Add analysis about jacobian position
BIN
figs/gravimeter_cl_transmissibility_coupling.pdf
Normal file
BIN
figs/gravimeter_cl_transmissibility_coupling.png
Normal file
After Width: | Height: | Size: 72 KiB |
BIN
figs/gravimeter_model_K.png
Normal file
After Width: | Height: | Size: 15 KiB |
BIN
figs/gravimeter_model_KM.png
Normal file
After Width: | Height: | Size: 15 KiB |
BIN
figs/gravimeter_model_M.png
Normal file
After Width: | Height: | Size: 15 KiB |
BIN
figs/gravimeter_rga_num.pdf
Normal file
BIN
figs/gravimeter_rga_num.png
Normal file
After Width: | Height: | Size: 63 KiB |
2227
figs/gravimeter_transmissibility_offset_act.pdf
Normal file
BIN
figs/gravimeter_transmissibility_offset_act.png
Normal file
After Width: | Height: | Size: 130 KiB |
BIN
figs/jac_decoupling_K.pdf
Normal file
BIN
figs/jac_decoupling_K.png
Normal file
After Width: | Height: | Size: 111 KiB |
BIN
figs/jac_decoupling_KM.pdf
Normal file
BIN
figs/jac_decoupling_KM.png
Normal file
After Width: | Height: | Size: 105 KiB |
BIN
figs/jac_decoupling_M.pdf
Normal file
BIN
figs/jac_decoupling_M.png
Normal file
After Width: | Height: | Size: 111 KiB |
BIN
figs/leg_model.png
Normal file
After Width: | Height: | Size: 8.4 KiB |
768
index.html
628
index.org
@ -96,6 +96,10 @@ The model of the gravimeter is schematically shown in Figure [[fig:gravimeter_mo
|
|||||||
#+caption: Model of the gravimeter
|
#+caption: Model of the gravimeter
|
||||||
[[file:figs/gravimeter_model.png]]
|
[[file:figs/gravimeter_model.png]]
|
||||||
|
|
||||||
|
#+name: fig:leg_model
|
||||||
|
#+caption: Model of the struts
|
||||||
|
[[file:figs/leg_model.png]]
|
||||||
|
|
||||||
The parameters used for the simulation are the following:
|
The parameters used for the simulation are the following:
|
||||||
#+begin_src matlab
|
#+begin_src matlab
|
||||||
l = 1.0; % Length of the mass [m]
|
l = 1.0; % Length of the mass [m]
|
||||||
@ -267,14 +271,14 @@ $\bm{G}_x(s)$ correspond to the $3 \times 3$transfer function matrix from forces
|
|||||||
|
|
||||||
The Jacobian corresponding to the sensors and actuators are defined below:
|
The Jacobian corresponding to the sensors and actuators are defined below:
|
||||||
#+begin_src matlab
|
#+begin_src matlab
|
||||||
Ja = [1 0 h/2
|
Ja = [1 0 -h/2
|
||||||
0 1 -l/2
|
0 1 l/2
|
||||||
1 0 -h/2
|
1 0 h/2
|
||||||
0 1 0];
|
0 1 0];
|
||||||
|
|
||||||
Jt = [1 0 ha
|
Jt = [1 0 -ha
|
||||||
0 1 -la
|
0 1 la
|
||||||
0 1 la];
|
0 1 -la];
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
And the plant $\bm{G}_x$ is computed:
|
And the plant $\bm{G}_x$ is computed:
|
||||||
@ -364,6 +368,27 @@ Now, the Singular Value Decomposition of $H_1$ is performed:
|
|||||||
[U,S,V] = svd(H1);
|
[U,S,V] = svd(H1);
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports results :results value table replace :tangle no
|
||||||
|
data2orgtable(U, {}, {}, ' %.2f ');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+caption: $U$ matrix
|
||||||
|
#+RESULTS:
|
||||||
|
| -0.78 | 0.26 | -0.53 | -0.2 |
|
||||||
|
| 0.4 | 0.61 | -0.04 | -0.68 |
|
||||||
|
| 0.48 | -0.14 | -0.85 | 0.2 |
|
||||||
|
| 0.03 | 0.73 | 0.06 | 0.68 |
|
||||||
|
|
||||||
|
#+begin_src matlab :exports results :results value table replace :tangle no
|
||||||
|
data2orgtable(V, {}, {}, ' %.2f ');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+caption: $V$ matrix
|
||||||
|
#+RESULTS:
|
||||||
|
| -0.79 | 0.11 | -0.6 |
|
||||||
|
| 0.51 | 0.67 | -0.54 |
|
||||||
|
| -0.35 | 0.73 | 0.59 |
|
||||||
|
|
||||||
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:gravimeter_decouple_svd]].
