Change gravimeter axis
This commit is contained in:
		
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 12 KiB  | 
										
											Binary file not shown.
										
									
								
							| 
		 Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB  | 
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 Before Width: | Height: | Size: 4.4 KiB After Width: | Height: | Size: 4.6 KiB  | 
@@ -20,6 +20,10 @@ open('gravimeter.slx')
 | 
				
			|||||||
% #+caption: Model of the gravimeter
 | 
					% #+caption: Model of the gravimeter
 | 
				
			||||||
% [[file:figs/gravimeter_model.png]]
 | 
					% [[file:figs/gravimeter_model.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% #+name: fig:leg_model
 | 
				
			||||||
 | 
					% #+caption: Model of the struts
 | 
				
			||||||
 | 
					% [[file:figs/leg_model.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
% The parameters used for the simulation are the following:
 | 
					% The parameters used for the simulation are the following:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
l  = 1.0; % Length of the mass [m]
 | 
					l  = 1.0; % Length of the mass [m]
 | 
				
			||||||
@@ -57,7 +61,7 @@ io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
G = linearize(mdl, io);
 | 
					G = linearize(mdl, io);
 | 
				
			||||||
G.InputName  = {'F1', 'F2', 'F3'};
 | 
					G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -125,22 +129,22 @@ end
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
% The Jacobian corresponding to the sensors and actuators are defined below:
 | 
					% The Jacobian corresponding to the sensors and actuators are defined below:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Ja = [1 0  h/2
 | 
					Ja = [1 0 -h/2
 | 
				
			||||||
      0 1 -l/2
 | 
					      0 1  l/2
 | 
				
			||||||
      1 0 -h/2
 | 
					      1 0  h/2
 | 
				
			||||||
      0 1  0];
 | 
					      0 1  0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Jt = [1 0  ha
 | 
					Jt = [1 0 -ha
 | 
				
			||||||
      0 1 -la
 | 
					      0 1  la
 | 
				
			||||||
      0 1  la];
 | 
					      0 1 -la];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
% And the plant $\bm{G}_x$ is computed:
 | 
					% And the plant $\bm{G}_x$ is computed:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Gx = pinv(Ja)*G*pinv(Jt');
 | 
					Gx = pinv(Ja)*G*pinv(Jt');
 | 
				
			||||||
Gx.InputName  = {'Fx', 'Fz', 'My'};
 | 
					Gx.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
Gx.OutputName  = {'Dx', 'Dz', 'Ry'};
 | 
					Gx.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
size(Gx)
 | 
					size(Gx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -385,6 +389,43 @@ legend('location', 'southwest');
 | 
				
			|||||||
linkaxes([ax1,ax2],'y');
 | 
					linkaxes([ax1,ax2],'y');
 | 
				
			||||||
ylim([1e-5, 1e1]);
 | 
					ylim([1e-5, 1e1]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% #+name: fig:gravimeter_rga
 | 
				
			||||||
 | 
					% #+caption: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled plant
 | 
				
			||||||
 | 
					% #+RESULTS:
 | 
				
			||||||
 | 
					% [[file:figs/gravimeter_rga.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% The RGA-number is also a measure of diagonal dominance:
 | 
				
			||||||
 | 
					% \begin{equation}
 | 
				
			||||||
 | 
					%   \text{RGA-number} = \| \Lambda(G) - I \|_\text{sum}
 | 
				
			||||||
 | 
					% \end{equation}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Relative Gain Array for the decoupled plant using SVD:
 | 
				
			||||||
 | 
					RGA_svd = zeros(size(Gsvd,1), size(Gsvd,2), length(freqs));
 | 
				
			||||||
 | 
					Gsvd_inv = inv(Gsvd);
 | 
				
			||||||
 | 
					for f_i = 1:length(freqs)
 | 
				
			||||||
 | 
					  RGA_svd(:, :, f_i) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Relative Gain Array for the decoupled plant using the Jacobian:
 | 
				
			||||||
 | 
					RGA_x = zeros(size(Gx,1), size(Gx,2), length(freqs));
 | 
				
			||||||
 | 
					Gx_inv = inv(Gx);
 | 
				
			||||||
 | 
					for f_i = 1:length(freqs)
 | 
				
			||||||
 | 
					  RGA_x(:, :, f_i) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					RGA_num_svd = squeeze(sum(sum(RGA_svd - eye(3))));
 | 
				
			||||||
 | 
					RGA_num_x = squeeze(sum(sum(RGA_x - eye(3))));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					plot(freqs, RGA_num_svd)
 | 
				
