Remove Gravity for the Stewart platform model
This commit is contained in:
		
							
								
								
									
										196
									
								
								stewart_platform/analytical_model.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										196
									
								
								stewart_platform/analytical_model.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,196 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
%% Bode plot options
 | 
			
		||||
opts = bodeoptions('cstprefs');
 | 
			
		||||
opts.FreqUnits = 'Hz';
 | 
			
		||||
opts.MagUnits = 'abs';
 | 
			
		||||
opts.MagScale = 'log';
 | 
			
		||||
opts.PhaseWrapping = 'on';
 | 
			
		||||
opts.xlim = [1 1000];
 | 
			
		||||
 | 
			
		||||
% Characteristics
 | 
			
		||||
 | 
			
		||||
L  = 0.055; % Leg length [m]
 | 
			
		||||
Zc = 0;     % ?
 | 
			
		||||
m  = 0.2;   % Top platform mass [m]
 | 
			
		||||
k  = 1e3;   % Total vertical stiffness [N/m]
 | 
			
		||||
c  = 2*0.1*sqrt(k*m); % Damping ? [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
Rx = 0.04; % ?
 | 
			
		||||
Rz = 0.04; % ?
 | 
			
		||||
Ix = m*Rx^2; % ?
 | 
			
		||||
Iy = m*Rx^2; % ?
 | 
			
		||||
Iz = m*Rz^2; % ?
 | 
			
		||||
 | 
			
		||||
% Mass Matrix
 | 
			
		||||
 | 
			
		||||
M = m*[1   0 0  0         Zc        0;
 | 
			
		||||
       0   1 0 -Zc        0         0;
 | 
			
		||||
       0   0 1  0         0         0;
 | 
			
		||||
       0 -Zc 0  Rx^2+Zc^2 0         0;
 | 
			
		||||
       Zc  0 0  0         Rx^2+Zc^2 0;
 | 
			
		||||
       0   0 0  0         0         Rz^2];
 | 
			
		||||
 | 
			
		||||
% Jacobian Matrix
 | 
			
		||||
 | 
			
		||||
Bj=1/sqrt(6)*[ 1             1          -2          1         1        -2;
 | 
			
		||||
               sqrt(3)      -sqrt(3)     0          sqrt(3)  -sqrt(3)   0;
 | 
			
		||||
               sqrt(2)       sqrt(2)     sqrt(2)    sqrt(2)   sqrt(2)   sqrt(2);
 | 
			
		||||
               0             0           L          L        -L         -L;
 | 
			
		||||
               -L*2/sqrt(3) -L*2/sqrt(3) L/sqrt(3)  L/sqrt(3) L/sqrt(3)  L/sqrt(3);
 | 
			
		||||
               L*sqrt(2)    -L*sqrt(2)   L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2)];
 | 
			
		||||
 | 
			
		||||
% Stifnness and Damping matrices
 | 
			
		||||
 | 
			
		||||
kv = k/3;     % Vertical Stiffness of the springs [N/m]
 | 
			
		||||
kh = 0.5*k/3; % Horizontal Stiffness of the springs [N/m]
 | 
			
		||||
 | 
			
		||||
K = diag([3*kh, 3*kh, 3*kv, 3*kv*Rx^2/2, 3*kv*Rx^2/2, 3*kh*Rx^2]); % Stiffness Matrix
 | 
			
		||||
C = c*K/100000; % Damping Matrix
 | 
			
		||||
 | 
			
		||||
% State Space System
 | 
			
		||||
 | 
			
		||||
A  = [ zeros(6) eye(6); ...
 | 
			
		||||
      -M\K     -M\C];
 | 
			
		||||
Bw = [zeros(6); -eye(6)];
 | 
			
		||||
Bu = [zeros(6); M\Bj];
 | 
			
		||||
 | 
			
		||||
Co = [-M\K -M\C];
 | 
			
		||||
 | 
			
		||||
D  = [zeros(6) M\Bj];
 | 
			
		||||
 | 
			
		||||
ST = ss(A,[Bw Bu],Co,D);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% - OUT 1-6: 6 dof
 | 
			
