Closed-Loop system Performances</h3> <h3 id="orgc4a81f5"><span class="section-number-3">3.9</span> Closed-Loop system Performances</h3>
<div class="outline-text-3" id="text-3-8"> <div class="outline-text-3" id="text-3-9">
<p> <p>
<a id="org3072cea"></a> <a id="orga712b26"></a>
</p> </p>
<p> <p>
@@ -1327,19 +1348,19 @@ ans =
<pre class="example"> <pre class="example">
ans = ans =
logical logical
0 1
</pre> </pre>
<p> <p>
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org9b356fe">14</a>. The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org9378b87">15</a>.
</p> </p>
<div id="org9b356fe" class="figure"> <div id="org9378b87" class="figure">
<p><img src="figs/stewart_platform_simscape_cl_transmissibility.png" alt="stewart_platform_simscape_cl_transmissibility.png" /> <p><img src="figs/stewart_platform_simscape_cl_transmissibility.png" alt="stewart_platform_simscape_cl_transmissibility.png" />
</p> </p>
<p><span class="figure-number">Figure 14: </span>Obtained Transmissibility</p> <p><span class="figure-number">Figure 15: </span>Obtained Transmissibility</p>
</div> </div>
</div> </div>
</div> </div>
@@ -1347,7 +1368,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
</div> </div>
<div id="postamble" class="status"> <div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p> <p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-06 ven. 15:06</p> <p class="date">Created: 2020-11-06 ven. 16:58</p>
</div> </div>
</body> </body>
</html> </html>

422
index.org
View File

@@ -693,17 +693,23 @@ This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure [[fig:SP_assembly]]. In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure [[fig:SP_assembly]].
Some notes about the system:
- 6 voice coils actuators are used to control the motion of the top platform.
- the motion of the top platform is measured with a 6-axis inertial unit (3 acceleration + 3 angular accelerations)
- the control objective is to isolate the top platform from vibrations coming from the bottom platform
#+name: fig:SP_assembly #+name: fig:SP_assembly
#+caption: Stewart Platform CAD View #+caption: Stewart Platform CAD View
[[file:figs/SP_assembly.png]] [[file:figs/SP_assembly.png]]
The analysis of the SVD control applied to the Stewart platform is performed in the following sections: The analysis of the SVD control applied to the Stewart platform is performed in the following sections:
- Section [[sec:stewart_simscape]]: The parameters of the Simscape model of the Stewart platform are defined - Section [[sec:stewart_simscape]]: The parameters of the Simscape model of the Stewart platform are defined
- Section [[sec:stewart_identification]]: The plant is identified from the Simscape model and the centralized plant is computed thanks to the Jacobian - Section [[sec:stewart_identification]]: The plant is identified from the Simscape model and the system coupling is shown
- Section [[sec:stewart_dynamics]]: The identified Dynamics is shown - Section [[sec:stewart_jacobian_decoupling]]: The plant is first decoupled using the Jacobian
- Section [[sec:stewart_real_approx]]: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD) - Section [[sec:stewart_real_approx]]: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)
- Section [[sec:stewart_svd_decoupling]]: The decoupling is performed thanks to the SVD. The effectiveness of the decoupling is verified using the Gershorin Radii - Section [[sec:stewart_svd_decoupling]]: The decoupling is performed thanks to the SVD
- Section [[sec:stewart_decoupled_plant]]: The dynamics of the decoupled plant is shown - Section [[sec:comp_decoupling]]: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii
- Section [[sec:stewart_decoupled_plant]]: The dynamics of the decoupled plants are shown
- Section [[sec:stewart_diagonal_control]]: A diagonal controller is defined to control the decoupled plant - Section [[sec:stewart_diagonal_control]]: A diagonal controller is defined to control the decoupled plant
- Section [[sec:stewart_closed_loop_results]]: Finally, the closed loop system properties are studied - Section [[sec:stewart_closed_loop_results]]: Finally, the closed loop system properties are studied
@@ -765,7 +771,7 @@ First, the position of the "joints" (points of force application) are estimated
open('drone_platform.slx'); open('drone_platform.slx');
#+end_src #+end_src
Definition of spring parameters Definition of spring parameters:
#+begin_src matlab #+begin_src matlab
kx = 0.5*1e3/3; % [N/m] kx = 0.5*1e3/3; % [N/m]
ky = 0.5*1e3/3; ky = 0.5*1e3/3;
@@ -781,7 +787,7 @@ Gravity:
g = 0; g = 0;
#+end_src #+end_src
We load the Jacobian (previously computed from the geometry). We load the Jacobian (previously computed from the geometry):
#+begin_src matlab #+begin_src matlab
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J'); load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
#+end_src #+end_src
@@ -796,16 +802,44 @@ We initialize other parameters:
** Identification of the plant ** Identification of the plant
<<sec:stewart_identification>> <<sec:stewart_identification>>
The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform. The plant shown in Figure [[fig:stewart_platform_plant]] is identified from the Simscape model.