			||||||
 | 
					plot(freqs, RGA_num_x)
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					xlabel('Frequency [Hz]'); ylabel('RGA-Number');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
% Obtained Decoupled Plants
 | 
					% Obtained Decoupled Plants
 | 
				
			||||||
% <<sec:gravimeter_decoupled_plant>>
 | 
					% <<sec:gravimeter_decoupled_plant>>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -457,7 +498,7 @@ plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5],
 | 
				
			|||||||
set(gca,'ColorOrderIndex',1)
 | 
					set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = R_y/M_y$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = R_z/M_z$');
 | 
				
			||||||
hold off;
 | 
					hold off;
 | 
				
			||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
 | 
					ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
 | 
				
			||||||
@@ -605,7 +646,7 @@ plot(freqs, abs(squeeze(freqresp(G_svd(2,2)/s^2, freqs, 'Hz'))), '--');
 | 
				
			|||||||
hold off;
 | 
					hold off;
 | 
				
			||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
					set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
				
			||||||
title('$D_z/D_{w,z}$');
 | 
					title('$D_y/D_{w,y}$');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
ax3 = nexttile;
 | 
					ax3 = nexttile;
 | 
				
			||||||
hold on;
 | 
					hold on;
 | 
				
			||||||
@@ -615,8 +656,421 @@ plot(freqs, abs(squeeze(freqresp(G_svd(3,3)/s^2, freqs, 'Hz'))), '--');
 | 
				
			|||||||
hold off;
 | 
					hold off;
 | 
				
			||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
					set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
				
			||||||
title('$R_y/R_{w,y}$');
 | 
					title('$R_z/R_{w,z}$');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
linkaxes([ax1,ax2,ax3],'xy');
 | 
					linkaxes([ax1,ax2,ax3],'xy');
 | 
				
			||||||
xlim([freqs(1), freqs(end)]);
 | 
					xlim([freqs(1), freqs(end)]);
 | 
				
			||||||
xlim([1e-2, 5e1]); ylim([1e-7, 1e-2]);
 | 
					xlim([1e-2, 5e1]); ylim([1e-7, 1e-2]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% #+name: fig:gravimeter_platform_simscape_cl_transmissibility
 | 
				
			||||||
 | 
					% #+caption: Obtained Transmissibility
 | 
				
			||||||
 | 
					% #+RESULTS:
 | 
				
			||||||
 | 
					% [[file:figs/gravimeter_platform_simscape_cl_transmissibility.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					freqs = logspace(-2, 2, 1000);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					for out_i = 1:3
 | 
				
			||||||
 | 
					    for in_i = out_i+1:3
 | 
				
			||||||
 | 
					        set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(G(    out_i,in_i), freqs, 'Hz'))));
 | 
				
			||||||
 | 
					        set(gca,'ColorOrderIndex',2)
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(G_cen(out_i,in_i), freqs, 'Hz'))));
 | 
				
			||||||
 | 
					        set(gca,'ColorOrderIndex',3)
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(G_svd(out_i,in_i), freqs, 'Hz'))), '--');
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					ylabel('Transmissibility'); xlabel('Frequency [Hz]');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Robustness to a change of actuator position
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Let say we change the position of the actuators:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					la = l/2*0.7; % Position of Act. [m]
 | 
				
			||||||
 | 
					ha = h/2*0.7; % Position of Act. [m]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Name of the Simulink File
 | 
				
			||||||
 | 
					mdl = 'gravimeter';
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Input/Output definition
 | 
				
			||||||
 | 
					clear io; io_i = 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					G = linearize(mdl, io);
 | 
				
			||||||
 | 
					G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
 | 
					G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					G_cen_b = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
 | 
				
			||||||
 | 
					G_svd_b = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% The new plant is computed, and the centralized and SVD control architectures are applied using the previsouly computed Jacobian matrices and $U$ and $V$ matrices.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% The closed-loop system are still stable, and their
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					freqs = logspace(-2, 2, 1000);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ax1 = nexttile;
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Initial');
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_cen_b(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Jacobian');
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_svd_b(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					ylabel('Transmissibility'); xlabel('Frequency [Hz]');
 | 
				
			||||||
 | 
					title('$D_x/D_{w,x}$');
 | 
				
			||||||
 | 
					legend('location', 'southwest');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ax2 = nexttile;
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_cen_b(2,2)/s^2, freqs, 'Hz'))));
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_svd_b(2,2)/s^2, freqs, 'Hz'))), '--');
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
				