|
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:gravimeter_decouple_svd]].
|
||||||
|
|
||||||
#+begin_src latex :file gravimeter_decouple_svd.pdf :tangle no :exports results
|
#+begin_src latex :file gravimeter_decouple_svd.pdf :tangle no :exports results
|
||||||
@ -594,6 +619,48 @@ The obtained RGA elements are shown in Figure [[fig:gravimeter_rga]].
|
|||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
[[file:figs/gravimeter_rga.png]]
|
[[file:figs/gravimeter_rga.png]]
|
||||||
|
|
||||||
|
The RGA-number is also a measure of diagonal dominance:
|
||||||
|
\begin{equation}
|
||||||
|
\text{RGA-number} = \| \Lambda(G) - I \|_\text{sum}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
% Relative Gain Array for the decoupled plant using SVD:
|
||||||
|
RGA_svd = zeros(size(Gsvd,1), size(Gsvd,2), length(freqs));
|
||||||
|
Gsvd_inv = inv(Gsvd);
|
||||||
|
for f_i = 1:length(freqs)
|
||||||
|
RGA_svd(:, :, f_i) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
|
||||||
|
end
|
||||||
|
|
||||||
|
% Relative Gain Array for the decoupled plant using the Jacobian:
|
||||||
|
RGA_x = zeros(size(Gx,1), size(Gx,2), length(freqs));
|
||||||
|
Gx_inv = inv(Gx);
|
||||||
|
for f_i = 1:length(freqs)
|
||||||
|
RGA_x(:, :, f_i) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
|
||||||
|
end
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
RGA_num_svd = squeeze(sum(sum(RGA_svd - eye(3))));
|
||||||
|
RGA_num_x = squeeze(sum(sum(RGA_x - eye(3))));
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(freqs, RGA_num_svd)
|
||||||
|
plot(freqs, RGA_num_x)
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('RGA-Number');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :tangle no :exports results :results file replace
|
||||||
|
exportFig('figs/gravimeter_rga_num.pdf', 'width', 'wide', 'height', 'normal');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+name: fig:gravimeter_rga_num
|
||||||
|
#+caption: RGA-Number for the Gravimeter
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:figs/gravimeter_rga_num.png]]
|
||||||
|
|
||||||
** Obtained Decoupled Plants
|
** Obtained Decoupled Plants
|
||||||
<<sec:gravimeter_decoupled_plant>>
|
<<sec:gravimeter_decoupled_plant>>
|
||||||
|
|
||||||
@ -920,6 +987,555 @@ The obtained transmissibility in Open-loop, for the centralized control as well
|
|||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
[[file:figs/gravimeter_platform_simscape_cl_transmissibility.png]]
|
[[file:figs/gravimeter_platform_simscape_cl_transmissibility.png]]
|
||||||
|
|
||||||
|
#+begin_src matlab :exports results
|
||||||
|
freqs = logspace(-2, 2, 1000);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
for out_i = 1:3
|
||||||
|
for in_i = out_i+1:3
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G( out_i,in_i), freqs, 'Hz'))));
|
||||||
|
set(gca,'ColorOrderIndex',2)
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen(out_i,in_i), freqs, 'Hz'))));
|
||||||
|
set(gca,'ColorOrderIndex',3)
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_svd(out_i,in_i), freqs, 'Hz'))), '--');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :tangle no :exports results :results file replace
|
||||||
|
exportFig('figs/gravimeter_cl_transmissibility_coupling.pdf', 'width', 'wide', 'height', 'normal');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+name: fig:gravimeter_cl_transmissibility_coupling
|
||||||
|
#+caption: Obtain coupling terms of the transmissibility matrix
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:figs/gravimeter_cl_transmissibility_coupling.png]]
|
||||||
|
|
||||||
|
|
||||||
|
** Robustness to a change of actuator position
|
||||||
|
|
||||||
|
Let say we change the position of the actuators:
|
||||||
|
#+begin_src matlab
|
||||||
|
la = l/2*0.7; % Position of Act. [m]
|
||||||
|
ha = h/2*0.7; % Position of Act. [m]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
%% Name of the Simulink File
|
||||||
|
mdl = 'gravimeter';
|
||||||
|
|
||||||
|
%% Input/Output definition
|
||||||
|
clear io; io_i = 1;
|
||||||
|
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
|
||||||
|
G = linearize(mdl, io);
|
||||||
|
G.InputName = {'F1', 'F2', 'F3'};
|
||||||
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
G_cen_b = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
|
||||||
|
G_svd_b = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
The new plant is computed, and the centralized and SVD control architectures are applied using the previsouly computed Jacobian matrices and $U$ and $V$ matrices.