		||||
% - IN 1-6 : ground displacement in the directions of the legs
 | 
			
		||||
% - IN 7-12: forces in the actuators.
 | 
			
		||||
 | 
			
		||||
ST.StateName = {'x';'y';'z';'theta_x';'theta_y';'theta_z';...
 | 
			
		||||
                'dx';'dy';'dz';'dtheta_x';'dtheta_y';'dtheta_z'};
 | 
			
		||||
 | 
			
		||||
ST.InputName = {'w1';'w2';'w3';'w4';'w5';'w6';...
 | 
			
		||||
                'u1';'u2';'u3';'u4';'u5';'u6'};
 | 
			
		||||
 | 
			
		||||
ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'};
 | 
			
		||||
 | 
			
		||||
% Transmissibility
 | 
			
		||||
 | 
			
		||||
TR=ST*[eye(6); zeros(6)];
 | 
			
		||||
 | 
			
		||||
figure
 | 
			
		||||
subplot(231)
 | 
			
		||||
bodemag(TR(1,1));
 | 
			
		||||
subplot(232)
 | 
			
		||||
bodemag(TR(2,2));
 | 
			
		||||
subplot(233)
 | 
			
		||||
bodemag(TR(3,3));
 | 
			
		||||
subplot(234)
 | 
			
		||||
bodemag(TR(4,4));
 | 
			
		||||
subplot(235)
 | 
			
		||||
bodemag(TR(5,5));
 | 
			
		||||
subplot(236)
 | 
			
		||||
bodemag(TR(6,6));
 | 
			
		||||
 | 
			
		||||
% Real approximation of $G(j\omega)$ at decoupling frequency
 | 
			
		||||
 | 
			
		||||
sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs
 | 
			
		||||
 | 
			
		||||
dec_fr = 20;
 | 
			
		||||
H1 = evalfr(sys1,j*2*pi*dec_fr);
 | 
			
		||||
H2 = H1;
 | 
			
		||||
D = pinv(real(H2'*H2));
 | 
			
		||||
H1 = inv(D*real(H2'*diag(exp(j*angle(diag(H2*D*H2.'))/2)))) ;
 | 
			
		||||
[U,S,V] = svd(H1);
 | 
			
		||||
 | 
			
		||||
wf = logspace(-1,2,1000);
 | 
			
		||||
for i  = 1:length(wf)
 | 
			
		||||
    H = abs(evalfr(sys1,j*2*pi*wf(i)));
 | 
			
		||||
    H_dec = abs(evalfr(U'*sys1*V,j*2*pi*wf(i)));
 | 
			
		||||
    for j = 1:size(H,2)
 | 
			
		||||
        g_r1(i,j) =  (sum(H(j,:))-H(j,j))/H(j,j);
 | 
			
		||||
        g_r2(i,j) =  (sum(H_dec(j,:))-H_dec(j,j))/H_dec(j,j);
 | 
			
		||||
        %     keyboard
 | 
			
		||||
    end
 | 
			
		||||
    g_lim(i) = 0.5;
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
% Coupled and Decoupled Plant "Gershgorin Radii"
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
title('Coupled plant')
 | 
			
		||||
loglog(wf,g_r1(:,1),wf,g_r1(:,2),wf,g_r1(:,3),wf,g_r1(:,4),wf,g_r1(:,5),wf,g_r1(:,6),wf,g_lim,'--');
 | 
			
		||||
legend('$a_x$','$a_y$','$a_z$','$\theta_x$','$\theta_y$','$\theta_z$','Limit');
 | 
			
		||||
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+name: fig:gershorin_raddii_coupled_analytical
 | 
			
		||||
% #+caption: Gershorin Raddi for the coupled plant
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/gershorin_raddii_coupled_analytical.png]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
title('Decoupled plant (10 Hz)')
 | 
			
		||||
loglog(wf,g_r2(:,1),wf,g_r2(:,2),wf,g_r2(:,3),wf,g_r2(:,4),wf,g_r2(:,5),wf,g_r2(:,6),wf,g_lim,'--');
 | 
			
		||||
legend('$S_1$','$S_2$','$S_3$','$S_4$','$S_5$','$S_6$','Limit');
 | 
			
		||||
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
 | 
			
		||||
 | 
			
		||||
% Decoupled Plant
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
bodemag(U'*sys1*V,opts)
 | 
			
		||||
 | 
			
		||||
% Controller
 | 
			
		||||
 | 
			
		||||
fc = 2*pi*0.1; % Crossover Frequency [rad/s]
 | 
			
		||||
c_gain = 50; %
 | 
			
		||||
 | 
			
		||||
cont = eye(6)*c_gain/(s+fc);
 | 
			
		||||
 | 
			
		||||
% Closed Loop System
 | 
			
		||||
 | 
			
		||||
FEEDIN  = [7:12]; % Input of controller
 | 
			
		||||
FEEDOUT = [1:6]; % Output of controller
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Centralized Control
 | 
			
		||||
 | 
			
		||||
STcen = feedback(ST, inv(Bj)*cont, FEEDIN, FEEDOUT);
 | 
			
		||||
TRcen = STcen*[eye(6); zeros(6)];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% SVD Control
 | 
			
