Add figure about RGA
This commit is contained in:
		
							
								
								
									
										317
									
								
								index.org
									
									
									
									
									
								
							
							
						
						
									
										317
									
								
								index.org
									
									
									
									
									
								
							@@ -442,7 +442,6 @@ This is computed over the following frequencies.
 | 
			
		||||
      set(gca,'ColorOrderIndex',3)
 | 
			
		||||
      plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
 | 
			
		||||
  end
 | 
			
		||||
  plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  hold off;
 | 
			
		||||
  xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
 | 
			
		||||
@@ -1382,6 +1381,10 @@ The analysis of the SVD control applied to the Stewart platform is performed in
 | 
			
		||||
  addpath('STEP');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  freqs = logspace(-1, 2, 1000);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Jacobian                                                        :noexport:
 | 
			
		||||
First, the position of the "joints" (points of force application) are estimated and the Jacobian computed.
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
@@ -1413,7 +1416,7 @@ First, the position of the "joints" (points of force application) are estimated
 | 
			
		||||
 | 
			
		||||
  J = [As' , cross(Ab, As)'];
 | 
			
		||||
 | 
			
		||||
  save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
 | 
			
		||||
  save('stewart_platform/jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Simscape Model - Parameters
 | 
			
		||||
@@ -1433,6 +1436,11 @@ Definition of spring parameters:
 | 
			
		||||
  cz = 0.025;
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
We suppose the sensor is perfectly positioned.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  sens_pos_error = zeros(3,1);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Gravity:
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  g = 0;
 | 
			
		||||
@@ -1440,7 +1448,7 @@ Gravity:
 | 
			
		||||
 | 
			
		||||
We load the Jacobian (previously computed from the geometry):
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
 | 
			
		||||
  load('jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
We initialize other parameters:
 | 
			
		||||
@@ -1524,8 +1532,6 @@ The elements of the transfer matrix $\bm{G}$ corresponding to the transfer funct
 | 
			
		||||
One can easily see that the system is strongly coupled.
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
 | 
			
		||||
  % Magnitude
 | 
			
		||||
@@ -1563,6 +1569,21 @@ One can easily see that the system is strongly coupled.
 | 
			
		||||
Consider the control architecture shown in Figure [[fig:plant_decouple_jacobian]].
 | 
			
		||||
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
 | 
			
		||||
 | 
			
		||||
The Jacobian matrix is computed from the geometry of the platform (position and orientation of the actuators).
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable(J, {}, {}, ' %.3f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+caption: Computed Jacobian Matrix
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
|  0.811 |    0.0 | 0.584 | -0.018 | -0.008 |  0.025 |
 | 
			
		||||
| -0.406 | -0.703 | 0.584 | -0.016 | -0.012 | -0.025 |
 | 
			
		||||
| -0.406 |  0.703 | 0.584 |  0.016 | -0.012 |  0.025 |
 | 
			
		||||
|  0.811 |    0.0 | 0.584 |  0.018 | -0.008 | -0.025 |
 | 
			
		||||
| -0.406 | -0.703 | 0.584 |  0.002 |  0.019 |  0.025 |
 | 
			
		||||
| -0.406 |  0.703 | 0.584 | -0.002 |  0.019 | -0.025 |
 | 
			
		||||
 | 
			
		||||
#+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results
 | 
			
		||||
  \begin{tikzpicture}
 | 
			
		||||
    \node[block] (G) {$G_u$};
 | 
			
		||||
@@ -1633,6 +1654,7 @@ This can be verified below where only the real value of $G_u(\omega_c)$ is shown
 | 
			
		||||
  data2orgtable(real(evalfr(Gu, j*wc)), {}, {}, ' %.1f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+caption: Real part of $G$ at the decoupling frequency $\omega_c$
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
|    4.4 |   -2.1 |   -2.1 |    4.4 |  -2.4 |   -2.4 |
 | 
			
		||||
|   -0.2 |   -3.9 |    3.9 |    0.2 |  -3.8 |    3.8 |
 | 
			
		||||
@@ -1651,6 +1673,32 @@ First, the Singular Value Decomposition of $H_1$ is performed:
 | 
			