The inputs are:
- $D_w$ translation and rotation of the bottom platform (with respect to the center of mass of the top platform)
- $\tau$ the 6 forces applied by the voice coils
The outputs are the 6 accelerations measured by the inertial unit.
#+begin_src latex :file stewart_platform_plant.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[<-] (inputu) -- ++(-0.8, 0) node[above right]{$\tau$};
\draw[->] (G.east) -- ++(0.8, 0) node[above left]{$a$};
\end{tikzpicture}
#+end_src
#+name: fig:stewart_platform_plant
#+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
#+RESULTS:
[[file:figs/stewart_platform_plant.png]]
#+begin_src matlab #+begin_src matlab
%% Name of the Simulink File %% Name of the Simulink File
mdl = 'drone_platform'; mdl = 'drone_platform';
%% Input/Output definition %% Input/Output definition
clear io; io_i = 1; clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
G = linearize(mdl, io); G = linearize(mdl, io);
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
@@ -821,108 +855,93 @@ There are 24 states (6dof for the bottom platform + 6dof for the top platform).
#+RESULTS: #+RESULTS:
: State-space model with 6 outputs, 12 inputs, and 24 states. : State-space model with 6 outputs, 12 inputs, and 24 states.
The "centralized" plant $\bm{G}_x$ is now computed (Figure [[fig:centralized_control]]). The elements of the transfer matrix $\bm{G}$ corresponding to the transfer function from actuator forces $\tau$ to the measured acceleration $a$ are shown in Figure [[fig:stewart_platform_coupled_plant]].
#+name: fig:centralized_control One can easily see that the system is strongly coupled.
#+caption: Centralized control architecture
[[file:figs/centralized_control.png]] #+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
% Magnitude
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:6
plot(freqs, abs(squeeze(freqresp(G(i_in_out, 6+i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G(%d,%d)$', i_in_out, i_in_out));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-2, 1e5]);
legend('location', 'northwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stewart_platform_coupled_plant.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:stewart_platform_coupled_plant
#+caption: Magnitude of all 36 elements of the transfer function matrix $\bm{G}$
#+RESULTS:
[[file:figs/stewart_platform_coupled_plant.png]]
** Physical Decoupling using the Jacobian
<<sec:stewart_jacobian_decoupling>>
Consider the control architecture shown in Figure [[fig:plant_decouple_jacobian]].
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
#+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
\node[block, left=0.6 of inputu] (J) {$J^{-T}$};
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[->] (G.east) -- ++( 0.8, 0) node[above left]{$a$};
\draw[->] (J.east) -- (inputu) node[above left]{$\tau$};
\draw[<-] (J.west) -- ++(-0.8, 0) node[above right]{$\mathcal{F}$};
\begin{scope}[on background layer]
\node[fit={(J.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gx) {};
\node[below right] at (Gx.north west) {$\bm{G}_x$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:plant_decouple_jacobian
#+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$
#+RESULTS:
[[file:figs/plant_decouple_jacobian.png]]
We define a new plant:
\[ G_x(s) = G(s) J^{-T} \]
$G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
Thanks to the Jacobian, we compute the transfer functions in the inertial frame (transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform).
#+begin_src matlab #+begin_src matlab
Gx = G*blkdiag(eye(6), inv(J')); Gx = G*blkdiag(eye(6), inv(J'));
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
#+end_src #+end_src
** Obtained Dynamics
<<sec:stewart_dynamics>>
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$A_z/F_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stewart_platform_translations.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:stewart_platform_translations
#+caption: Stewart Platform Plant from forces applied by the legs to the acceleration of the platform
#+RESULTS:
[[file:figs/stewart_platform_translations.png]]
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$A_{R_z}/M_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude [rad/(Nm)]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stewart_platform_rotations.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:stewart_platform_rotations
#+caption: Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform
#+RESULTS:
[[file:figs/stewart_platform_rotations.png]]
** Real Approximation of $G$ at the decoupling frequency ** Real Approximation of $G$ at the decoupling frequency
<<sec:stewart_real_approx>> <<sec:stewart_real_approx>>
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$. Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
#+begin_src matlab #+begin_src matlab
wc = 2*pi*30; % Decoupling frequency [rad/s] wc = 2*pi*30; % Decoupling frequency [rad/s]
@@ -968,7 +987,7 @@ This can be verified below where only the real value of $G(\omega_c)$ is shown
| -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 | | -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 |
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 | | 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
** Verification of the decoupling using the "Gershgorin Radii" ** SVD Decoupling
<<sec:stewart_svd_decoupling>> <<sec:stewart_svd_decoupling>>
First, the Singular Value Decomposition of $H_1$ is performed: First, the Singular Value Decomposition of $H_1$ is performed:
@@ -978,26 +997,61 @@ First, the Singular Value Decomposition of $H_1$ is performed:
[U,S,V] = svd(H1); [U,S,V] = svd(H1);
#+end_src #+end_src
Then, the "Gershgorin Radii" is computed for the plant $G_c(s)$ and the "SVD Decoupled Plant" $G_d(s)$: The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]].