		||||
 | 
			
		||||
STsvd = feedback(ST, pinv(V')*cont*pinv(U), FEEDIN, FEEDOUT);
 | 
			
		||||
TRsvd = STsvd*[eye(6); zeros(6)];
 | 
			
		||||
 | 
			
		||||
% Results
 | 
			
		||||
 | 
			
		||||
figure
 | 
			
		||||
subplot(231)
 | 
			
		||||
bodemag(TR(1,1),TRcen(1,1),TRsvd(1,1),opts)
 | 
			
		||||
legend('OL','Centralized','SVD')
 | 
			
		||||
subplot(232)
 | 
			
		||||
bodemag(TR(2,2),TRcen(2,2),TRsvd(2,2),opts)
 | 
			
		||||
legend('OL','Centralized','SVD')
 | 
			
		||||
subplot(233)
 | 
			
		||||
bodemag(TR(3,3),TRcen(3,3),TRsvd(3,3),opts)
 | 
			
		||||
legend('OL','Centralized','SVD')
 | 
			
		||||
subplot(234)
 | 
			
		||||
bodemag(TR(4,4),TRcen(4,4),TRsvd(4,4),opts)
 | 
			
		||||
legend('OL','Centralized','SVD')
 | 
			
		||||
subplot(235)
 | 
			
		||||
bodemag(TR(5,5),TRcen(5,5),TRsvd(5,5),opts)
 | 
			
		||||
legend('OL','Centralized','SVD')
 | 
			
		||||
subplot(236)
 | 
			
		||||
bodemag(TR(6,6),TRcen(6,6),TRsvd(6,6),opts)
 | 
			
		||||
legend('OL','Centralized','SVD')
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								stewart_platform/drone_platform_R2017b.slx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								stewart_platform/drone_platform_R2017b.slx
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										499
									
								
								stewart_platform/simscape_model.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										499
									
								
								stewart_platform/simscape_model.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,499 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
addpath('STEP');
 | 
			
		||||
 | 
			
		||||
% Jacobian
 | 
			
		||||
% First, the position of the "joints" (points of force application) are estimated and the Jacobian computed.
 | 
			
		||||
 | 
			
		||||
open('drone_platform_jacobian.slx');
 | 
			
		||||
 | 
			
		||||
sim('drone_platform_jacobian');
 | 
			
		||||
 | 
			
		||||
Aa = [a1.Data(1,:);
 | 
			
		||||
      a2.Data(1,:);
 | 
			
		||||
      a3.Data(1,:);
 | 
			
		||||
      a4.Data(1,:);
 | 
			
		||||
      a5.Data(1,:);
 | 
			
		||||
      a6.Data(1,:)]';
 | 
			
		||||
 | 
			
		||||
Ab = [b1.Data(1,:);
 | 
			
		||||
      b2.Data(1,:);
 | 
			
		||||
      b3.Data(1,:);
 | 
			
		||||
      b4.Data(1,:);
 | 
			
		||||
      b5.Data(1,:);
 | 
			
		||||
      b6.Data(1,:)]';
 | 
			
		||||
 | 
			
		||||
As = (Ab - Aa)./vecnorm(Ab - Aa);
 | 
			
		||||
 | 
			
		||||
l = vecnorm(Ab - Aa)';
 | 
			
		||||
 | 
			
		||||
J = [As' , cross(Ab, As)'];
 | 
			
		||||
 | 
			
		||||
save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
 | 
			
		||||
 | 
			
		||||
% Simscape Model
 | 
			
		||||
 | 
			
		||||
open('drone_platform.slx');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Definition of spring parameters
 | 
			
		||||
 | 
			
		||||
kx = 0.5*1e3/3; % [N/m]
 | 
			
		||||
ky = 0.5*1e3/3;
 | 
			
		||||
kz = 1e3/3;
 | 
			
		||||
 | 
			
		||||
cx = 0.025; % [Nm/rad]
 | 
			
		||||
cy = 0.025;
 | 
			
		||||
cz = 0.025;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% We load the Jacobian.
 | 
			
		||||
 | 
			
		||||
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
 | 
			
		||||
 | 
			
		||||
% Identification of the plant
 | 
			
		||||
% The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform.
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'drone_platform';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Dw'],              1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/u'],               1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
G.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
 | 
			
		||||
                'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
 | 
			
		||||
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% There are 24 states (6dof for the bottom platform + 6dof for the top platform).
 | 
			
		||||
 | 
			
		||||
size(G)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% : State-space model with 6 outputs, 12 inputs, and 24 states.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% G = G*blkdiag(inv(J), eye(6));
 | 
			