		||||
  [U,~,V] = svd(H1);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable(U, {}, {}, ' %.1g ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+caption: Obtained matrix $U$
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| -0.005 |  7e-06 |  6e-11 | -3e-06 |     -1 |    0.1 |
 | 
			
		||||
| -7e-06 | -0.005 | -9e-09 | -5e-09 |   -0.1 |     -1 |
 | 
			
		||||
|  4e-08 | -2e-10 | -6e-11 |     -1 |  3e-06 | -3e-07 |
 | 
			
		||||
| -0.002 |     -1 | -5e-06 |  2e-10 | 0.0006 |  0.005 |
 | 
			
		||||
|      1 | -0.002 | -1e-08 |  2e-08 | -0.005 | 0.0006 |
 | 
			
		||||
| -4e-09 |  5e-06 |     -1 |  6e-11 | -2e-09 | -1e-08 |
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable(V, {}, {}, ' %.1g ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+caption: Obtained matrix $V$
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| -0.2 |   0.5 | -0.4 | -0.4 |   -0.6 | -0.2 |
 | 
			
		||||
| -0.3 |   0.5 |  0.4 | -0.4 |    0.5 |  0.3 |
 | 
			
		||||
| -0.3 |  -0.5 | -0.4 | -0.4 |    0.4 | -0.4 |
 | 
			
		||||
| -0.2 |  -0.5 |  0.4 | -0.4 |   -0.5 |  0.3 |
 | 
			
		||||
|  0.6 | -0.06 | -0.4 | -0.4 |    0.1 |  0.6 |
 | 
			
		||||
|  0.6 |  0.06 |  0.4 | -0.4 | -0.006 | -0.6 |
 | 
			
		||||
 | 
			
		||||
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]].
 | 
			
		||||
 | 
			
		||||
#+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results
 | 
			
		||||
@@ -1694,10 +1742,6 @@ The "Gershgorin Radii" of a matrix $S$ is defined by:
 | 
			
		||||
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
 | 
			
		||||
 | 
			
		||||
This is computed over the following frequencies.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  freqs = logspace(-2, 2, 1000); % [Hz]
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  % Gershgorin Radii for the coupled plant:
 | 
			
		||||
  Gr_coupled = zeros(length(freqs), size(Gu,2));
 | 
			
		||||
@@ -1735,7 +1779,6 @@ This is computed over the following frequencies.
 | 
			
		||||
      set(gca,'ColorOrderIndex',3)
 | 
			
		||||
      plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
 | 
			
		||||
  end
 | 
			
		||||
  plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  hold off;
 | 
			
		||||
  xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
 | 
			
		||||
@@ -1752,14 +1795,105 @@ This is computed over the following frequencies.
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/simscape_model_gershgorin_radii.png]]
 | 
			
		||||
 | 
			
		||||
** Verification of the decoupling using the "Relative Gain Array"
 | 
			
		||||
The relative gain array (RGA) is defined as:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \Lambda\big(G(s)\big) = G(s) \times \big( G(s)^{-1} \big)^T
 | 
			
		||||
\end{equation}
 | 
			
		||||
where $\times$ denotes an element by element multiplication and $G(s)$ is an $n \times n$ square transfer matrix.
 | 
			
		||||
 | 
			
		||||
The obtained RGA elements are shown in Figure [[fig:simscape_model_rga]].
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  % Relative Gain Array for the coupled plant:
 | 
			
		||||
  RGA_coupled = zeros(length(freqs), size(Gu,1), size(Gu,2));
 | 
			
		||||
  Gu_inv = inv(Gu);
 | 
			
		||||
  for f_i = 1:length(freqs)
 | 
			
		||||
    RGA_coupled(f_i, :, :) = abs(evalfr(Gu, j*2*pi*freqs(f_i)).*evalfr(Gu_inv, j*2*pi*freqs(f_i))');
 | 
			