\[ G_d(s) = U^T G_c(s) V \]
#+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
\node[block, left=0.6 of inputu] (V) {$V$};
\node[block, right=0.6 of G.east] (U) {$U^T$};
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[->] (G.east) -- (U.west) node[above left]{$a$};
\draw[->] (U.east) -- ++( 0.8, 0) node[above left]{$y$};
\draw[->] (V.east) -- (inputu) node[above left]{$\tau$};
\draw[<-] (V.west) -- ++(-0.8, 0) node[above right]{$u$};
\begin{scope}[on background layer]
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gsvd) {};
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:plant_decouple_svd
#+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
#+RESULTS:
[[file:figs/plant_decouple_svd.png]]
The decoupled plant is then:
\[ G_{SVD}(s) = U^T G(s) V \]
** Verification of the decoupling using the "Gershgorin Radii"
<<sec:comp_decoupling>>
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
This is computed over the following frequencies. This is computed over the following frequencies.
#+begin_src matlab #+begin_src matlab
freqs = logspace(-2, 2, 1000); % [Hz] freqs = logspace(-2, 2, 1000); % [Hz]
#+end_src #+end_src
Gershgorin Radii for the coupled plant: #+begin_src matlab :exports none
#+begin_src matlab % Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gc,2)); Gr_coupled = zeros(length(freqs), size(Gc,2));
H = abs(squeeze(freqresp(Gc, freqs, 'Hz'))); H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
for out_i = 1:size(Gc,2) for out_i = 1:size(Gc,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end end
#+end_src
Gershgorin Radii for the decoupled plant using SVD: % Gershgorin Radii for the decoupled plant using SVD:
#+begin_src matlab
Gd = U'*Gc*V; Gd = U'*Gc*V;
Gr_decoupled = zeros(length(freqs), size(Gd,2)); Gr_decoupled = zeros(length(freqs), size(Gd,2));
@@ -1005,10 +1059,8 @@ Gershgorin Radii for the decoupled plant using SVD:
for out_i = 1:size(Gd,2) for out_i = 1:size(Gd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end end
#+end_src
Gershgorin Radii for the decoupled plant using the Jacobian: % Gershgorin Radii for the decoupled plant using the Jacobian:
#+begin_src matlab
Gj = Gc*inv(J'); Gj = Gc*inv(J');
Gr_jacobian = zeros(length(freqs), size(Gj,2)); Gr_jacobian = zeros(length(freqs), size(Gj,2));
@@ -1037,12 +1089,12 @@ Gershgorin Radii for the decoupled plant using the Jacobian:
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off; hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northeast'); legend('location', 'northwest');
ylim([1e-3, 1e3]); ylim([1e-3, 1e3]);
#+end_src #+end_src
#+begin_src matlab :tangle no :exports results :results file replace #+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/simscape_model_gershgorin_radii.pdf', 'eps', true, 'width', 'wide', 'height', 'tall'); exportFig('figs/simscape_model_gershgorin_radii.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
#+end_src #+end_src
#+name: fig:simscape_model_gershgorin_radii #+name: fig:simscape_model_gershgorin_radii
@@ -1050,36 +1102,56 @@ Gershgorin Radii for the decoupled plant using the Jacobian:
#+RESULTS: #+RESULTS:
[[file:figs/simscape_model_gershgorin_radii.png]] [[file:figs/simscape_model_gershgorin_radii.png]]
** Decoupled Plant ** Obtained Decoupled Plants
<<sec:stewart_decoupled_plant>> <<sec:stewart_decoupled_plant>>
Let's see the bode plot of the decoupled plant $G_d(s)$. The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
\[ G_d(s) = U^T G_c(s) V \]
#+begin_src matlab :exports results #+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000); freqs = logspace(-1, 2, 1000);
figure; figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on; hold on;
for ch_i = 1:6 for i_in = 1:6
plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ... for i_out = [1:i_in-1, i_in+1:6]
'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i)); plot(freqs, abs(squeeze(freqresp(Gd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
end
for in_i = 1:5
for out_i = in_i+1:6
plot(freqs, abs(squeeze(freqresp(Gd(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off'); 'HandleVisibility', 'off');
end end
end end
plot(freqs, abs(squeeze(freqresp(Gd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
end
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); xlabel('Frequency [Hz]'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest'); legend('location', 'northwest');
ylim([1e-3, 1e4]); ylim([1e-1, 1e5])
% Phase
ax2 = nexttile;
hold on;
for ch_i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
linkaxes([ax1,ax2],'x');
#+end_src #+end_src
#+begin_src matlab :tangle no :exports results :results file replace #+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/simscape_model_decoupled_plant_svd.pdf', 'eps', true, 'width', 'wide', 'height', 'normal'); exportFig('figs/simscape_model_decoupled_plant_svd.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src #+end_src
#+name: fig:simscape_model_decoupled_plant_svd #+name: fig:simscape_model_decoupled_plant_svd
@@ -1087,42 +1159,69 @@ Let's see the bode plot of the decoupled plant $G_d(s)$.