			||||||
 | 
					title('$D_y/D_{w,y}$');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ax3 = nexttile;
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_cen_b(3,3)/s^2, freqs, 'Hz'))));
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(G_svd_b(3,3)/s^2, freqs, 'Hz'))), '--');
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
				
			||||||
 | 
					title('$R_z/R_{w,z}$');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					linkaxes([ax1,ax2,ax3],'xy');
 | 
				
			||||||
 | 
					xlim([freqs(1), freqs(end)]);
 | 
				
			||||||
 | 
					xlim([1e-2, 5e1]); ylim([1e-7, 3e-4]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Decoupling of the mass matrix
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% #+name: fig:gravimeter_model_M
 | 
				
			||||||
 | 
					% #+caption: Choice of {O} such that the Mass Matrix is Diagonal
 | 
				
			||||||
 | 
					% [[file:figs/gravimeter_model_M.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					la = l/2; % Position of Act. [m]
 | 
				
			||||||
 | 
					ha = h/2; % Position of Act. [m]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Name of the Simulink File
 | 
				
			||||||
 | 
					mdl = 'gravimeter';
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Input/Output definition
 | 
				
			||||||
 | 
					clear io; io_i = 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					G = linearize(mdl, io);
 | 
				
			||||||
 | 
					G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
 | 
					G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Decoupling at the CoM (Mass decoupled)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					JMa = [1 0 -h/2
 | 
				
			||||||
 | 
					       0 1  l/2
 | 
				
			||||||
 | 
					       1 0  h/2
 | 
				
			||||||
 | 
					       0 1  0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					JMt = [1 0 -ha
 | 
				
			||||||
 | 
					       0 1  la
 | 
				
			||||||
 | 
					       0 1 -la];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					GM = pinv(JMa)*G*pinv(JMt');
 | 
				
			||||||
 | 
					GM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
 | 
					GM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Magnitude
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					for i_in = 1:3
 | 
				
			||||||
 | 
					    for i_out = [1:i_in-1, i_in+1:3]
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					             'HandleVisibility', 'off');
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
				
			||||||
 | 
					set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
 | 
					for i_in_out = 1:3
 | 
				
			||||||
 | 
					  plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
				
			||||||
 | 
					legend('location', 'southeast');
 | 
				
			||||||
 | 
					ylim([1e-8, 1e0]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Decoupling of the stiffness matrix
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% #+name: fig:gravimeter_model_K
 | 
				
			||||||
 | 
					% #+caption: Choice of {O} such that the Stiffness Matrix is Diagonal
 | 
				
			||||||
 | 
					% [[file:figs/gravimeter_model_K.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Decoupling at the point where K is diagonal (x = 0, y = -h/2 from the schematic {O} frame):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					JKa = [1 0  0
 | 
				
			||||||
 | 
					       0 1 -l/2
 | 
				
			||||||
 | 
					       1 0 -h
 | 
				
			||||||
 | 
					       0 1  0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					JKt = [1 0  0
 | 
				
			||||||
 | 
					       0 1 -la
 | 
				
			||||||
 | 
					       0 1  la];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% And the plant $\bm{G}_x$ is computed:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					GK = pinv(JKa)*G*pinv(JKt');
 | 
				
			||||||
 | 
					GK.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
 | 
					GK.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Magnitude
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					for i_in = 1:3
 | 
				
			||||||
 | 
					    for i_out = [1:i_in-1, i_in+1:3]
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					             'HandleVisibility', 'off');
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
				
			||||||
 | 
					set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
 | 
					for i_in_out = 1:3
 | 
				
			||||||
 | 
					  plot(freqs, abs(squeeze(freqresp(GK(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
				
			||||||
 | 
					legend('location', 'southeast');
 | 
				
			||||||
 | 
					ylim([1e-8, 1e0]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Combined decoupling of the mass and stiffness matrices
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% #+name: fig:gravimeter_model_KM
 | 
				
			||||||
 | 
					% #+caption: Ideal location of the actuators such that both the mass and stiffness matrices are diagonal
 | 
				
			||||||
 | 
					% [[file:figs/gravimeter_model_KM.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% To do so, the actuator position should be modified
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					la = l/2; % Position of Act. [m]
 | 
				
			||||||
 | 
					ha = 0; % Position of Act. [m]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Name of the Simulink File
 | 
				
			||||||
 | 
					mdl = 'gravimeter';
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Input/Output definition
 | 
				