		||||
  end
 | 
			
		||||
 | 
			
		||||
  % Relative Gain Array for the decoupled plant using SVD:
 | 
			
		||||
  RGA_svd = zeros(length(freqs), size(Gsvd,1), size(Gsvd,2));
 | 
			
		||||
  Gsvd_inv = inv(Gsvd);
 | 
			
		||||
  for f_i = 1:length(freqs)
 | 
			
		||||
    RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
 | 
			
		||||
  end
 | 
			
		||||
 | 
			
		||||
  % Relative Gain Array for the decoupled plant using the Jacobian:
 | 
			
		||||
  RGA_x = zeros(length(freqs), size(Gx,1), size(Gx,2));
 | 
			
		||||
  Gx_inv = inv(Gx);
 | 
			
		||||
  for f_i = 1:length(freqs)
 | 
			
		||||
    RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
 | 
			
		||||
  end
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  figure;
 | 
			
		||||
  tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
  ax1 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  for i_in = 1:6
 | 
			
		||||
      for i_out = [1:i_in-1, i_in+1:6]
 | 
			
		||||
          plot(freqs, RGA_svd(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
 | 
			
		||||
               'HandleVisibility', 'off');
 | 
			
		||||
      end
 | 
			
		||||
  end
 | 
			
		||||
  plot(freqs, RGA_svd(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
 | 
			
		||||
       'DisplayName', '$RGA_{SVD}(i,j),\ i \neq j$');
 | 
			
		||||
 | 
			
		||||
  plot(freqs, RGA_svd(:, 1, 1), 'k-', ...
 | 
			
		||||
       'DisplayName', '$RGA_{SVD}(i,i)$');
 | 
			
		||||
  for ch_i = 1:6
 | 
			
		||||
    plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
  end
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  ylabel('Magnitude'); xlabel('Frequency [Hz]');
 | 
			
		||||
  legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
  ax2 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  for i_in = 1:6
 | 
			
		||||
      for i_out = [1:i_in-1, i_in+1:6]
 | 
			
		||||
          plot(freqs, RGA_x(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
 | 
			
		||||
               'HandleVisibility', 'off');
 | 
			
		||||
      end
 | 
			
		||||
  end
 | 
			
		||||
  plot(freqs, RGA_x(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
 | 
			
		||||
       'DisplayName', '$RGA_{X}(i,j),\ i \neq j$');
 | 
			
		||||
 | 
			
		||||
  plot(freqs, RGA_x(:, 1, 1), 'k-', ...
 | 
			
		||||
       'DisplayName', '$RGA_{X}(i,i)$');
 | 
			
		||||
  for ch_i = 1:6
 | 
			
		||||
    plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
 | 
			
		||||
         'HandleVisibility', 'off');
 | 
			
		||||
  end
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
 | 
			
		||||
  legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
  linkaxes([ax1,ax2],'y');
 | 
			
		||||
  ylim([1e-5, 1e1]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/simscape_model_rga.pdf', 'width', 'wide', 'height', 'tall');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:simscape_model_rga
 | 
			
		||||
#+caption: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled plant
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/simscape_model_rga.png]]
 | 
			
		||||
 | 
			
		||||
** Obtained Decoupled Plants
 | 
			
		||||
<<sec:stewart_decoupled_plant>>
 | 
			
		||||
 | 
			
		||||
The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
  tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
@@ -1812,8 +1946,6 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
 | 
			
		||||
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
  tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
@@ -1956,8 +2088,6 @@ $G_0$ is tuned such that the crossover frequency corresponding to the diagonal t
 | 
			
		||||
The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]].
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  freqs = logspace(-1, 2, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
  tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
@@ -2038,8 +2168,6 @@ Let's first verify the stability of the closed-loop systems:
 | 
			
		||||
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results
 | 
			
		||||
  freqs = logspace(-2, 2, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
  tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
@@ -2102,6 +2230,159 @@ The obtained transmissibility in Open-loop, for the centralized control as well
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
 | 
			
		||||
 | 
			
		||||
** Small error on the sensor location                             :no_export:
 | 
			
		||||
Let's now consider a small position error of the sensor:
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  sens_pos_error = [105 5 -1]*1e-3; % [m]
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
The system is identified again:
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  %% Name of the Simulink File
 | 
			