|
||||||
|
|
||||||
|
The closed-loop system are still stable, and their
|
||||||
|
|
||||||
|
#+begin_src matlab :exports results
|
||||||
|
freqs = logspace(-2, 2, 1000);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
||||||
|
|
||||||
|
ax1 = nexttile;
|
||||||
|
hold on;
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Initial');
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen_b(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Jacobian');
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_svd_b(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
|
||||||
|
title('$D_x/D_{w,x}$');
|
||||||
|
legend('location', 'southwest');
|
||||||
|
|
||||||
|
ax2 = nexttile;
|
||||||
|
hold on;
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen_b(2,2)/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_svd_b(2,2)/s^2, freqs, 'Hz'))), '--');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||||
|
title('$D_z/D_{w,z}$');
|
||||||
|
|
||||||
|
ax3 = nexttile;
|
||||||
|
hold on;
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_cen_b(3,3)/s^2, freqs, 'Hz'))));
|
||||||
|
plot(freqs, abs(squeeze(freqresp(G_svd_b(3,3)/s^2, freqs, 'Hz'))), '--');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||||
|
title('$R_y/R_{w,y}$');
|
||||||
|
|
||||||
|
linkaxes([ax1,ax2,ax3],'xy');
|
||||||
|
xlim([freqs(1), freqs(end)]);
|
||||||
|
xlim([1e-2, 5e1]); ylim([1e-7, 3e-4]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :tangle no :exports results :results file replace
|
||||||
|
exportFig('figs/gravimeter_transmissibility_offset_act.pdf', 'width', 'wide', 'height', 'normal');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+name: fig:gravimeter_transmissibility_offset_act
|
||||||
|
#+caption: Transmissibility for the initial CL system and when the position of actuators are changed
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:figs/gravimeter_transmissibility_offset_act.png]]
|
||||||
|
|
||||||
|
** Combined / comparison of K and M decoupling
|
||||||
|
*** Introduction :ignore:
|
||||||
|
|
||||||
|
If we want to decouple the system at low frequency (determined by the stiffness matrix), we have to compute the Jacobians at a point where the stiffness matrix is diagonal.
|
||||||
|
A displacement (resp. rotation) of the mass at this particular point should induce a *pure* force (resp. torque) on the same point due to stiffnesses in the system.
|
||||||
|
This can be verified by geometrical computations.
|
||||||
|
|
||||||
|
|
||||||
|
If we want to decouple the system at high frequency (determined by the mass matrix), we have tot compute the Jacobians at the Center of Mass of the suspended solid.
|
||||||
|
Similarly to the stiffness analysis, when considering only the inertia effects (neglecting the stiffnesses), a force (resp. torque) applied at this point (the center of mass) should induce a *pure* acceleration (resp. angular acceleration).
|
||||||
|
|
||||||
|
|
||||||
|
Ideally, we would like to have a decoupled mass matrix and stiffness matrix at the same time.
|
||||||
|
To do so, the actuators (springs) should be positioned such that the stiffness matrix is diagonal when evaluated at the CoM of the solid.