			||||||
 | 
					clear io; io_i = 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					G = linearize(mdl, io);
 | 
				
			||||||
 | 
					G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
 | 
					G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					JMa = [1 0 -h/2
 | 
				
			||||||
 | 
					       0 1  l/2
 | 
				
			||||||
 | 
					       1 0  h/2
 | 
				
			||||||
 | 
					       0 1  0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					JMt = [1 0 -ha
 | 
				
			||||||
 | 
					       0 1  la
 | 
				
			||||||
 | 
					       0 1 -la];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					GKM = pinv(JMa)*G*pinv(JMt');
 | 
				
			||||||
 | 
					GKM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
 | 
					GKM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Magnitude
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					for i_in = 1:3
 | 
				
			||||||
 | 
					    for i_out = [1:i_in-1, i_in+1:3]
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					             'HandleVisibility', 'off');
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
				
			||||||
 | 
					set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
 | 
					for i_in_out = 1:3
 | 
				
			||||||
 | 
					  plot(freqs, abs(squeeze(freqresp(GKM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
				
			||||||
 | 
					legend('location', 'southeast');
 | 
				
			||||||
 | 
					ylim([1e-8, 1e0]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% SVD decoupling performances                                     :noexport:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					la = l/2; % Position of Act. [m]
 | 
				
			||||||
 | 
					ha = 0; % Position of Act. [m]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					c = 2e1; % Actuator Damping [N/(m/s)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Name of the Simulink File
 | 
				
			||||||
 | 
					mdl = 'gravimeter';
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Input/Output definition
 | 
				
			||||||
 | 
					clear io; io_i = 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					G = linearize(mdl, io);
 | 
				
			||||||
 | 
					G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
 | 
					G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					wc = 2*pi*10; % Decoupling frequency [rad/s]
 | 
				
			||||||
 | 
					H1 = evalfr(G, j*wc);
 | 
				
			||||||
 | 
					D = pinv(real(H1'*H1));
 | 
				
			||||||
 | 
					H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
 | 
				
			||||||
 | 
					[U,S,V] = svd(H1);
 | 
				
			||||||
 | 
					Gsvd = inv(U)*G*inv(V');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					c = 5e2; % Actuator Damping [N/(m/s)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Name of the Simulink File
 | 
				
			||||||
 | 
					mdl = 'gravimeter';
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Input/Output definition
 | 
				
			||||||
 | 
					clear io; io_i = 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					G = linearize(mdl, io);
 | 
				
			||||||
 | 
					G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
 | 
					G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					wc = 2*pi*10; % Decoupling frequency [rad/s]
 | 
				
			||||||
 | 
					H1 = evalfr(G, j*wc);
 | 
				
			||||||
 | 
					D = pinv(real(H1'*H1));
 | 
				
			||||||
 | 
					H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
 | 
				
			||||||
 | 
					[U,S,V] = svd(H1);
 | 
				
			||||||
 | 
					Gsvdd = inv(U)*G*inv(V');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					JMa = [1 0 -h/2
 | 
				
			||||||
 | 
					       0 1  l/2
 | 
				
			||||||
 | 
					       1 0  h/2
 | 
				
			||||||
 | 
					       0 1  0];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					JMt = [1 0 -ha
 | 
				
			||||||
 | 
					       0 1  la
 | 
				
			||||||
 | 
					       0 1 -la];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					GM = pinv(JMa)*G*pinv(JMt');
 | 
				
			||||||
 | 
					GM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
 | 
					GM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Magnitude
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					for i_in = 1:3
 | 
				
			||||||
 | 
					    for i_out = [1:i_in-1, i_in+1:3]
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					             'HandleVisibility', 'off');
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
				
			||||||
 | 
					set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
 | 
					for i_in_out = 1:3
 | 
				
			||||||
 | 
					  plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
				
			||||||
 | 
					legend('location', 'southeast');
 | 
				
			||||||
 | 
					ylim([1e-8, 1e0]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Magnitude
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					for i_in = 1:3
 | 
				
			||||||
 | 
					    for i_out = [1:i_in-1, i_in+1:3]
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					             'HandleVisibility', 'off');
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
				
			||||||
 | 
					set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
 | 
					for i_in_out = 1:3
 | 
				
			||||||
 | 
					  plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
				
			||||||
 | 
					legend('location', 'southeast');
 | 
				
			||||||
 | 
					ylim([1e-8, 1e0]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					figure;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Magnitude
 | 
				
