Add figure about RGA

This commit is contained in:
Thomas Dehaeze 2020-11-23 18:01:13 +01:00
parent cd38200cc8
commit 87a0d98e01
11 changed files with 3434 additions and 199 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 110 KiB

After

Width:  |  Height:  |  Size: 97 KiB

2441
figs/simscape_model_rga.pdf Normal file

File diff suppressed because it is too large Load Diff

BIN
figs/simscape_model_rga.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 157 KiB

View File

@ -281,7 +281,6 @@ for in_i = 2:6
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')

File diff suppressed because it is too large Load Diff

317
index.org
View File

@ -442,7 +442,6 @@ This is computed over the following frequencies.
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
@ -1382,6 +1381,10 @@ The analysis of the SVD control applied to the Stewart platform is performed in
addpath('STEP');
#+end_src
#+begin_src matlab
freqs = logspace(-1, 2, 1000);
#+end_src
** Jacobian :noexport:
First, the position of the "joints" (points of force application) are estimated and the Jacobian computed.
#+begin_src matlab :tangle no
@ -1413,7 +1416,7 @@ First, the position of the "joints" (points of force application) are estimated
J = [As' , cross(Ab, As)'];
save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
save('stewart_platform/jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
#+end_src
** Simscape Model - Parameters
@ -1433,6 +1436,11 @@ Definition of spring parameters:
cz = 0.025;
#+end_src
We suppose the sensor is perfectly positioned.
#+begin_src matlab
sens_pos_error = zeros(3,1);
#+end_src
Gravity:
#+begin_src matlab
g = 0;
@ -1440,7 +1448,7 @@ Gravity:
We load the Jacobian (previously computed from the geometry):
#+begin_src matlab
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
load('jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
#+end_src
We initialize other parameters:
@ -1524,8 +1532,6 @@ The elements of the transfer matrix $\bm{G}$ corresponding to the transfer funct
One can easily see that the system is strongly coupled.
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
% Magnitude
@ -1563,6 +1569,21 @@ One can easily see that the system is strongly coupled.
Consider the control architecture shown in Figure [[fig:plant_decouple_jacobian]].
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
The Jacobian matrix is computed from the geometry of the platform (position and orientation of the actuators).
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(J, {}, {}, ' %.3f ');
#+end_src
#+caption: Computed Jacobian Matrix
#+RESULTS:
| 0.811 | 0.0 | 0.584 | -0.018 | -0.008 | 0.025 |
| -0.406 | -0.703 | 0.584 | -0.016 | -0.012 | -0.025 |
| -0.406 | 0.703 | 0.584 | 0.016 | -0.012 | 0.025 |
| 0.811 | 0.0 | 0.584 | 0.018 | -0.008 | -0.025 |
| -0.406 | -0.703 | 0.584 | 0.002 | 0.019 | 0.025 |
| -0.406 | 0.703 | 0.584 | -0.002 | 0.019 | -0.025 |
#+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block] (G) {$G_u$};
@ -1633,6 +1654,7 @@ This can be verified below where only the real value of $G_u(\omega_c)$ is shown
data2orgtable(real(evalfr(Gu, j*wc)), {}, {}, ' %.1f ');
#+end_src
#+caption: Real part of $G$ at the decoupling frequency $\omega_c$
#+RESULTS:
| 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 |
| -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 |
@ -1651,6 +1673,32 @@ First, the Singular Value Decomposition of $H_1$ is performed:
[U,~,V] = svd(H1);
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(U, {}, {}, ' %.1g ');
#+end_src
#+caption: Obtained matrix $U$
#+RESULTS:
| -0.005 | 7e-06 | 6e-11 | -3e-06 | -1 | 0.1 |
| -7e-06 | -0.005 | -9e-09 | -5e-09 | -0.1 | -1 |
| 4e-08 | -2e-10 | -6e-11 | -1 | 3e-06 | -3e-07 |
| -0.002 | -1 | -5e-06 | 2e-10 | 0.0006 | 0.005 |
| 1 | -0.002 | -1e-08 | 2e-08 | -0.005 | 0.0006 |
| -4e-09 | 5e-06 | -1 | 6e-11 | -2e-09 | -1e-08 |
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(V, {}, {}, ' %.1g ');
#+end_src
#+caption: Obtained matrix $V$
#+RESULTS:
| -0.2 | 0.5 | -0.4 | -0.4 | -0.6 | -0.2 |
| -0.3 | 0.5 | 0.4 | -0.4 | 0.5 | 0.3 |
| -0.3 | -0.5 | -0.4 | -0.4 | 0.4 | -0.4 |
| -0.2 | -0.5 | 0.4 | -0.4 | -0.5 | 0.3 |
| 0.6 | -0.06 | -0.4 | -0.4 | 0.1 | 0.6 |
| 0.6 | 0.06 | 0.4 | -0.4 | -0.006 | -0.6 |
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]].
#+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results
@ -1694,10 +1742,6 @@ The "Gershgorin Radii" of a matrix $S$ is defined by:
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
This is computed over the following frequencies.
#+begin_src matlab
freqs = logspace(-2, 2, 1000); % [Hz]
#+end_src
#+begin_src matlab :exports none
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gu,2));
@ -1735,7 +1779,6 @@ This is computed over the following frequencies.
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
@ -1752,14 +1795,105 @@ This is computed over the following frequencies.
#+RESULTS:
[[file:figs/simscape_model_gershgorin_radii.png]]
** Verification of the decoupling using the "Relative Gain Array"
The relative gain array (RGA) is defined as:
\begin{equation}