|
||||||
|
|
||||||
|
*** Decoupling of the mass matrix
|
||||||
|
|
||||||
|
#+name: fig:gravimeter_model_M
|
||||||
|
#+caption: Choice of {O} such that the Mass Matrix is Diagonal
|
||||||
|
[[file:figs/gravimeter_model_M.png]]
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
la = l/2; % Position of Act. [m]
|
||||||
|
ha = h/2; % Position of Act. [m]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
%% Name of the Simulink File
|
||||||
|
mdl = 'gravimeter';
|
||||||
|
|
||||||
|
%% Input/Output definition
|
||||||
|
clear io; io_i = 1;
|
||||||
|
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
|
||||||
|
G = linearize(mdl, io);
|
||||||
|
G.InputName = {'F1', 'F2', 'F3'};
|
||||||
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
Decoupling at the CoM (Mass decoupled)
|
||||||
|
#+begin_src matlab
|
||||||
|
JMa = [1 0 -h/2
|
||||||
|
0 1 l/2
|
||||||
|
1 0 h/2
|
||||||
|
0 1 0];
|
||||||
|
|
||||||
|
JMt = [1 0 -ha
|
||||||
|
0 1 la
|
||||||
|
0 1 -la];
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
GM = pinv(JMa)*G*pinv(JMt');
|
||||||
|
GM.InputName = {'Fx', 'Fz', 'My'};
|
||||||
|
GM.OutputName = {'Dx', 'Dz', 'Ry'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
figure;
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:3
|
||||||
|
for i_out = [1:i_in-1, i_in+1:3]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for i_in_out = 1:3
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||||
|
legend('location', 'southeast');
|
||||||
|
ylim([1e-8, 1e0]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :tangle no :exports results :results file replace
|
||||||
|
exportFig('figs/jac_decoupling_M.pdf', 'width', 'wide', 'height', 'normal');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+name: fig:jac_decoupling_M
|
||||||
|
#+caption:
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:figs/jac_decoupling_M.png]]
|
||||||
|
|
||||||
|
*** Decoupling of the stiffness matrix
|
||||||
|
|
||||||
|
#+name: fig:gravimeter_model_K
|
||||||
|
#+caption: Choice of {O} such that the Stiffness Matrix is Diagonal
|
||||||
|
[[file:figs/gravimeter_model_K.png]]
|
||||||
|
|
||||||
|
Decoupling at the point where K is diagonal (x = 0, y = -h/2 from the schematic {O} frame):
|
||||||
|
#+begin_src matlab
|
||||||
|
JKa = [1 0 0
|
||||||
|
0 1 -l/2
|
||||||
|
1 0 -h
|
||||||
|
0 1 0];
|
||||||
|
|
||||||
|
JKt = [1 0 0
|
||||||
|
0 1 -la
|
||||||
|
0 1 la];
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
And the plant $\bm{G}_x$ is computed:
|
||||||
|
#+begin_src matlab
|
||||||
|
GK = pinv(JKa)*G*pinv(JKt');
|
||||||
|
GK.InputName = {'Fx', 'Fz', 'My'};
|
||||||
|
GK.OutputName = {'Dx', 'Dz', 'Ry'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
figure;
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:3
|
||||||
|
for i_out = [1:i_in-1, i_in+1:3]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for i_in_out = 1:3
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GK(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||||
|
legend('location', 'southeast');
|
||||||
|
ylim([1e-8, 1e0]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :tangle no :exports results :results file replace
|
||||||
|
exportFig('figs/jac_decoupling_K.pdf', 'width', 'wide', 'height', 'normal');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+name: fig:jac_decoupling_K
|
||||||
|
#+caption:
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:figs/jac_decoupling_K.png]]
|
||||||
|
|
||||||
|
*** Combined decoupling of the mass and stiffness matrices
|
||||||
|
|
||||||
|
#+name: fig:gravimeter_model_KM
|
||||||
|
#+caption: Ideal location of the actuators such that both the mass and stiffness matrices are diagonal
|
||||||
|
[[file:figs/gravimeter_model_KM.png]]
|
||||||
|
|
||||||
|
To do so, the actuator position should be modified
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
la = l/2; % Position of Act. [m]
|
||||||
|
ha = 0; % Position of Act. [m]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
%% Name of the Simulink File
|
||||||
|
mdl = 'gravimeter';
|
||||||
|
|
||||||
|
%% Input/Output definition
|
||||||
|
clear io; io_i = 1;
|
||||||
|
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
|
||||||
|
G = linearize(mdl, io);
|
||||||
|
G.InputName = {'F1', 'F2', 'F3'};
|
||||||
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
JMa = [1 0 -h/2
|
||||||
|
0 1 l/2
|
||||||
|
1 0 h/2
|
||||||
|
0 1 0];
|
||||||
|
|
||||||
|
JMt = [1 0 -ha
|
||||||
|
0 1 la
|
||||||
|
0 1 -la];
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
GKM = pinv(JMa)*G*pinv(JMt');
|
||||||
|
GKM.InputName = {'Fx', 'Fz', 'My'};
|
||||||
|
GKM.OutputName = {'Dx', 'Dz', 'Ry'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
figure;
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:3
|
||||||
|
for i_out = [1:i_in-1, i_in+1:3]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for i_in_out = 1:3
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GKM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||||
|
legend('location', 'southeast');
|
||||||
|
ylim([1e-8, 1e0]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :tangle no :exports results :results file replace
|
||||||
|
exportFig('figs/jac_decoupling_KM.pdf', 'width', 'wide', 'height', 'normal');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+name: fig:jac_decoupling_KM
|
||||||
|
#+caption:
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:figs/jac_decoupling_KM.png]]
|
||||||
|
|
||||||
|
*** Conclusion
|
||||||
|
|
||||||
|
Ideally, the mechanical system should be designed in order to have a decoupled stiffness matrix at the CoM of the solid.