			||||||
 | 
					hold on;
 | 
				
			||||||
 | 
					for i_in = 1:3
 | 
				
			||||||
 | 
					    for i_out = [1:i_in-1, i_in+1:3]
 | 
				
			||||||
 | 
					        plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					             'HandleVisibility', 'off');
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
				
			||||||
 | 
					     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
				
			||||||
 | 
					set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
 | 
					for i_in_out = 1:3
 | 
				
			||||||
 | 
					  plot(freqs, abs(squeeze(freqresp(Gsvdd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					hold off;
 | 
				
			||||||
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
 | 
					xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
				
			||||||
 | 
					legend('location', 'southeast');
 | 
				
			||||||
 | 
					ylim([1e-8, 1e0]);
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										90
									
								
								index.org
									
									
									
									
									
								
							
							
						
						
									
										90
									
								
								index.org
									
									
									
									
									
								
							@@ -138,7 +138,7 @@ The parameters used for the simulation are the following:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  G = linearize(mdl, io);
 | 
					  G = linearize(mdl, io);
 | 
				
			||||||
  G.InputName  = {'F1', 'F2', 'F3'};
 | 
					  G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					  G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
The inputs and outputs of the plant are shown in Figure [[fig:gravimeter_plant_schematic]].
 | 
					The inputs and outputs of the plant are shown in Figure [[fig:gravimeter_plant_schematic]].
 | 
				
			||||||
@@ -149,7 +149,7 @@ More precisely there are three inputs (the three actuator forces):
 | 
				
			|||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
And 4 outputs (the two 2-DoF accelerometers):
 | 
					And 4 outputs (the two 2-DoF accelerometers):
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  \bm{a} = \begin{bmatrix} a_{1x} \\ a_{1z} \\ a_{2x} \\ a_{2z} \end{bmatrix}
 | 
					  \bm{a} = \begin{bmatrix} a_{1x} \\ a_{1y} \\ a_{2x} \\ a_{2y} \end{bmatrix}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src latex :file gravimeter_plant_schematic.pdf :tangle no :exports results
 | 
					#+begin_src latex :file gravimeter_plant_schematic.pdf :tangle no :exports results
 | 
				
			||||||
@@ -158,7 +158,7 @@ And 4 outputs (the two 2-DoF accelerometers):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    % Connections and labels
 | 
					    % Connections and labels
 | 
				
			||||||
    \draw[<-] (G.west) -- ++(-2.0, 0) node[above right]{$\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}$};
 | 
					    \draw[<-] (G.west) -- ++(-2.0, 0) node[above right]{$\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}$};
 | 
				
			||||||
    \draw[->] (G.east) -- ++( 2.0, 0)  node[above left]{$\bm{a} = \begin{bmatrix} a_{1x} \\ a_{1z} \\ a_{2x} \\ a_{2z} \end{bmatrix}$};
 | 
					    \draw[->] (G.east) -- ++( 2.0, 0)  node[above left]{$\bm{a} = \begin{bmatrix} a_{1x} \\ a_{1y} \\ a_{2x} \\ a_{2y} \end{bmatrix}$};
 | 
				
			||||||
  \end{tikzpicture}
 | 
					  \end{tikzpicture}
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -232,12 +232,12 @@ Consider the control architecture shown in Figure [[fig:gravimeter_decouple_jaco
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
The Jacobian matrix $J_{\tau}$ is used to transform forces applied by the three actuators into forces/torques applied on the gravimeter at its center of mass:
 | 
					The Jacobian matrix $J_{\tau}$ is used to transform forces applied by the three actuators into forces/torques applied on the gravimeter at its center of mass:
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = J_{\tau}^{-T} \begin{bmatrix} F_x \\ F_z \\ M_y \end{bmatrix}
 | 
					  \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = J_{\tau}^{-T} \begin{bmatrix} F_x \\ F_y \\ M_z \end{bmatrix}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
The Jacobian matrix $J_{a}$ is used to compute the vertical acceleration, horizontal acceleration and rotational acceleration of the mass with respect to its center of mass:
 | 
					The Jacobian matrix $J_{a}$ is used to compute the vertical acceleration, horizontal acceleration and rotational acceleration of the mass with respect to its center of mass:
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  \begin{bmatrix} a_x \\ a_z \\ a_{R_y} \end{bmatrix} = J_{a}^{-1} \begin{bmatrix} a_{x1} \\ a_{z1} \\ a_{x2} \\ a_{z2} \end{bmatrix}
 | 
					  \begin{bmatrix} a_x \\ a_y \\ a_{R_z} \end{bmatrix} = J_{a}^{-1} \begin{bmatrix} a_{x1} \\ a_{y1} \\ a_{x2} \\ a_{y2} \end{bmatrix}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
We thus define a new plant as defined in Figure [[fig:gravimeter_decouple_jacobian]].
 | 
					We thus define a new plant as defined in Figure [[fig:gravimeter_decouple_jacobian]].
 | 
				