#+RESULTS: #+RESULTS:
[[file:figs/simscape_model_decoupled_plant_svd.png]] [[file:figs/simscape_model_decoupled_plant_svd.png]]
#+begin_src matlab :exports results Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000); freqs = logspace(-1, 2, 1000);
figure; figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on; hold on;
for ch_i = 1:6 for i_in = 1:6
plot(freqs, abs(squeeze(freqresp(Gj(ch_i, ch_i), freqs, 'Hz'))), ... for i_out = [1:i_in-1, i_in+1:6]
'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i)); plot(freqs, abs(squeeze(freqresp(Gx(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
end
for in_i = 1:5
for out_i = in_i+1:6
plot(freqs, abs(squeeze(freqresp(Gj(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off'); 'HandleVisibility', 'off');
end end
end end
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_x(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$');
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); xlabel('Frequency [Hz]'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest'); legend('location', 'northwest');
ylim([1e-1, 1e6]); ylim([1e-2, 2e6])
set(gca, 'YMinorTick', 'on');
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([0, 180]);
yticks([0:45:360]);
linkaxes([ax1,ax2],'x');
#+end_src #+end_src
#+begin_src matlab :tangle no :exports results :results file replace #+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/simscape_model_decoupled_plant_jacobian.pdf', 'eps', true, 'width', 'wide', 'height', 'normal'); exportFig('figs/simscape_model_decoupled_plant_jacobian.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src #+end_src
#+name: fig:simscape_model_decoupled_plant_jacobian #+name: fig:simscape_model_decoupled_plant_jacobian
#+caption: Decoupled Plant using the Jacobian #+caption: Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)
#+RESULTS: #+RESULTS:
[[file:figs/simscape_model_decoupled_plant_jacobian.png]] [[file:figs/simscape_model_decoupled_plant_jacobian.png]]
** Diagonal Controller ** Diagonal Controller
<<sec:stewart_diagonal_control>> <<sec:stewart_diagonal_control>>
The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$. The controller $K_c$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$.
#+begin_src matlab #+begin_src matlab
wc = 2*pi*0.1; % Crossover Frequency [rad/s] wc = 2*pi*0.1; % Crossover Frequency [rad/s]
@@ -1138,7 +1237,8 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
#+begin_src latex :file centralized_control.pdf :tangle no :exports results #+begin_src latex :file centralized_control.pdf :tangle no :exports results
\begin{tikzpicture} \begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$G$}; \node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and -0.5 of G] (K) {$K_c$}; \node[block, below right=0.6 and -0.5 of G] (K) {$K_c$};
\node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$}; \node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$};
@@ -1218,7 +1318,7 @@ Let's first verify the stability of the closed-loop systems:
#+RESULTS: #+RESULTS:
: ans = : ans =
: logical : logical
: 0 : 1
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]]. The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
@@ -1233,21 +1333,16 @@ The obtained transmissibility in Open-loop, for the centralized control as well
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop'); plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized'); plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'SVD'); plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'SVD');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]); ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest'); legend('location', 'southwest');
% ax2 = nexttile; ax2 = nexttile;
% hold on;
% plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))));
% plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))));
% plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))));
% hold off;
% set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
% ylabel('Transmissibility - $D_y/D_{w,y}$'); xlabel('Frequency [Hz]');
ax3 = nexttile;
hold on; hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
@@ -1256,25 +1351,20 @@ The obtained transmissibility in Open-loop, for the centralized control as well
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]); ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
ax4 = nexttile; ax3 = nexttile;
hold on; hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]'); ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
% ax5 = nexttile; ax4 = nexttile;
% hold on;
% plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
% plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
% plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
% hold off;
% set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
% ylabel('Transmissibility - $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
ax6 = nexttile;
hold on; hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
@@ -1283,7 +1373,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]'); ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); linkaxes([ax1,ax2,ax3,ax4],'xy');
xlim([freqs(1), freqs(end)]); xlim([freqs(1), freqs(end)]);
ylim([1e-5, 1e2]); ylim([1e-5, 1e2]);
#+end_src #+end_src