		||||
% G.InputName  = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ...
 | 
			
		||||
%                 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame.
 | 
			
		||||
 | 
			
		||||
Gx = G*blkdiag(eye(6), inv(J'));
 | 
			
		||||
Gx.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
 | 
			
		||||
                 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
 | 
			
		||||
 | 
			
		||||
Gl = J*G;
 | 
			
		||||
Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
 | 
			
		||||
 | 
			
		||||
% Obtained Dynamics
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(2, 1, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$A_x/F_x$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$A_y/F_y$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$A_z/F_z$');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 1, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
 | 
			
		||||
ylim([-180, 180]);
 | 
			
		||||
yticks([-360:90:360]);
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+name: fig:stewart_platform_translations
 | 
			
		||||
% #+caption: Stewart Platform Plant from forces applied by the legs to the acceleration of the platform
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/stewart_platform_translations.png]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(2, 1, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$A_{R_x}/M_x$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$A_{R_y}/M_y$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$A_{R_z}/M_z$');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Amplitude [rad/(Nm)]'); set(gca, 'XTickLabel',[]);
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 1, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
 | 
			
		||||
ylim([-180, 180]);
 | 
			
		||||
yticks([-360:90:360]);
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+name: fig:stewart_platform_rotations
 | 
			
		||||
% #+caption: Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/stewart_platform_rotations.png]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(2, 1, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
for out_i = 1:5
 | 
			
		||||
  for in_i = i+1:6
 | 
			
		||||
    plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', out_i), sprintf('F%i', in_i)), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
 | 
			
		||||
  end
 | 
			
		||||
end
 | 
			
		||||
for ch_i = 1:6
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz'))));
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 1, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
for ch_i = 1:6
 | 
			
		||||
  plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz'))));
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
 | 
			
		||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
 | 
			
		||||
ylim([-180, 180]);
 | 
			
		||||
yticks([-360:90:360]);
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+name: fig:stewart_platform_legs
 | 
			
		||||
% #+caption: Stewart Platform Plant from forces applied by the legs to displacement of the legs
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/stewart_platform_legs.png]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(2, 1, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
 | 
			
		||||
% plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility - Translations');  xlabel('Frequency [Hz]');
 | 
			
		||||
legend('location', 'northeast');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 1, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
% plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
 | 
			
		||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
 | 
			
		||||
% plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility - Rotations');  xlabel('Frequency [Hz]');
 | 
			
		||||
legend('location', 'northeast');
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
 | 
			
		||||
% Real Approximation of $G$ at the decoupling frequency
 | 
			
		||||
% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
 | 
			
		||||
 | 
			
		||||
wc = 2*pi*20; % Decoupling frequency [rad/s]
 | 
			
		||||
 | 
			
		||||
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
 | 
			
		||||
       {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
 | 
			
		||||
 | 
			
		||||
H1 = evalfr(Gc, j*wc);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The real approximation is computed as follows:
 | 
			
		||||
 | 
			
		||||
D = pinv(real(H1'*H1));
 | 
			
		||||
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
 | 
			
		||||
 | 
			
		||||
% Verification of the decoupling using the "Gershgorin Radii"
 | 
			
		||||
% First, the Singular Value Decomposition of $H_1$ is performed:
 | 
			
		||||
% \[ H_1 = U \Sigma V^H \]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
[U,S,V] = svd(H1);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Then, the "Gershgorin Radii" is computed for the plant $G_c(s)$ and the "SVD Decoupled Plant" $G_d(s)$:
 | 
			
		||||
% \[ G_d(s) = U^T G_c(s) V \]
 | 
			
		||||
 | 
			
		||||
% This is computed over the following frequencies.
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 2, 1000); % [Hz]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Gershgorin Radii for the coupled plant:
 | 
			
		||||
 | 
			
		||||
Gr_coupled = zeros(length(freqs), size(Gc,2));
 | 
			
		||||
 | 
			
		||||
H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
 | 
			
		||||
for out_i = 1:size(Gc,2)
 | 
			
		||||
    Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Gershgorin Radii for the decoupled plant using SVD:
 | 
			
		||||
 | 
			
		||||
Gd = U'*Gc*V;
 | 
			
		||||
Gr_decoupled = zeros(length(freqs), size(Gd,2));
 | 
			
		||||
 | 
			
		||||
H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
 | 
			
		||||
for out_i = 1:size(Gd,2)
 | 
			
		||||
    Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Gershgorin Radii for the decoupled plant using the Jacobian:
 | 
			