			||||||
@@ -252,10 +252,10 @@ $\bm{G}_x(s)$ correspond to the $3 \times 3$transfer function matrix from forces
 | 
				
			|||||||
    \node[block, right=0.6 of G] (Ja) {$J_{a}^{-1}$};
 | 
					    \node[block, right=0.6 of G] (Ja) {$J_{a}^{-1}$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    % Connections and labels
 | 
					    % Connections and labels
 | 
				
			||||||
    \draw[<-] (Jt.west) -- ++(-2.5, 0) node[above right]{$\bm{\mathcal{F}} = \begin{bmatrix}F_x \\ F_z \\ M_y \end{bmatrix}$};
 | 
					    \draw[<-] (Jt.west) -- ++(-2.5, 0) node[above right]{$\bm{\mathcal{F}} = \begin{bmatrix}F_x \\ F_y \\ M_z \end{bmatrix}$};
 | 
				
			||||||
    \draw[->] (Jt.east) -- (G.west)  node[above left]{$\bm{\tau}$};
 | 
					    \draw[->] (Jt.east) -- (G.west)  node[above left]{$\bm{\tau}$};
 | 
				
			||||||
    \draw[->] (G.east) -- (Ja.west)  node[above left]{$\bm{a}$};
 | 
					    \draw[->] (G.east) -- (Ja.west)  node[above left]{$\bm{a}$};
 | 
				
			||||||
    \draw[->] (Ja.east) -- ++( 2.6, 0)  node[above left]{$\bm{\mathcal{A}} = \begin{bmatrix}a_x \\ a_z \\ a_{R_y} \end{bmatrix}$};
 | 
					    \draw[->] (Ja.east) -- ++( 2.6, 0)  node[above left]{$\bm{\mathcal{A}} = \begin{bmatrix}a_x \\ a_y \\ a_{R_z} \end{bmatrix}$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    \begin{scope}[on background layer]
 | 
					    \begin{scope}[on background layer]
 | 
				
			||||||
      \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
 | 
					      \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
 | 
				
			||||||
@@ -284,8 +284,8 @@ The Jacobian corresponding to the sensors and actuators are defined below:
 | 
				
			|||||||
And the plant $\bm{G}_x$ is computed:
 | 
					And the plant $\bm{G}_x$ is computed:
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  Gx = pinv(Ja)*G*pinv(Jt');
 | 
					  Gx = pinv(Ja)*G*pinv(Jt');
 | 
				
			||||||
  Gx.InputName  = {'Fx', 'Fz', 'My'};
 | 
					  Gx.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
  Gx.OutputName  = {'Dx', 'Dz', 'Ry'};
 | 
					  Gx.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab :results output replace :exports results
 | 
					#+begin_src matlab :results output replace :exports results
 | 
				
			||||||
@@ -736,7 +736,7 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
 | 
				
			|||||||
  set(gca,'ColorOrderIndex',1)
 | 
					  set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = R_y/M_y$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = R_z/M_z$');
 | 
				
			||||||
  hold off;
 | 
					  hold off;
 | 
				
			||||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
  ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
 | 
					  ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
 | 
				
			||||||
@@ -961,7 +961,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
 | 
				
			|||||||
  hold off;
 | 
					  hold off;
 | 
				
			||||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
  set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
					  set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
				
			||||||
  title('$D_z/D_{w,z}$');
 | 
					  title('$D_y/D_{w,y}$');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ax3 = nexttile;
 | 
					  ax3 = nexttile;
 | 
				
			||||||
  hold on;
 | 
					  hold on;
 | 
				
			||||||
@@ -971,7 +971,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
 | 
				
			|||||||
  hold off;
 | 
					  hold off;
 | 
				
			||||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
  set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
					  set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
				
			||||||
  title('$R_y/R_{w,y}$');
 | 
					  title('$R_z/R_{w,z}$');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  linkaxes([ax1,ax2,ax3],'xy');
 | 
					  linkaxes([ax1,ax2,ax3],'xy');
 | 
				
			||||||
  xlim([freqs(1), freqs(end)]);
 | 
					  xlim([freqs(1), freqs(end)]);
 | 
				