\Lambda\big(G(s)\big) = G(s) \times \big( G(s)^{-1} \big)^T
\end{equation}
where $\times$ denotes an element by element multiplication and $G(s)$ is an $n \times n$ square transfer matrix.
The obtained RGA elements are shown in Figure [[fig:simscape_model_rga]].
#+begin_src matlab :exports none
% Relative Gain Array for the coupled plant:
RGA_coupled = zeros(length(freqs), size(Gu,1), size(Gu,2));
Gu_inv = inv(Gu);
for f_i = 1:length(freqs)
RGA_coupled(f_i, :, :) = abs(evalfr(Gu, j*2*pi*freqs(f_i)).*evalfr(Gu_inv, j*2*pi*freqs(f_i))');
end
% Relative Gain Array for the decoupled plant using SVD:
RGA_svd = zeros(length(freqs), size(Gsvd,1), size(Gsvd,2));
Gsvd_inv = inv(Gsvd);
for f_i = 1:length(freqs)
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
end
% Relative Gain Array for the decoupled plant using the Jacobian:
RGA_x = zeros(length(freqs), size(Gx,1), size(Gx,2));
Gx_inv = inv(Gx);
for f_i = 1:length(freqs)
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
end
#+end_src
#+begin_src matlab :exports none
figure;
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, RGA_svd(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_svd(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{SVD}(i,j),\ i \neq j$');
plot(freqs, RGA_svd(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{SVD}(i,i)$');
for ch_i = 1:6
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); xlabel('Frequency [Hz]');
legend('location', 'southwest');
ax2 = nexttile;
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, RGA_x(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_x(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{X}(i,j),\ i \neq j$');
plot(freqs, RGA_x(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{X}(i,i)$');
for ch_i = 1:6
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
legend('location', 'southwest');
linkaxes([ax1,ax2],'y');
ylim([1e-5, 1e1]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/simscape_model_rga.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:simscape_model_rga
#+caption: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled plant
#+RESULTS:
[[file:figs/simscape_model_rga.png]]
** Obtained Decoupled Plants
<<sec:stewart_decoupled_plant>>
The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@ -1812,8 +1946,6 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@ -1956,8 +2088,6 @@ $G_0$ is tuned such that the crossover frequency corresponding to the diagonal t
The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@ -2038,8 +2168,6 @@ Let's first verify the stability of the closed-loop systems:
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
#+begin_src matlab :exports results
freqs = logspace(-2, 2, 1000);
figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
@ -2102,6 +2230,159 @@ The obtained transmissibility in Open-loop, for the centralized control as well
#+RESULTS:
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
** Small error on the sensor location :no_export:
Let's now consider a small position error of the sensor:
#+begin_src matlab
sens_pos_error = [105 5 -1]*1e-3; % [m]
#+end_src
The system is identified again:
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'drone_platform';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
G = linearize(mdl, io);
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
% Plant
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
% Disturbance dynamics
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
#+end_src
#+begin_src matlab
Gx = Gu*inv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
#+end_src
#+begin_src matlab
Gsvd = inv(U)*Gu*inv(V');
#+end_src
#+begin_src matlab :exports none
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
for out_i = 1:size(Gu,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using SVD:
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
for out_i = 1:size(Gsvd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using the Jacobian:
Gr_jacobian = zeros(length(freqs), size(Gx,2));
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
for out_i = 1:size(Gx,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
#+end_src
#+begin_src matlab :exports results
figure;
hold on;
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
for in_i = 2:6
set(gca,'ColorOrderIndex',1)
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northwest');
ylim([1e-3, 1e3]);
#+end_src
#+begin_src matlab
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
#+end_src
#+begin_src matlab
L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
#+end_src
#+begin_src matlab :results output replace text
isstable(G_cen)
#+end_src
#+begin_src matlab :results output replace text
isstable(G_svd)
#+end_src
#+begin_src matlab :exports results
figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
ax3 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
ax4 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4],'xy');
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 1e2]);
#+end_src
* Stewart Platform - Analytical Model :noexport:
:PROPERTIES:
:header-args:matlab+: :tangle stewart_platform/analytical_model.m

Binary file not shown.