|
||||||
|
|
||||||
|
If not the case, the system can either be decoupled as low frequency if the Jacobian are evaluated at a point where the stiffness matrix is decoupled.
|
||||||
|
Or it can be decoupled at high frequency if the Jacobians are evaluated at the CoM.
|
||||||
|
|
||||||
|
** SVD decoupling performances :noexport:
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
la = l/2; % Position of Act. [m]
|
||||||
|
ha = 0; % Position of Act. [m]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
c = 2e1; % Actuator Damping [N/(m/s)]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
%% Name of the Simulink File
|
||||||
|
mdl = 'gravimeter';
|
||||||
|
|
||||||
|
%% Input/Output definition
|
||||||
|
clear io; io_i = 1;
|
||||||
|
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
|
||||||
|
G = linearize(mdl, io);
|
||||||
|
G.InputName = {'F1', 'F2', 'F3'};
|
||||||
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
wc = 2*pi*10; % Decoupling frequency [rad/s]
|
||||||
|
H1 = evalfr(G, j*wc);
|
||||||
|
D = pinv(real(H1'*H1));
|
||||||
|
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
||||||
|
[U,S,V] = svd(H1);
|
||||||
|
Gsvd = inv(U)*G*inv(V');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
c = 5e2; % Actuator Damping [N/(m/s)]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
%% Name of the Simulink File
|
||||||
|
mdl = 'gravimeter';
|
||||||
|
|
||||||
|
%% Input/Output definition
|
||||||
|
clear io; io_i = 1;
|
||||||
|
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
|
||||||
|
G = linearize(mdl, io);
|
||||||
|
G.InputName = {'F1', 'F2', 'F3'};
|
||||||
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
wc = 2*pi*10; % Decoupling frequency [rad/s]
|
||||||
|
H1 = evalfr(G, j*wc);
|
||||||
|
D = pinv(real(H1'*H1));
|
||||||
|
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
||||||
|
[U,S,V] = svd(H1);
|
||||||
|
Gsvdd = inv(U)*G*inv(V');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
JMa = [1 0 -h/2
|
||||||
|
0 1 l/2
|
||||||
|
1 0 h/2
|
||||||
|
0 1 0];
|
||||||
|
|
||||||
|
JMt = [1 0 -ha
|
||||||
|
0 1 la
|
||||||
|
0 1 -la];
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
GM = pinv(JMa)*G*pinv(JMt');
|
||||||
|
GM.InputName = {'Fx', 'Fz', 'My'};
|
||||||
|
GM.OutputName = {'Dx', 'Dz', 'Ry'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
figure;
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:3
|
||||||
|
for i_out = [1:i_in-1, i_in+1:3]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for i_in_out = 1:3
|
||||||
|
plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||||
|
legend('location', 'southeast');
|
||||||
|
ylim([1e-8, 1e0]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
figure;
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:3
|
||||||
|
for i_out = [1:i_in-1, i_in+1:3]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for i_in_out = 1:3
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||||
|
legend('location', 'southeast');
|
||||||
|
ylim([1e-8, 1e0]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none
|
||||||
|
figure;
|
||||||
|
|
||||||
|
% Magnitude
|
||||||
|
hold on;
|
||||||
|
for i_in = 1:3
|
||||||
|
for i_out = [1:i_in-1, i_in+1:3]
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'HandleVisibility', 'off');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||||
|
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||||
|
set(gca,'ColorOrderIndex',1)
|
||||||
|
for i_in_out = 1:3
|
||||||
|
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||||
|
legend('location', 'southeast');
|
||||||
|
ylim([1e-8, 1e0]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
** SVD U and V matrices :noexport:
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
la = l/2; % Position of Act. [m]
|
||||||
|
ha = 0; % Position of Act. [m]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
c = 2e1; % Actuator Damping [N/(m/s)]
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab
|
||||||
|
%% Name of the Simulink File
|
||||||
|
mdl = 'gravimeter';
|
||||||
|
|
||||||
|
%% Input/Output definition
|
||||||
|
clear io; io_i = 1;
|
||||||
|
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||||
|
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||||
|
|
||||||
|
G = linearize(mdl, io);
|
||||||
|
G.InputName = {'F1', 'F2', 'F3'};
|
||||||
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
||||||
|
#+end_src
|
||||||
|
|
||||||
* Stewart Platform - Simscape Model
|
* Stewart Platform - Simscape Model
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:matlab+: :tangle stewart_platform/script.m
|
:header-args:matlab+: :tangle stewart_platform/script.m
|
||||||
|