			||||||
@@ -1040,7 +1040,7 @@ Let say we change the position of the actuators:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  G = linearize(mdl, io);
 | 
					  G = linearize(mdl, io);
 | 
				
			||||||
  G.InputName  = {'F1', 'F2', 'F3'};
 | 
					  G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					  G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab :exports none
 | 
					#+begin_src matlab :exports none
 | 
				
			||||||
@@ -1077,7 +1077,7 @@ The closed-loop system are still stable, and their
 | 
				
			|||||||
  hold off;
 | 
					  hold off;
 | 
				
			||||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
  set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
					  set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
				
			||||||
  title('$D_z/D_{w,z}$');
 | 
					  title('$D_y/D_{w,y}$');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  ax3 = nexttile;
 | 
					  ax3 = nexttile;
 | 
				
			||||||
  hold on;
 | 
					  hold on;
 | 
				
			||||||
@@ -1087,7 +1087,7 @@ The closed-loop system are still stable, and their
 | 
				
			|||||||
  hold off;
 | 
					  hold off;
 | 
				
			||||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
  set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
					  set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
				
			||||||
  title('$R_y/R_{w,y}$');
 | 
					  title('$R_z/R_{w,z}$');
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  linkaxes([ax1,ax2,ax3],'xy');
 | 
					  linkaxes([ax1,ax2,ax3],'xy');
 | 
				
			||||||
  xlim([freqs(1), freqs(end)]);
 | 
					  xlim([freqs(1), freqs(end)]);
 | 
				
			||||||
@@ -1145,7 +1145,7 @@ To do so, the actuators (springs) should be positioned such that the stiffness m
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  G = linearize(mdl, io);
 | 
					  G = linearize(mdl, io);
 | 
				
			||||||
  G.InputName  = {'F1', 'F2', 'F3'};
 | 
					  G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					  G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Decoupling at the CoM (Mass decoupled)
 | 
					Decoupling at the CoM (Mass decoupled)
 | 
				
			||||||
@@ -1162,8 +1162,8 @@ Decoupling at the CoM (Mass decoupled)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  GM = pinv(JMa)*G*pinv(JMt');
 | 
					  GM = pinv(JMa)*G*pinv(JMt');
 | 
				
			||||||
  GM.InputName  = {'Fx', 'Fz', 'My'};
 | 
					  GM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
  GM.OutputName  = {'Dx', 'Dz', 'Ry'};
 | 
					  GM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab :exports none
 | 
					#+begin_src matlab :exports none
 | 
				
			||||||
@@ -1195,7 +1195,7 @@ Decoupling at the CoM (Mass decoupled)
 | 
				
			|||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+name: fig:jac_decoupling_M
 | 
					#+name: fig:jac_decoupling_M
 | 
				
			||||||
#+caption:
 | 
					#+caption: Diagonal and off-diagonal elements of the decoupled plant
 | 
				
			||||||
#+RESULTS:
 | 
					#+RESULTS:
 | 
				
			||||||
[[file:figs/jac_decoupling_M.png]]
 | 
					[[file:figs/jac_decoupling_M.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1220,8 +1220,8 @@ Decoupling at the point where K is diagonal (x = 0, y = -h/2 from the schematic
 | 
				
			|||||||
And the plant $\bm{G}_x$ is computed:
 | 
					And the plant $\bm{G}_x$ is computed:
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  GK = pinv(JKa)*G*pinv(JKt');
 | 
					  GK = pinv(JKa)*G*pinv(JKt');
 | 
				
			||||||
  GK.InputName  = {'Fx', 'Fz', 'My'};
 | 
					  GK.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
  GK.OutputName  = {'Dx', 'Dz', 'Ry'};
 | 
					  GK.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab :exports none
 | 
					#+begin_src matlab :exports none
 | 
				
			||||||
@@ -1253,7 +1253,7 @@ And the plant $\bm{G}_x$ is computed:
 | 
				
			|||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+name: fig:jac_decoupling_K
 | 
					#+name: fig:jac_decoupling_K
 | 
				
			||||||
#+caption:
 | 
					#+caption: Diagonal and off-diagonal elements of the decoupled plant
 | 
				
			||||||
#+RESULTS:
 | 
					#+RESULTS:
 | 
				
			||||||
[[file:figs/jac_decoupling_K.png]]
 | 
					[[file:figs/jac_decoupling_K.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1286,7 +1286,7 @@ To do so, the actuator position should be modified
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  G = linearize(mdl, io);
 | 
					  G = linearize(mdl, io);
 | 
				