		||||
 | 
			
		||||
Gj = Gc*inv(J');
 | 
			
		||||
Gr_jacobian = zeros(length(freqs), size(Gj,2));
 | 
			
		||||
 | 
			
		||||
H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));
 | 
			
		||||
 | 
			
		||||
for out_i = 1:size(Gj,2)
 | 
			
		||||
    Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
 | 
			
		||||
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
 | 
			
		||||
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
 | 
			
		||||
for in_i = 2:6
 | 
			
		||||
    set(gca,'ColorOrderIndex',1)
 | 
			
		||||
    plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
 | 
			
		||||
    set(gca,'ColorOrderIndex',2)
 | 
			
		||||
    plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
 | 
			
		||||
    set(gca,'ColorOrderIndex',3)
 | 
			
		||||
    plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
 | 
			
		||||
end
 | 
			
		||||
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
hold off;
 | 
			
		||||
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
 | 
			
		||||
legend('location', 'northeast');
 | 
			
		||||
 | 
			
		||||
% Decoupled Plant
 | 
			
		||||
% Let's see the bode plot of the decoupled plant $G_d(s)$.
 | 
			
		||||
% \[ G_d(s) = U^T G_c(s) V \]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
hold on;
 | 
			
		||||
for ch_i = 1:6
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ...
 | 
			
		||||
       'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i));
 | 
			
		||||
end
 | 
			
		||||
for in_i = 1:5
 | 
			
		||||
  for out_i = in_i+1:6
 | 
			
		||||
    plot(freqs, abs(squeeze(freqresp(Gd(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
  end
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Amplitude'); xlabel('Frequency [Hz]');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+name: fig:simscape_model_decoupled_plant_svd
 | 
			
		||||
% #+caption: Decoupled Plant using SVD
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/simscape_model_decoupled_plant_svd.png]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
hold on;
 | 
			
		||||
for ch_i = 1:6
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gj(ch_i, ch_i), freqs, 'Hz'))), ...
 | 
			
		||||
       'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i));
 | 
			
		||||
end
 | 
			
		||||
for in_i = 1:5
 | 
			
		||||
  for out_i = in_i+1:6
 | 
			
		||||
    plot(freqs, abs(squeeze(freqresp(Gj(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
  end
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Amplitude'); xlabel('Frequency [Hz]');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
 | 
			
		||||
% Diagonal Controller
 | 
			
		||||
% The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
wc = 2*pi*0.1; % Crossover Frequency [rad/s]
 | 
			
		||||
C_g = 50; % DC Gain
 | 
			
		||||
 | 
			
		||||
K = eye(6)*C_g/(s+wc);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/centralized_control.png]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
G_cen = feedback(G, inv(J')*K, [7:12], [1:6]);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/svd_control.png]]
 | 
			
		||||
 | 
			
		||||
% SVD Control
 | 
			
		||||
 | 
			
		||||
G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]);
 | 
			
		||||
 | 
			
		||||
% Results
 | 
			
		||||
% Let's first verify the stability of the closed-loop systems:
 | 
			
		||||
 | 
			
		||||
isstable(G_cen)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% : ans =
 | 
			
		||||
% :   logical
 | 
			
		||||
% :    1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
isstable(G_svd)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% : ans =
 | 
			
		||||
% :   logical
 | 
			
		||||
% :    0
 | 
			
		||||
 | 
			
		||||
% The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-3, 3, 1000);
 | 
			
		||||
 | 
			
		||||
figure
 | 
			
		||||
 | 
			
		||||
ax1 = subplot(2, 3, 1);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(    'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'SVD');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility - $D_x/D_{w,x}$');  xlabel('Frequency [Hz]');
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
ax2 = subplot(2, 3, 2);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(    'Ay', 'Dwy')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))));
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility - $D_y/D_{w,y}$');  xlabel('Frequency [Hz]');
 | 
			
		||||
 | 
			
		||||
ax3 = subplot(2, 3, 3);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(    'Az', 'Dwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility - $D_z/D_{w,z}$');  xlabel('Frequency [Hz]');
 | 
			
		||||
 | 
			
		||||
ax4 = subplot(2, 3, 4);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(    'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility - $R_x/R_{w,x}$');  xlabel('Frequency [Hz]');
 | 
			
		||||
 | 
			
		||||
ax5 = subplot(2, 3, 5);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(    'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility - $R_y/R_{w,y}$');  xlabel('Frequency [Hz]');
 | 
			
		||||
 | 
			
		||||
ax6 = subplot(2, 3, 6);
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(    'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility - $R_z/R_{w,z}$');  xlabel('Frequency [Hz]');
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
		Reference in New Issue
	
	Block a user