		||||
  mdl = 'drone_platform';
 | 
			
		||||
 | 
			
		||||
  %% Input/Output definition
 | 
			
		||||
  clear io; io_i = 1;
 | 
			
		||||
  io(io_i) = linio([mdl, '/Dw'],              1, 'openinput');  io_i = io_i + 1; % Ground Motion
 | 
			
		||||
  io(io_i) = linio([mdl, '/V-T'],             1, 'openinput');  io_i = io_i + 1; % Actuator Forces
 | 
			
		||||
  io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
 | 
			
		||||
 | 
			
		||||
  G = linearize(mdl, io);
 | 
			
		||||
  G.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
 | 
			
		||||
                  'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
 | 
			
		||||
  G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
 | 
			
		||||
 | 
			
		||||
  % Plant
 | 
			
		||||
  Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
 | 
			
		||||
  % Disturbance dynamics
 | 
			
		||||
  Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  Gx = Gu*inv(J');
 | 
			
		||||
  Gx.InputName  = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  Gsvd = inv(U)*Gu*inv(V');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  % Gershgorin Radii for the coupled plant:
 | 
			
		||||
  Gr_coupled = zeros(length(freqs), size(Gu,2));
 | 
			
		||||
  H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
 | 
			
		||||
  for out_i = 1:size(Gu,2)
 | 
			
		||||
      Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
 | 
			
		||||
  end
 | 
			
		||||
 | 
			
		||||
  % Gershgorin Radii for the decoupled plant using SVD:
 | 
			
		||||
  Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
 | 
			
		||||
  H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
 | 
			
		||||
  for out_i = 1:size(Gsvd,2)
 | 
			
		||||
      Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
 | 
			
		||||
  end
 | 
			
		||||
 | 
			
		||||
  % Gershgorin Radii for the decoupled plant using the Jacobian:
 | 
			
		||||
  Gr_jacobian = zeros(length(freqs), size(Gx,2));
 | 
			
		||||
  H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
 | 
			
		||||
  for out_i = 1:size(Gx,2)
 | 
			
		||||
      Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
 | 
			
		||||
  end
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results
 | 
			
		||||
  figure;
 | 
			
		||||
  hold on;
 | 
			
		||||
  plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
 | 
			
		||||
  plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
 | 
			
		||||
  plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
 | 
			
		||||
  for in_i = 2:6
 | 
			
		||||
      set(gca,'ColorOrderIndex',1)
 | 
			
		||||
      plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
 | 
			
		||||
      set(gca,'ColorOrderIndex',2)
 | 
			
		||||
      plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
 | 
			
		||||
      set(gca,'ColorOrderIndex',3)
 | 
			
		||||
      plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
 | 
			
		||||
  end
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  hold off;
 | 
			
		||||
  xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
 | 
			
		||||
  legend('location', 'northwest');
 | 
			
		||||
  ylim([1e-3, 1e3]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  L_cen = K_cen*Gx;
 | 
			
		||||
  G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  L_svd = K_svd*Gsvd;
 | 
			
		||||
  G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :results output replace text
 | 
			
		||||
  isstable(G_cen)
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :results output replace text
 | 
			
		||||
  isstable(G_svd)
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results
 | 
			
		||||
  figure;
 | 
			
		||||
  tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
  ax1 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(    'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
 | 
			
		||||
  set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(    'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
 | 
			
		||||
  legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
  ax2 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(    'Az', 'Dwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
 | 
			
		||||
 | 
			
		||||
  ax3 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(    'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
 | 
			
		||||
  set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(    'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$');  xlabel('Frequency [Hz]');
 | 
			
		||||
 | 
			
		||||
  ax4 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(    'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  ylabel('$R_z/R_{w,z}$');  xlabel('Frequency [Hz]');
 | 
			
		||||
 | 
			
		||||
  linkaxes([ax1,ax2,ax3,ax4],'xy');
 | 
			
		||||
  xlim([freqs(1), freqs(end)]);
 | 
			
		||||
  ylim([1e-3, 1e2]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* Stewart Platform - Analytical Model                               :noexport:
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle stewart_platform/analytical_model.m
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user