			||||||
  G.InputName  = {'F1', 'F2', 'F3'};
 | 
					  G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					  G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
@@ -1302,8 +1302,8 @@ To do so, the actuator position should be modified
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  GKM = pinv(JMa)*G*pinv(JMt');
 | 
					  GKM = pinv(JMa)*G*pinv(JMt');
 | 
				
			||||||
  GKM.InputName  = {'Fx', 'Fz', 'My'};
 | 
					  GKM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
  GKM.OutputName  = {'Dx', 'Dz', 'Ry'};
 | 
					  GKM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab :exports none
 | 
					#+begin_src matlab :exports none
 | 
				
			||||||
@@ -1335,7 +1335,7 @@ To do so, the actuator position should be modified
 | 
				
			|||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+name: fig:jac_decoupling_KM
 | 
					#+name: fig:jac_decoupling_KM
 | 
				
			||||||
#+caption:
 | 
					#+caption: Diagonal and off-diagonal elements of the decoupled plant
 | 
				
			||||||
#+RESULTS:
 | 
					#+RESULTS:
 | 
				
			||||||
[[file:figs/jac_decoupling_KM.png]]
 | 
					[[file:figs/jac_decoupling_KM.png]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -1373,7 +1373,7 @@ Or it can be decoupled at high frequency if the Jacobians are evaluated at the C
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  G = linearize(mdl, io);
 | 
					  G = linearize(mdl, io);
 | 
				
			||||||
  G.InputName  = {'F1', 'F2', 'F3'};
 | 
					  G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					  G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
@@ -1405,7 +1405,7 @@ Or it can be decoupled at high frequency if the Jacobians are evaluated at the C
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  G = linearize(mdl, io);
 | 
					  G = linearize(mdl, io);
 | 
				
			||||||
  G.InputName  = {'F1', 'F2', 'F3'};
 | 
					  G.InputName  = {'F1', 'F2', 'F3'};
 | 
				
			||||||
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					  G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
@@ -1430,8 +1430,8 @@ Or it can be decoupled at high frequency if the Jacobians are evaluated at the C
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  GM = pinv(JMa)*G*pinv(JMt');
 | 
					  GM = pinv(JMa)*G*pinv(JMt');
 | 
				
			||||||
  GM.InputName  = {'Fx', 'Fz', 'My'};
 | 
					  GM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
				
			||||||
  GM.OutputName  = {'Dx', 'Dz', 'Ry'};
 | 
					  GM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_src matlab :exports none
 | 
					#+begin_src matlab :exports none
 | 
				
			||||||
@@ -1506,36 +1506,6 @@ Or it can be decoupled at high frequency if the Jacobians are evaluated at the C
 | 
				
			|||||||
  ylim([1e-8, 1e0]);
 | 
					  ylim([1e-8, 1e0]);
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
** SVD U and V matrices                                            :noexport:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#+begin_src matlab
 | 
					 | 
				
			||||||
  la = l/2; % Position of Act. [m]
 | 
					 | 
				
			||||||
  ha = 0; % Position of Act. [m]
 | 
					 | 
				
			||||||
#+end_src
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#+begin_src matlab
 | 
					 | 
				
			||||||
  c = 2e1; % Actuator Damping [N/(m/s)]
 | 
					 | 
				
			||||||
#+end_src
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#+begin_src matlab
 | 
					 | 
				
			||||||
  %% Name of the Simulink File
 | 
					 | 
				
			||||||
  mdl = 'gravimeter';
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  %% Input/Output definition
 | 
					 | 
				
			||||||
  clear io; io_i = 1;
 | 
					 | 
				
			||||||
  io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
					 | 
				
			||||||
  io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
					 | 
				
			||||||
  io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
					 | 
				
			||||||
  io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
					 | 
				
			||||||
  io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
					 | 
				
			||||||
  io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
					 | 
				
			||||||
  io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  G = linearize(mdl, io);
 | 
					 | 
				
			||||||
  G.InputName  = {'F1', 'F2', 'F3'};
 | 
					 | 
				
			||||||
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
					 | 
				
			||||||
#+end_src
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* Stewart Platform - Simscape Model
 | 
					* Stewart Platform - Simscape Model
 | 
				
			||||||
:PROPERTIES:
 | 
					:PROPERTIES:
 | 
				
			||||||
:header-args:matlab+: :tangle stewart_platform/script.m
 | 
					:header-args:matlab+: :tangle stewart_platform/script.m
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user