Binary file not shown.

View File

@ -6,6 +6,8 @@ s = zpk('s');
addpath('STEP');
freqs = logspace(-1, 2, 1000);
% Simscape Model - Parameters
% <<sec:stewart_simscape>>
@ -25,6 +27,12 @@ cz = 0.025;
% We suppose the sensor is perfectly positioned.
sens_pos_error = zeros(3,1);
% Gravity:
g = 0;
@ -33,7 +41,7 @@ g = 0;
% We load the Jacobian (previously computed from the geometry):
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
load('jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
@ -86,8 +94,6 @@ size(G)
% One can easily see that the system is strongly coupled.
freqs = logspace(-1, 2, 1000);
figure;
% Magnitude
@ -174,8 +180,6 @@ Gsvd = inv(U)*Gu*inv(V');
% This is computed over the following frequencies.
freqs = logspace(-2, 2, 1000); % [Hz]
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
@ -210,21 +214,99 @@ for in_i = 2:6
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northwest');
ylim([1e-3, 1e3]);
% Verification of the decoupling using the "Relative Gain Array"
% The relative gain array (RGA) is defined as:
% \begin{equation}
% \Lambda\big(G(s)\big) = G(s) \times \big( G(s)^{-1} \big)^T
% \end{equation}
% where $\times$ denotes an element by element multiplication and $G(s)$ is an $n \times n$ square transfer matrix.
% The obtained RGA elements are shown in Figure [[fig:simscape_model_rga]].
% Relative Gain Array for the coupled plant:
RGA_coupled = zeros(length(freqs), size(Gu,1), size(Gu,2));
Gu_inv = inv(Gu);
for f_i = 1:length(freqs)
RGA_coupled(f_i, :, :) = abs(evalfr(Gu, j*2*pi*freqs(f_i)).*evalfr(Gu_inv, j*2*pi*freqs(f_i))');
end
% Relative Gain Array for the decoupled plant using SVD:
RGA_svd = zeros(length(freqs), size(Gsvd,1), size(Gsvd,2));
Gsvd_inv = inv(Gsvd);
for f_i = 1:length(freqs)
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
end
% Relative Gain Array for the decoupled plant using the Jacobian:
RGA_x = zeros(length(freqs), size(Gx,1), size(Gx,2));
Gx_inv = inv(Gx);
for f_i = 1:length(freqs)
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
end
figure;
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, RGA_svd(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_svd(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{SVD}(i,j),\ i \neq j$');
plot(freqs, RGA_svd(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{SVD}(i,i)$');
for ch_i = 1:6
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); xlabel('Frequency [Hz]');
legend('location', 'southwest');
ax2 = nexttile;
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, RGA_x(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_x(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{X}(i,j),\ i \neq j$');
plot(freqs, RGA_x(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{X}(i,i)$');
for ch_i = 1:6
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
legend('location', 'southwest');
linkaxes([ax1,ax2],'y');
ylim([1e-5, 1e1]);
% Obtained Decoupled Plants
% <<sec:stewart_decoupled_plant>>
% The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@ -274,8 +356,6 @@ linkaxes([ax1,ax2],'x');
% Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@ -350,8 +430,6 @@ G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
% The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]].
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@ -424,7 +502,140 @@ isstable(G_svd)
% The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
freqs = logspace(-2, 2, 1000);
figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
ax3 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
ax4 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4],'xy');
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 1e2]);
% Small error on the sensor location :no_export:
% Let's now consider a small position error of the sensor:
sens_pos_error = [105 5 -1]*1e-3; % [m]
% The system is identified again:
%% Name of the Simulink File
mdl = 'drone_platform';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
G = linearize(mdl, io);
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
% Plant
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
% Disturbance dynamics
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
Gx = Gu*inv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Gsvd = inv(U)*Gu*inv(V');
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
for out_i = 1:size(Gu,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using SVD:
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
for out_i = 1:size(Gsvd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using the Jacobian:
Gr_jacobian = zeros(length(freqs), size(Gx,2));
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
for out_i = 1:size(Gx,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
figure;
hold on;
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
for in_i = 2:6
set(gca,'ColorOrderIndex',1)
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northwest');
ylim([1e-3, 1e3]);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
isstable(G_cen)
isstable(G_svd)
figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');